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Abstract: Since the 1980s, constitutive modeling has steadily migrated from phenomenological
descriptions toward approaches that are based on micromechanics considerations. Despite significant
efforts, crystal plasticity remains an open field of research. Among the unresolved issues are the
anomalous behavior of metals at low temperatures and the stress upturn at extreme dynamics. This
work is focused on the low-temperature responses of body-centered-cubic (bcc) metals, among them,
molybdenum (Mo). At these conditions, the plastic flow strength is governed by the motion of screw
dislocations. The resultant non-planarity of core structures and slip causes the following: the shear
stress includes non-glide components, the Schmid law is violated, there is a tension-compression
asymmetry, and the yield surface and plastic potential are clearly decoupled. We find that the
behavioral complexities can be explained by atomistically resolved friction coefficients in macroscopic
yield and flow. The plastic flow mechanisms establish the departure point into the follow-up analysis
of yield surfaces. For example, we know that while the von Mises stress is explained based on energy
considerations, we will also show that the stress has a clear geometric interpretation. Moreover,
the von Mises stress is just one case within a much broader class of equivalent stresses. Possible
correlations among non-Schmid effects (as represented macroscopically by friction coefficients),
volume change (i.e., residual elastic dilatation) from dislocation lines, and elastic anisotropy are
investigated. Extensions to the shock regime are also established.

Keywords: tensor representations; friction coefficient; metal plasticity; dislocations; Schmid law

1. Introduction

The mechanisms of plastic deformation in bcc metals at low and medium temperatures
are different from the observed mechanisms in face-centered cubic (fcc) and hexagonal-
close-packed (hcp) metals. The plastic flow is controlled by the motion of 1/2<111> screw
dislocations. The dislocations may spread out into several planes of the <111> zone [1,2].
In single crystals, the plastic flow exhibits anisotropic characteristics, and there is a tension-
compression asymmetry. The non-planar structure of the dislocation cores is responsible
for high friction stress (i.e., Peierls stress), there is an asymmetry of the yield stress in
tension and compression, the Schmid law is violated, and the yield surface and plastic
potential are clearly decoupled [3–6]. Consequently, a work-conjugate pair of the equivalent
stress and the rate of plastic strain cannot be constructed. At increasing temperatures, the
tension-compression asymmetry is reduced, and this non-Schmid effect nearly vanishes at
room temperature [7].

In metal plasticity, most phenomenological constitutive models are formulated in the
framework of von Mises (J2) theory. Also well known, but less popular in practice, is Tresca
plasticity. The obvious advantage of the Huber–von Mises yield surface is its numerical
convenience. The existence of a smooth and convex yield surface makes the analysis
numerically friendly. In contrast, the Tresca surface has built-in singularity points/lines,
which pose issues when constructing the associated plastic flow rules. We emphasize that
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the two approaches were introduced over 100 years ago; the Tresca plasticity was proposed
in 1864 [8], the energy-based criterion was suggested in 1904 by Huber [9,10], and the
concept of plastic flow was formulated by von Mises in 1913 [11]. Tresca plasticity assumes
that the plastic slip is initiated when the maximum shear stress reaches a critical magnitude.
Still, we are aware that the active slip planes may deviate from the plane of maximum shear.
Such misorientations are quantified by the Schmid factor. According to the Schmid law [12],
plastic flow begins when the resolved shear stress on a given slip plane attains the threshold
level known as the critical resolved shear stress. This law also implies that the driving force
is not influenced by other components of stress. Taylor [13] and many other researchers
found that the law is not applicable to bcc metals, as it has limited justification [5].

