Application of Deep Learning Techniques to Predict the Mechanical Strength of Al-Steel Explosive Clads
Abstract
:1. Introduction
2. Materials and Methods
3. Deep Learning Models
3.1. Convolutional Neural Network
3.2. Deep Neural Network
3.3. Recurrent Neural Network
4. Performance Metric
5. Results and Discussion
5.1. Mechanical Strength of the Dissimilar Explosive Clads
5.2. Prediction Using Convolutional Neural Networks
5.2.1. Conventional Neural Network with Single Convolutional Layer (CNN1)
5.2.2. Conventional Neural Network with Two and Three Convolutional Layers (CNN2 and CNN3)
5.3. Prediction Using Deep Neural Networks
5.4. Prediction Using Recurrent Neural Networks
5.5. Confirmation Experiments
6. Conclusions and Future Recommendation
- It is recommended to employ a ‘V’ grooved base plate with a loading ratio of R = 0.845, a standoff distance of D = 7.6 mm, and a preset angle of A = 6 degrees to attain higher Al 6061–SS 304 clad strengths.
- In predicting the mechanical strengths of the explosive clads, the DNN model performed better than the other models. High-level learning at the initial stages of DNN is the basis of the enhanced efficiency. With an MAE of 1.0552 and a MAPE of 0.7286, the DNN model had the fewest prediction errors and the highest prediction accuracy of 0.9519.
- The prediction performance of RNN is 4% less than that of DNN dueto the diminishing gradient during training.
- The CNN model becomes more accurate when the number of convolutional layers is increased from one to two. Further increasing the convolutional layers, the accuracy decreases as a result of the model being overfitted to the data.
- The prediction performance of the RNN model is superior to the CNN models due to their ability to memorize previous inputs and the presence of internal memory.
- The model prediction accuracy and modeling errors of all five deep learning models were improved using the Adam optimization technique. These results supported the recommendations of the DNN model for predicting the mechanical strength of explosive clads.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclatures
Preset angle | A |
Aluminum | Al |
Artificial neural network | ANN |
Bidirectional LSTM | BiLSTM |
Conventional neural network | CNN |
Conventional Neural Network with single convolutional layer | CNN1 |
Conventional Neural Network with two convolutional layers | CNN2 |
Conventional Neural Network with three convolutional layers | CNN3 |
Cuckoo search | CS |
Standoff distance | D |
Deep neural network | DNN |
Decision tree regression | DTR |
Image | f |
Activation function | f |
Fibre reinforced plastic | FRP |
Groove in the base plate | G |
Genetic algorithm | GA |
Kernel | h |
Positions | i, j |
Linear regression | LR |
Long short-term memory | LSTM |
Mean absolute error | MAE |
Mean absolute percentage error | MAPE |
Total number of test dataset | n |
Polynomial regression | PR |
Row | q |
Loading ratio | R |
Column | r |
Coefficient of determination | R2 |
Rectified linear units | ReLU |
Random forest regression | RFR |
Recurrent neural network | RNN |
Stochastic gradient descent | SGD |
Shear strength | Sh. S |
Single-parameter decision-theoretic rough set | SPDTRS |
Stainless steel | SS |
Support vector machine | SVR |
Tensile strength | TS |
Universal testing machine | UTS |
Input variables | x |
Measured values | Yk |
Predicted values | yk |
References
- Kaya, Y. Microstructural, mechanical and corrosion investigations of ship steel-aluminum bimetal composites produced by explosive welding. Metals 2018, 8, 544. [Google Scholar] [CrossRef]
- Gullino, A.; Matteis, P.; D’Aiuto, F. Review of aluminum-to-steel welding technologies for car-body applications. Metals 2019, 9, 315. [Google Scholar] [CrossRef]
- Elango, E.; Saravanan, S.; Raghukandan, K. Experimental and numerical studies on aluminum-stainless steel explosive cladding. J. Cent. South Univ. 2020, 27, 1742–1753. [Google Scholar] [CrossRef]
- Somasundaram, S.; Krishnamurthy, R.; Kazuyuki, H. Effect of process parameters on microstructural and mechanical properties of Ti−SS 304L explosive clad-ding. J. Cent. South Univ. 2017, 24, 1245–1251. [Google Scholar] [CrossRef]
- Kumar, P.; Ghosh, S.K.; Saravanan, S.; Barma, J.D. Effect of Explosive Loading Ratio on Microstructure and Mechanical Properties of Al 5052/AZ31B Explosive Weld Composite. JOM 2023, 75, 167–175. [Google Scholar] [CrossRef]
- Chen, X.; Inao, D.; Li, X.; Tanaka, S.; Li, K.; Hokamoto, K. Optimal parameters for the explosive welding of TP 270C pure titanium and SUS 821L1 duplex stainless steel. J. Mater. Res. Technol. 2022, 19, 4771–4786. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Shen, Z. Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Des. 2015, 87, 815–824. [Google Scholar] [CrossRef]
- Tamilchelvan, P.; Raghukandan, K.; Saravanan, S. Kinetic energy dissipation in Ti-SS explosive cladding with multi loading ratios. Trans. Mech. Eng. 2014, 38, 91–96. [Google Scholar]
- Bataev, I.A.; Tanaka, S.; Zhou, Q.; Lazurenko, D.V.; Junior, A.J.; Bataev, A.A.; Hokamoto, K.; Mori, A.; Chen, P. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater. Des. 2019, 169, 107649. [Google Scholar] [CrossRef]
- Kaçar, R.; Acarer, M. Microstructure–property relationship in explosively welded duplex stainless steel–steel. Mater. Sci. Eng. A 2003, 363, 290–296. [Google Scholar] [CrossRef]
- Chen, X.; Inao, D.; Tanaka, S.; Li, X.J.; Bataev, I.A.; Hokamoto, K. Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel. Trans. Nonferrous Met. Soc. China 2021, 31, 2687–2702. [Google Scholar] [CrossRef]
- Anandan, B.; Manikandan, M. Machine learning approach for predicting the peak temperature of dissimilar AA7050-AA2014A friction stir welding butt joint using various regression models. Mater. Lett. 2022, 325, 132879. [Google Scholar] [CrossRef]
- Mishra, A.; Morisetty, R. Determination of the Ultimate Tensile Strength (UTS) of friction stir welded similar AA6061 joints by using supervised machine learning based algorithms. Manuf. Lett. 2022, 32, 83–86. [Google Scholar] [CrossRef]
- Feng, C.; Xu, L.; Zhao, L.; Han, Y.; Su, M.; Peng, C. Prediction of welded joint fatigue properties based on a novel hybrid SPDTRS-CS-ANN method. Eng. Fract. Mech. 2022, 275, 108824. [Google Scholar] [CrossRef]
- Mongan, P.G.; Hinchy, E.P.; O’Dowd, N.P.; McCarthy, C.T. Quality prediction of ultrasonically welded joints using a hybrid machine learning model. J. Manuf. Process. 2021, 71, 571–579. [Google Scholar] [CrossRef]