In contrast to the Tresca concept, Huber–von Mises plasticity is formulated based on
energy considerations, where the plastic deformation begins when elastic energy (deviatoric
part only) exceeds a certain energy barrier. In the Huber–von Mises concept, slip planes are
not defined, and as explained in Section 2, the Schmid law should be used with some caution
as well. It is worth mentioning Hosford’s yield criterion for isotropic plasticity [14], which
allows reshaping the stress envelope. In this and many other phenomenological models,
emphasis is placed on the definition of the material’s strength (or yield stress), while little
attention is paid to the actual mechanisms of plastic flow. Also noteworthy in this context
is Hershey’s description of isotropic plasticity [15] and preceding seminal treatments
of yielding by Taylor, Bishop, and Hill [16–18]. Although the current work focuses on
macroscopically isotropic polycrystalline responses for untextured metals, prominent
asymmetric yield criteria for materials of lower symmetry (e.g., orthotropy) are also noted,
e.g., [19–21].

While recognizing the importance of yield stress, we focus our investigations on
the mechanisms of deformation, and then, we determine whether a coupling of the flow
mechanisms with the equivalent stresses exists or, just as important, whether the yield
surface should be treated independently from the plastic potential. Herein, the analysis
is based on the tensor representation method (TRM) developed in [22]. In Section 2, we
illustrate TRM capabilities by constructing a geometric interpretation for the Huber–von
Mises flow mechanism. Then, in Section 3, we focus the discussion on the flow mechanisms
in bcc Mo. In what follows, we can identify two friction coefficients that capture the effects
of the slip non-planarity. One of the coefficients characterizes the yield surface, and the
second is used in the flow potential. We show that the coefficients properly reproduce the
stress asymmetry in molybdenum at low temperatures, and the friction term can depict
the change of flow mechanism at shock conditions (Appendix A). In Section 4, possible
connections between the macroscopic coefficients, elastic anisotropy, and dislocation core
effects are explored theoretically, with a focus on origins of local plastic dilatation.

2. Geometric Interpretation of Huber–von Mises Flow Mechanism

We begin by formulating a geometric interpretation for the Huber–von Mises plastic
flow. The procedure is an important step because it explains further generalizations of
the flow mechanisms and yield surfaces for bcc metals. More specifically, we want to
determine the dominant slip planes, which might be associated with the J2 stress envelope.

As we know, the von Mises flow tensor Mij =
√

3 Sij√
J2

is defined in terms of the stress
deviator Sij = σij − pδij, where σij is the Cauchy stress, while the pressure p = σkk/3
(here, defined as positive in tension) and the Kronecker delta δij complete the relation. The
flow tensor Mij specifies the mechanism of plastic flow such that

.
ε

p
ij =

1
2 Mij

.
ep

eq. When

the mechanism is coupled with stress σij
.
ε

p
ij =

(
1
2 Mijσij

) .
ep

eq, the equivalent stress becomes

σeq = Mijσij/2 =
√

3J2; i.e., it is the Huber–von Mises stress. We find that the flow tensor
Mij can be expressed in terms of three eigentensors: N1

ij, N2
ij, and N3

ij such that the tensors

are aligned with the principal stresses σ1 = N1
ijσij, σ2 = N2

ijσij, and σ3 = N3
ijσij, where

σ1 ≥ σ2 ≥ σ3 and N1
ij + N2

ij + N3
ij = δij. Before proceeding, it is important that we introduce
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the tensor representation method and show that a generic eigentensor can be uniquely
expressed in terms of other second-order tensors, for example, the stress tensor.

2.1. Tensor Representations

The procedure for constructing tensor representations N1
ij, N2

ij, and N3
ij is described

by Zubelewicz [22], where detailed derivations can be found. As stated, any symmetric
second-order tensor can be represented by another second-order symmetric tensor if the
original tensor and its representation produce the same invariants. Here, the generic dyadic
product Nij = ninj is constructed on a unit vector nk. It is clear that Nkk = 1, Nik Nki = 1,
and Nik Nkl Nli = 1, as is true for the tensor taken to any power. We also know that any
second-order symmetric tensor can be expressed in the form of three fundamental terms.
Since the plastic flow is controlled by the current stress, the tensor representation of Nij
will be defined in terms of stress or, here, with the use of the stress deviator. In fact, the
stress and stress-deviator-based representations are equivalent; hence,

Nm
ij = amδij + bmSij + cmSikSkj (1)