- Chen, G.; Sheng, B.; Luo, R.; Jia, P. A parallel strategy for predicting the quality of welded joints in automotive bodies based on machine learning. J. Manuf. Syst. 2022, 62, 636–649. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, P.; Shu, L.; Geng, S. Multi-sensing signals diagnosis and CNN-based detection of porosity defect during Al alloys laser welding. J. Manuf. Syst. 2022, 62, 334–346. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, Y.; Shao, C. End-to-end online quality prediction for ultra-sonic metal welding using sensor fusion and deep learning. J. Manuf. Process. 2022, 83, 685–694. [Google Scholar] [CrossRef]
- Ding, X.; Hou, X.; Xia, M.; Ismail, Y.; Ye, J. Predictions of macroscopic me-chanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN). Compos. Struct. 2022, 302, 116248. [Google Scholar] [CrossRef]
- Wei, H.; Yao, H.; Pang, Y.; Liu, Y. Fracture pattern prediction with random microstructure using a physics-informed deep neural networks. Eng. Fract. Mech. 2022, 268, 108497. [Google Scholar] [CrossRef]
- Rabe, P.; Schiebahn, A.; Reisgen, U. Deep learning approaches for force feedback based void defect detection in friction stir welding. J. Adv. Join. Process. 2022, 5, 100087. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Z.; Li, L.; Lu, Z. Experimental and neural networks analysis on elevated-temperature mechanical properties of structural steels. Mater. Today Commun. 2022, 32, 104092. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Xia, R.; Zhang, P.; Zhou, H.; Zhao, B.; Li, G. Automatic defect prediction in glass fiber reinforced polymer based on THz-TDS signal analysis with neural networks. Infrared Phys. Technol. 2021, 115, 103673. [Google Scholar] [CrossRef]
- Wu, X.; Shi, C.; Fang, Z.; Lin, S.; Sun, Z. Comparative study on welding energy and Interface characteristics of titanium-aluminum explosive composites with and without interlayer. Mater. Des. 2021, 197, 109279. [Google Scholar] [CrossRef]
- Soleymani, M.; Khoshnevisan, M.; Davoodi, B. Prediction of microhardness in thread rolling of St37 by convolutional neural networks and transfer learning. Int. J. Adv. Manuf. Technol. 2022, 123, 3261–3274. [Google Scholar] [CrossRef]
- Babu, T.N.; Ali, P.; Prabha, D.R.; Mohammed, V.N.; Wahab, R.S.; Vijayalakshmi, S. Fault Diagnosis in Bevel Gearbox Using Coiflet Wavelet and Fault Classification Based on ANN Including DNN. Arab. J. Sci. Eng. 2022, 47, 15823–15849. [Google Scholar] [CrossRef]
- Kumar, P.; Batra, S.; Raman, B. Deep neural network hyper-parameter tuning through twofold genetic approach. Soft Comput. 2021, 25, 8747–8771. [Google Scholar] [CrossRef]
- Ali, A.; Zhu, Y.; Zakarya, M. Exploiting dynamic spatiotemporal correlations for citywide traffic flow prediction using attention based neural networks. Inf. Sci. 2021, 577, 852–870. [Google Scholar] [CrossRef]
- Xia, M.; Zheng, X.; Imran, M.; Shoaib, M. Data-driven prognosis method using hybrid deep recurrent neural network. Appl. Soft Comput. 2020, 93, 106351. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Marine predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520. [Google Scholar] [CrossRef] [PubMed]
- Kumararaja, K.; Khiran Kumar, C.S.; Sivaraman, B. A convolutional neural network analysis of a heat pipe with Hybrid Nanofluids. Int. J. Ambient Energy 2022, 43, 6284–6296. [Google Scholar] [CrossRef]
- Wilson Dhileep Kumar, C.; Saravanan, S.; Raghukandan, K. Influence of Grooved Base Plate on Microstructure and Mechanical Strength of Aluminum–Stainless Steel Explosive Cladding. Trans. Indian Inst. Met. 2019, 72, 3269–3276. [Google Scholar] [CrossRef]
- Saravanan, S.; Inokawa, H.; Tomoshige, R.; Raghukandan, K. Effect of silicon carbide particles in microstructure and mechanical properties of dissimilar aluminium explosive cladding. J. Manuf. Process. 2019, 47, 32–40. [Google Scholar]
- Joseph, R.V.; Mohanty, A.; Tyagi, S.; Mishra, S.; Satapathy, S.K.; Mohanty, S.N. A hybrid deep learning framework with CNN and Bi-directional LSTM for store item demand forecasting. Comput. Electr. Eng. 2022, 103, 108358. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Xiao, Q.; Goh, M. A novel method for carbon emission forecasting based on Gompertz’s law and fractional grey model: Evidence from American industrial sector. Renew. Energy 2022, 181, 803–819. [Google Scholar] [CrossRef]
- Ates, G.C.; Gorguluarslan, R.M. Two-stage convolutional encoder-decoder network to improve the performance and reliability of deep learning models for to-pology optimization. Struct. Multidiscip. Optim. 2021, 63, 1927–1950. [Google Scholar] [CrossRef]
- Kim, D.W.; Lim, J.H.; Lee, S. Prediction and validation of the transverse mechanical behavior of unidirectional composites considering interfacial debonding through convolutional neural networks. Compos. Part B Eng. 2021, 225, 109314. [Google Scholar] [CrossRef]
- Bilgin, Z.; Gunestas, M. Exploring Root Causes of CNN-Based Image Classifier Failures Using 3-Nearest Neighbors. SN Comput. Sci. 2022, 3, 452. [Google Scholar] [CrossRef]
- El Bilali, A.; Lamane, H.; Taleb, A.; Nafii, A. A framework based on multivariate distribution-based virtual sample generation and DNN for predicting water quality with small data. J. Clean. Prod. 2022, 368, 133227. [Google Scholar] [CrossRef]
- Fei, H.; Tan, F. Bidirectional grid long short-term memory (bigridlstm): A method to address context-sensitivity and vanishing gradient. Algorithms 2018, 11, 172. [Google Scholar] [CrossRef]
- Saravanan, S.; Gajalakshmi, K. Soft computing approaches for comparative prediction of ram tensile and shear strength in aluminium–stainless steel explosive cladding. Arch. Civ. Mech. Eng. 2022, 22, 42. [Google Scholar] [CrossRef]
No. | R | D (mm) | A (degrees) | Groove | TS (MPa) | Sh. S (MPa) |
---|---|---|---|---|---|---|
1 | 0.8 | 7 | 0 | No | 371 | 252 |
2 | 0.8 | 7 | 5 | No | 377 | 259 |
3 | 0.8 | 7 | 5 | No | 377 | 259 |
4 | 0.6 | 5 | 10 | Dovetail | 352 | 229 |
5 | 1 | 9 | 10 | ‘V’ | 379 | 253 |
6 | 0.8 | 9 | 5 | No | 373 | 251 |
7 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
8 | 0.6 | 5 | 0 | ‘V’ | 354 | 227 |
9 | 0.6 | 9 | 10 | No | 350 | 229 |
10 | 1 | 5 | 10 | Dovetail | 368 | 242 |
11 | 1 | 5 | 10 | No | 359 | 246 |
12 | 0.6 | 9 | 10 | Dovetail | 356 | 230 |
13 | 0.8 | 7 | 10 | No | 375 | 254 |
14 | 1 | 7 | 5 | Dovetail | 374 | 250 |
15 | 0.8 | 9 | 5 | Dovetail | 381 | 254 |
16 | 0.6 | 9 | 10 | ‘V’ | 364 | 235 |
17 | 0.8 | 7 | 10 | ‘V’ | 384 | 261 |
18 | 1 | 5 | 0 | Dovetail | 365 | 241 |
19 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
20 | 0.8 | 7 | 5 | No | 377 | 259 |
21 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
22 | 1 | 5 | 0 | No | 356 | 242 |
23 | 0.8 | 9 | 5 | ‘V’ | 385 | 257 |
24 | 0.6 | 7 | 5 | Dovetail | 358 | 232 |