The superscript m in Nm
ij indicates the direction of the principal stress. As stated

earlier, there are three relevant invariants: Nkk = 1, Nik Nki = 1, and Nik NkjNji = 1.
The requirement is that the representation (1) retains the same invariants as the generic
eigentensors. Consequently, there are three invariants and three conditions, and, upon
solving the equations, we have three sets of parameters {am, bm, cm}. The first tensor N1

ij
reproduces the dyadic product constructed on the unit vector pointing in the direction of
the maximum tensile stress. The parameters for m = 1 are

a1 = 1
3 −

2
3 cos π+ϕ

3 sec ϕ

b1 =
cos
(

π
6 +

2ϕ
3

)
√

3J2
sec ϕ

c1 =
cos π+ϕ

3
J2

sec ϕ

(2)

The tensor N2
ij is a dyadic product associated with the second principal stress. In this

case, the parameters for m = 2 are

a2 = 1
3 + 2

3 cos ϕ
3 sec ϕ

b2 =
sin 2ϕ

3√
3J2

sec ϕ

c2 = − cos ϕ
3

J2
sec ϕ

(3)

Lastly, the third tensor N3
ij determines the orientation of maximum compression, where

for m = 3,
a3 = 1

3 −
2
3 cos π−ϕ

3 sec ϕ

b3 = −
cos
(

π
6 −

2ϕ
3

)
√

3J2
sec ϕ

c3 =
cos π−ϕ

3
J2

sec ϕ

(4)

In this construction, the second and third invariants of the stress deviator (i.e.,
J2 = SijSij/2 and J3 = SikSkjSji/3) define the angle ϕ = sin−1(Aϕ

)
, where Aϕ =

3
√

3J3/
(

2J3/2
2

)
.

The angle ϕ varies between ±π/2. Once again, the stress representations of the
eigentensors must satisfy the condition N1

ij(Skl) + N2
ij(Skl) + N3

ij(Skl) = δij. In short, the
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TRM is a very useful tool for researchers. It has already been shown that experimentally
observed flow mechanisms, at first constructed in a generic tensorial form, can be uniquely
coupled with the driving tensorial stimuli [23]. In this manner, we eliminate the uncertainty
about the functional form of the mechanisms.

2.2. Atomistically Resolved Friction Coefficient

Once again, here we attempt to construct a geometric interpretation for the flow

mechanism Mij =
√

3 Sij√
J2

. In the first step, we construct a generalized slip mechanism along
three planes, where the planes are corotational with principal stresses such that

Mij = α
(

N1
ij − N3

ij

)
+ β

(
N1

ij − N2
ij

)
− β

(
N2

ij − N3
ij

)
(5)

Note that each plane is weighted by functions α and β. Next, we recall the definition

of the flow tensor Mij =
√

3 Sij√
J2

, where the scalar products are equal to Mkk = 0, Mij Mij = 6
and Mik Mkj Mji = 6 sin ϕ, respectively. From there, we identify the two functions α and β.
The functions take the following form:

α =
√

3 cos ϕ
3

β = β0 sin ϕ
3

(6)

In the next step, the expression (5) is reorganized and presented in an equivalent form
Mij = α

(
N1

ij − N3
ij

)
+ β

(
N1

ij + N2
ij + N3

ij − 3N2
ij

)
, and then, the expression is presented in

the final form
Mij = α

[(
N1

ij − N3
ij

)
+ µϕ

(
δij/3− N2

ij

)]
(7)

Note that N1
ij + N2

ij + N3
ij = δij. The parameter µϕ = 3β/α is interpreted as an

atomistically resolved friction coefficient. The function α varies between 3/2 and
√

3; thus,
the function is nearly a constant. The friction coefficient µϕ takes values between ∓β0. At
first glance, the relation resembles the Coulomb law used in frictional materials [24]. A
generic form of the flow tensor, but not a stress representation, was introduced in [25]. In
the current application to bcc metals, we realize that the coefficient

µϕ =
√

3 β0 tan ϕ/3 (8)

quantifies the slip non-planarity [1,5,26,27]. Consequently, the Huber–von Mises stress
σeq =

√
3J2 is equal to

σeq =
α

2
[
(σ1 − σ3) + µϕ(p− σ2)

]
(9)

In the flow tensor (7) and in the equivalent stress (9), the slip non-planarity is quantified
in the second terms µϕ

(
δij/3− N2

ij

)
and µϕ(p− σ2). In frictional materials, the second

term characterizes the roughness of the slip surface, where the roughness is responsible for
dilatational inelastic deformation.