25 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
26 | 1 | 9 | 0 | No | 360 | 244 |
27 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
28 | 1 | 9 | 0 | Dovetail | 370 | 243 |
29 | 0.6 | 9 | 0 | No | 346 | 222 |
30 | 1 | 9 | 10 | Dovetail | 372 | 249 |
31 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
32 | 0.6 | 5 | 10 | No | 349 | 227 |
33 | 0.6 | 9 | 0 | ‘V’ | 362 | 232 |
34 | 1 | 5 | 10 | ‘V’ | 371 | 248 |
35 | 0.6 | 5 | 10 | ‘V’ | 360 | 234 |
36 | 1 | 9 | 0 | ‘V’ | 377 | 252 |
37 | 0.8 | 7 | 0 | Dovetail | 375 | 253 |
38 | 0.8 | 5 | 5 | ‘V’ | 380 | 255 |
39 | 1 | 9 | 10 | No | 362 | 247 |
40 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
41 | 0.6 | 7 | 5 | No | 351 | 231 |
42 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
43 | 0.8 | 5 | 5 | No | 364 | 245 |
44 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
45 | 0.8 | 7 | 5 | No | 377 | 259 |
46 | 1 | 5 | 0 | ‘V’ | 367 | 247 |
47 | 0.6 | 5 | 0 | Dovetail | 349 | 225 |
48 | 0.6 | 5 | 0 | No | 344 | 220 |
49 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
50 | 0.8 | 7 | 5 | No | 377 | 259 |
51 | 0.6 | 9 | 0 | Dovetail | 354 | 227 |
52 | 1 | 7 | 5 | ‘V’ | 381 | 255 |
53 | 0.8 | 7 | 5 | No | 377 | 259 |
54 | 0.6 | 7 | 5 | ‘V’ | 369 | 237 |
55 | 0.8 | 5 | 5 | Dovetail | 369 | 247 |
56 | 0.8 | 7 | 0 | ‘V’ | 382 | 261 |
57 | 0.8 | 7 | 5 | Dovetail | 387 | 261 |
58 | 1 | 7 | 5 | No | 364 | 250 |
59 | 0.8 | 7 | 5 | ‘V’ | 392 | 262 |
60 | 0.8 | 7 | 10 | Dovetail | 379 | 256 |
Parameters | Range | Optimal Value |
---|---|---|
No. of convolution blocks | 1 to 4 | 1 |
No. of filters in layer 1 | 4 to 1024 | 421 |
No. of dense layers | 1 to 4 | 2 |
No. of units in layer 1 | 4 to 1024 | 722 |
No. of units in layer 2 | 4 to 1024 | 233 |
Optimizer | Parameters | Range |
---|---|---|
RMSprop | Learning rate | 1 × 105 to 1 × 10−1 |
Decay | 0.85 to 0.99 | |
Momentum | 1 × 105 to 1 × 10−1 | |
Adam | Learning rate | 1 × 105 to 1 × 10−1 |
Decay | 1 × 105 to 1 × 10−1 | |
Learning rate | 1 × 105 to 1 × 10−1 | |
SGD | Momentum | 1 × 105 to 1 × 10−1 |
Learning rate | 1 × 105 to 1 × 10−1 |
Adam Optimizer | CNN1 | CNN2 | CNN3 | DNN | RNN |
---|---|---|---|---|---|
Learning Rate | 0.039 | 0.0205 | 0.0287 | 0.0978 | 0.0148 |
Decay | 0.026 | 0.0333 | 0.0593 | 0.0539 | 0.0384 |
Model | R2 | MAE | MAPE |
---|---|---|---|
CNN1 | 0.8873 | 1.9553 | 1.3047 |
CNN2 | 0.8963 | 1.7454 | 1.2249 |
CNN3 | 0.8523 | 2.3172 | 1.7123 |
DNN | 0.9519 | 1.0552 | 0.7286 |
RNN | 0.9146 | 1.4708 | 1.0406 |
Models | Parameters | Range | Optimal Value |
---|---|---|---|
CNN2 | No. of convolution blocks | 1 to 4 | 1 |
No. of filters in layer 1 | 4 to 1024 | 21 | |
No. of filters in layer 2 | 4 to 1024 | 415 | |
No. of dense layers | 1 to 4 | 2 | |
No. of units in layer 1 | 4 to 1024 | 907 | |
No. of units in layer 2 | 4 to 1024 | 774 | |
CNN3 | No. of convolution blocks | 1 to 4 | 1 |
No. of filters in layer 1 | 4 to 1024 | 11 | |
No. of filters in layer 2 | 4 to 1024 | 24 | |
No. of filters in layer 3 | 4 to 1024 | 32 | |
No. of dense layers | 1 to 4 | 4 | |
No. of units in layer 1 | 4 to 1024 | 58 | |
No. of units in layer 2 | 4 to 1024 | 403 | |
No. of units in layer 3 | 4 to 1024 | 871 | |
No. of units in layer 4 | 4 to 1024 | 246 |
Parameters | Range | Optimal Value |
---|---|---|
No. of dense layers | 1 to 4 | 2 |
No. of units in layer 1 | 4 to 1024 | 791 |
No. of units in layer 2 | 4 to 1024 | 795 |
Parameters | Range | Optimal Value |
---|---|---|
No. of filters in recurrent layer | 4 to 1024 | 430 |
No. of dense layers | 1 to 4 | 3 |
No. of units in layer 1 | 4 to 1024 | 307 |
No. of units in layer 2 | 4 to 1024 | 210 |
No. of units in layer 3 | 4 to 1024 | 843 |
Tensile Strength (MPa) | |||||||||
---|---|---|---|---|---|---|---|---|---|
R | D | A | G | Exp | CNN1 | CNN2 | CNN3 | DNN | RNN |
0.6 | 5 | 0 | No | 344 | 340.35 | 341.41 | 339.54 | 342.98 | 341.26 |
0.6 | 9 | 0 | No | 346 | 350.76 | 342.55 | 352.71 | 344.96 | 348.84 |
0.6 | 9 | 0 | V | 362 | 359.98 | 363.62 | 359.49 | 363.92 | 361.71 |
1 | 9 | 0 | Dovetail | 370 | 367.45 | 368.35 | 371.45 | 369.65 | 370.55 |
0.8 | 7 | 5 | V | 392 | 389.04 | 390.37 | 388.07 | 393.78 | 390.93 |
0.845 | 7.6 | 6 | V | 393 | 389.02 | 390.02 | 386.86 | 391.04 | 388.84 |
Shear Strength (MPa) | |||||||||
R | D | A | G | Exp | CNN1 | CNN2 | CNN3 | DNN | RNN |
0.6 | 5 | 0 | No | 220 | 221.55 | 221.55 | 222.23 | 221.05 | 221.25 |
0.6 | 9 | 0 | No | 222 | 223.48 | 223.63 | 224.14 | 222.99 | 223.36 |
0.6 | 9 | 0 | V | 232 | 229.78 | 231.28 | 229.38 | 231.68 | 231.38 |
1 | 9 | 0 | Dovetail | 243 | 245.36 | 242.06 | 240.33 | 244.56 | 244.71 |
0.8 | 7 | 5 | V | 262 | 259.61 | 259.98 | 258.81 | 261.06 | 260.64 |
0.845 | 7.6 | 6 | V | 264 | 262.07 | 261.65 | 260.06 | 263.03 | 261.58 |
Tensile Strength (MPa) | |||||||||
---|---|---|---|---|---|---|---|---|---|
R | D | A | G | Exp | CNN1 | CNN2 | CNN3 | DNN | RNN |
0.6 | 5 | 0 | No | 344 | 3.65 | 2.59 | 4.46 | 1.02 | 2.74 |
0.6 | 9 | 0 | No | 346 | −4.76 | 3.45 | −6.71 | 1.04 | −2.835 |
0.6 | 9 | 0 | V | 362 | 2.02 | −1.62 | 2.51 | −1.92 | 0.295 |
1 | 9 | 0 | Dovetail | 370 | 2.55 | 1.65 | −1.45 | 0.35 | −0.55 |
0.8 | 7 | 5 | V | 392 | 2.96 | 1.63 | 3.93 | −1.78 | 1.075 |
0.845 | 7.6 | 6 | V | 393 | 3.98 | 2.92 | 6.14 | 1.96 | 4.16 |
Shear Strength (MPa) | |||||||||
R | D | A | G | Exp | CNN1 | CNN2 | CNN3 | DNN | RNN |
0.6 | 5 | 0 | No | 220 | −1.55 | −1.55 | −2.23 | −1.05 | −1.25 |
0.6 | 9 | 0 | No | 222 | −1.48 | −1.63 | −2.14 | −0.99 | −1.36 |
0.6 | 9 | 0 | V | 232 | 2.22 | 0.72 | 2.62 | 0.32 | 0.62 |
1 | 9 | 0 | Dovetail | 243 | −2.36 | 0.94 | 2.67 | −1.56 | −1.71 |
0.8 | 7 | 5 | V | 262 | 2.39 | 2.02 | 3.19 | 0.94 | 1.36 |
0.845 | 7.6 | 6 | V | 264 | 1.93 | 2.35 | 3.94 | 0.97 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, S.; Kumararaja, K.; Raghukandan, K. Application of Deep Learning Techniques to Predict the Mechanical Strength of Al-Steel Explosive Clads. Metals 2023, 13, 373. https://doi.org/10.3390/met13020373
Saravanan S, Kumararaja K, Raghukandan K. Application of Deep Learning Techniques to Predict the Mechanical Strength of Al-Steel Explosive Clads. Metals. 2023; 13(2):373. https://doi.org/10.3390/met13020373
Chicago/Turabian StyleSaravanan, Somasundaram, Kanagasabai Kumararaja, and Krishnamurthy Raghukandan. 2023. "Application of Deep Learning Techniques to Predict the Mechanical Strength of Al-Steel Explosive Clads" Metals 13, no. 2: 373. https://doi.org/10.3390/met13020373
APA StyleSaravanan, S., Kumararaja, K., & Raghukandan, K. (2023). Application of Deep Learning Techniques to Predict the Mechanical Strength of Al-Steel Explosive Clads. Metals, 13(2), 373. https://doi.org/10.3390/met13020373