In metals, too, the atomistically resolved friction coefficient µϕ—here, directly propor-
tional to β0—mediates the effect of non-glide parts of the stress. However, the non-planarity
does not affect the material’s volume in a meaningful manner, at least at the continuum
(macroscopic) scale. Therefore, plasticity is essentially volume-preserving, in an average
sense, when the local volume element contains a dislocation density not exceeding 1015/m2.
In Appendix A, we show that the isochoric flow assumption cannot be over-generalized to
shock-loading regimes, with higher dislocation densities, rising adiabatic temperature, and
local excitations; all the factors magnify core pressure.

In summary, the Huber–von Mises stress is preserved when the parameter is equal to
unity, i.e., β0 = 1, as shown by the black line in Figure 1. However, several other surfaces
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can be constructed. A Tresca-like criterion (blue line) is obtained for β0 = 1/2. The true
Tresca stress envelope (red line) is constructed by prescribing α = 2 and β0 = 0. In the
Tresca-like criterion, singularity points are rounded with Aϕ = 3

√
3 (1− A0) J3/

(
2J3/2

2

)
,

where A0 = 0.2. Herein, the equivalent shear stress and the rate of plastic strain represent
the work-conjugate pairs, that is, σij

.
ε

p
ij =

(
1
2 Mijσij

) .
ep

eq and σeq = Mijσij/2. It is worth
noting that the friction parameter β0 in (8) makes our stress envelopes (9) comparable to
the Hershey–Hosford criteria for fcc polycrystals [14] with a large exponent.
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3. Generalized Huber–von Mises Criterion

In fcc polycrystalline metals, slip is activated along planes somewhat misoriented with
respect to the plane of maximum shear, where the Schmid factor properly quantifies the
degree of misorientation. However, in bcc metals, the breakdown of the Schmid law is a
known fact, as reported in many studies, e.g., [5,28,29]. Specifically, at low temperatures,
plastic flow depends on the resolved shear stress and is also affected by other stress
components. The non-planarity of the dislocation core structure is the main reason for the
observed strength asymmetry in tension and compression. As reported in [1,26,27], the
yield surface and the plastic potential are decoupled. Molecular dynamics (MD) calculations
for Mo crystals support the construction of yield surfaces and plastic potentials [26,27]. A
prior conclusion from [1,5,27] was that the work-conjugate pair of stress and plastic strain
rate cannot be established in bcc polycrystals at low temperatures.

In bcc metals, the non-planarity of the dislocation core arises at the atomistic scale and
affects the shear stress (i.e., screw dislocation core spreading onto multiple planes, with
possible edge components within the core structure [5]); still, still the plastic flow remains
nearly incompressible for dislocation densities far below the theoretical maximum limit
(see Section 4). The friction coefficient denoted by µ0 quantifies the core non-planarity
such that

µϕ =
√

3 β0 tan ϕ/3− µ0 (10)

Again, in reference to frictional materials, the internal friction angle ϕ/3 characterizes
the angle of asperities. This angle changes and is a function of the current stress or, more
precisely, the direction of the maximum shear stress. Thus, the friction mechanism in
metals is endowed with much higher configurational flexibility. We reemphasize that the
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internal friction parameter (8) replicates the relation used in the Coulomb law. In the case
of molybdenum, studies in [27] indicate that β0 = 2/3 properly captures the shape of
the stress envelope, as seen in Figure 2. One should note that the parameter β0 scales
the non-planarity of the plastic flow. For example, in fcc metals, the parameter should
be equal to β0 = 1/2, while β0 = 1 depicts the strongest out-of-plane contribution. In
this construction, the difference between the yield stress and the plastic potential is solely
controlled by the parameter µ0. The yield stress becomes

σY =
α

2

[
(σ1 − σ3) + µY

ϕ(p− σ2)
]

(11)

where the non-planarity coefficient entering Equation (11) is found to be µY
0 = 0.3 for

Mo. The strength differential SDY = 2(σt − σc)/(σt + σc) introduced by Vitek et al. [1]
characterizes the tension–compression asymmetry, where σc and σt are uniaxial stresses in
compression and tension. Here, the differential takes the very simple form SDY = β0 µY

0 .
A similar differential is calculated for the plastic potential: SDP = β0 µP

0 , where the
superscript “P” is added to (10). Now, we have

µP
ϕ = 2/

√
3 tan ϕ/3− µP

0 (12)

where µP
0 = −0.09 for Mo. The flow mechanism becomes

MP
ij = α

[(
N1

ij − N3
ij

)
+ µP

ϕ

(
δij/3− N2

ij

)]
(13)
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Figure 2. Yield surface (black line) and plastic potential (blue line) plotted on the plane of principal
stresses σ1 and σ2. Red data points are based on polycrystal model predictions with slip strengths
informed by MD studies of glide of screw dislocations in bcc Mo, simulated by Gröger et al. [26,27].
The original source of the red data points is ref. [27]; the blue and black lines are the new output of
the model set forth in Section 3 of the current work. The right-hand-side plot depicts the surface’s
asymmetry on the plane of σ1 and (p − σ2), where p is hydrostatic pressure.

In the absence of damage or point defects (e.g., no vacancies, interstitials, or inclu-
sions), and at dislocation densities sufficiently low, Mo can be modeled as a plastically
incompressible material: MP

kk = 0. The plastic potential σP = 1
2 MP

ijσij takes the follow-
ing form:

σP =
α

2

[
(σ1 − σ3) + µP

ϕ(p− σ2)
]

(14)
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The isotropic yield surface and the plastic potential for polycrystalline Mo at low
temperatures are shown in Figure 2. Red data points represent the yield and flow surfaces
for Mo polycrystals, as in Figure 6 of Gröger et al. [27]. The latter are obtained from
Taylor-type [16] crystal plasticity calculations on randomly orientated aggregates of Mo
polycrystals [26,27]. For clarity, we used the data reported in [27] in our previous study [25]
as well, but now the material model has been recalibrated and the yield surface and
plastic potential are redrawn accordingly. Note that the rate of plastic work is equal to
σij

.
ε

p
ij =

1
2

[(
MP

ij −MY
ij

)
+ MY

ij

]
σij

.
ep

eq. Consequently, the plastic power becomes

σij
.
ε

p
ij =

[
σY

eq +
(

µY
0 − µP

0

)
(p− σ2)

] .
ep

eq (15)

The associated plastic flow is reestablished when µY
0 = µP

0 .
The right-hand-side plot in Figure 2 displays strong influence of the “friction” term on

the plastic potential (14) and yield stress (11). The stress envelopes are clearly asymmetric.
The tension–compression asymmetry is a well-established fact [1,5,26,27]. The dominant
tensile loading intensifies the plastic flow, and the opposite is true for compression. The
single-crystal slip system strengths of Gröger et al. [26,27] properly capture experimental
trends on tension–compression asymmetries observed in experiments on Mo [30–32] at
a temperature of 123 K. The current model nearly perfectly matches the yield and flow
surfaces of Figure 6 in ref. [27] using just two parameters, β0 and µ0, where each of them
has a well-defined physics interpretation; the agreement rationalizes the mechanisms-based
constitutive description. Note that Figure 2 of the current work contains solid black and
blue curves that are generated as the output of our new model. Figure 2 is an original
figure created by the present authors; it is not a scanned reproduction of Figure 6 of ref. [27],
which contains differently shaped curves from a different model.

4. Screw Dislocations in bcc Metals: Core Spreading and Volume Changes

The forthcoming analysis serves two major purposes. Firstly, the hypothesis that
a correlation exists between local dilatation from dislocation lines with dislocation core
spreading is examined through theoretical calculations. By the inverse argument, if all
atomic motion were restricted to a single plane (i.e., no core spreading onto multiple planes),
then the lattice distortion should consist only of simple shearing modes, and no volume
change should occur. If a positive/dilatative volume change does occur, then external
compressive pressure would work negatively against such a change at very small scales,
which could induce extra glide resistance manifesting as non-Schmid effects. Possible
correlations with elastic anisotropy are also newly investigated.

Secondly, the analysis theoretically predicts the maximum volume changes expected
from dislocation lines for bcc metals (Mo, W, and Ta) to evaluate the proper domain of
plastic incompressibility assumed in Sections 2 and 3. Calculations have been reported
previously for select fcc metals and Fe [33–35] but not for Group VIB metals which show
strong dislocation core spreading and non-Schmid effects and thus potentially more plastic
dilatation. Backgrounds on bcc screw dislocation physics and analytical models are given
in Sections 4.1 and 4.2 to set the context; new contributions follow in Section 4.3.

4.1. Background: Dislocation Core Phenomena

In bcc metals, screw dislocation mobility is generally much lower than edge dislocation
mobility. Thus, the yield and flow of bcc metals are dominated by the glide resistance
of screw dislocation components, which becomes the limiting factor regarding plastic
strength [36,37]. Primary slip systems are <111>{110} and <111>{112}; these are the glide
systems typically studied in MD investigations [5,38] and resolved in continuum crystal
plasticity models of bcc metals, for example [39].

As reviewed by Duesbery and Vitek [5,38], non-Schmid effects in bcc crystals arise
from two primary factors. The first is solely due to the lack of certain symmetry in the bcc
crystal structure: strengths may differ when slip occurs in the twinned or anti-twinned
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oriented <111>{112} systems. The second is due to the unusual core structures of screw
dislocations in bcc metals. The dislocation core tends to spread onto multiple planes,
rather than being confined to a single {110} plane, for example. Within the core, the <111>
screw dislocation (when viewed macroscopically) contains atomic-scale perturbations of
both edge and screw character [5,38]. The fractional Burgers vector components of edge
character in the core must sum to zero, such that the <111> dislocation remains of pure
screw character macroscopically. The partial edge components contribute strongly to
observed non-Schmid effects on yield and flow stresses. For shuffling and glide of the
<111> screw dislocation to occur, the non-planar components must first be forced to return
to a single dominant glide plane; i.e., the core spreading must be compacted. This can
contribute to a rather large Peierls stress in bcc metals. In the macroscopic continuum theory
of Section 3, friction coefficients depict an excessive spreading of <111> screw dislocations.

The effects of core spreading (i.e., non-planarity) are more prevalent at very low tem-
peratures (e.g., far below room temperature, typically at or near 0 K in atomic simulations
and 77–123 K in experiments [5,27,30–32]); the present discussion is focused on isothermal
behavior at low temperature limits. Thermal activation, thermal expansion, and phonon
drag are of no great relevance here but are applicable to shock conditions in Appendix A.

Observed non-Schmid effects vary in magnitude among bcc metals, being stronger in
Group VIB crystals (e.g., Mo and W) than in Group VB crystals (e.g., Ta). Perfect crystals
of the Group VIB metals have larger elastic constants than those in Group VB, which, as
noted by Duesbery and Vitek [5], could exacerbate their core spreading. The above trends
were deduced primarily from investigations [5,36,38] that employed empirical interatomic
potentials for the behavior of bcc metals, for example, the Finnis-Sinclair potential [40].
More contemporary MD potentials [1,26,27,38] and first-principles methods (i.e., density
functional theory (DFT)) such as tight binding [41] have confirmed the existence of the
coupled phenomena of core spreading, non-planarity, and non-Schmid effects; details of
core structures and stress differentials for asymmetric slip can differ among models [38].

4.2. Background: Volume Changes from Dislocations

The isotropic linear elastic solution for a screw dislocation [42,43] predicts that no local
or global volume change manifests from its elastic fields. For edge dislocations, according
to the isotropic linear elastic solution, local volume change occurs in the vicinity of the
dislocation line, but no global volume change (or global shape change, for that matter) can
occur for an externally unloaded (i.e., traction-free or self-equilibrated) body containing
edge (or screw) dislocations in the context of pure linear elasticity theory, isotropic or
anisotropic [44,45]. This statement is strictly true for isothermal conditions, wherein no
thermal expansion or contraction from atomic vibrations in the vicinity of defects occurs.

Volume changes from glide dislocations (e.g., no vacancies from dislocation climb,
and no other point defects) can arise from two notable sources in an isothermal continuum
elasticity theory: nonlinear elastic effects (i.e., isothermal anharmonic effects) and dislo-
cation core pressure. The latter can be modeled, in the context of a cylindrical annulus
of elastic material enclosing a straight dislocation line, by a pressure boundary condition
acting on the inner surface of the annulus, within which the core resides [46]. Atomic
calculations can estimate its magnitude, for example, up to the order of 10% of the shear
or bulk modulus [46,47]. However, core pressure varies inversely with the squared radial
distance from the defect line [48], so its magnitude depends on the choice of core radius.

Anharmonic effects, which could induce residual lattice shape change as proven by
Clayton and Bammann [43,45] in addition to volume change, can be associated with the
nonlinear elastic constitutive response of the crystal, through a combination of second-
and third-order elastic constants in crystals of arbitrary symmetry. For crystals of cubic
symmetry, the volume change component of average residual deformation depends on
the combination of second- and third-order elastic constants and particular parts of the
elastic energy density [34,43–45]. Although partitioning of the elastic energy density
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into the requisite components does not seem readily available for known anisotropic
solutions [49,50], this partitioning may be analytically possible.

On the other hand, closed-form solutions for volume change due to dislocation lines
are readily derived for the isotropic case [51] considering anharmonic terms of third order in
the strain energy density, when the dislocation line energy is estimated from linear isotropic
elasticity with a suitable cutoff and core radius. In the isotropic case, the requisite second-
and third-order elasticity coefficients are reduced to the usual two linear (i.e., second-order)
elastic constants and the ambient pressure derivatives of the shear and bulk moduli. As
shown later, the normalized effect of second-order constants can be resolved solely by
Poisson’s ratio. Different derivations based on nonlinear continuum mechanics [43–45] or
thermodynamic arguments [33,52] can arrive at similar end results.

Dilatation from edge and screw dislocations in bcc α-iron has been confirmed using
MD potentials and DFT [53–55]. As noted by Clouet et al. [54,55], dilatation from <111>
screw dislocation lines can also be deduced from DFT results for pure Mo [23].

Trends, e.g., expansion rather than contraction predicted for engineering metals, and
of fairly small magnitude, agree with limited experimental data [33–35,43,45], as will be
shown in Section 4.3. Unless the local dislocation density is extremely large, the net residual
volume change from dislocations is generally considered small enough to be ignored in
continuum plasticity theory for standard, as opposed to extreme, loading conditions. Yield
and flow stresses can still depend on pressure even when plastic volume change is omitted
in kinematics, as in Section 3 herein (but not Appendix A) or in other models [35].

4.3. Analysis: Volume Changes in bcc, fcc, and hcp Metals

A question to be investigated next is whether non-Schmid effects leading to nonzero
lattice friction coefficients in the continuum plasticity theory of Section 3 correlate with
dilatation from dislocation lines due to anharmonicity or whether any such correlation
manifests only from an independent core pressure. Contributions of anharmonicity and
core pressure to plastic volume change are expressed as follows in the isotropic elastic limit,
consolidating prior nonlinear elastic and atomic-scale derivations [43] (Ch. 7), [45].

Denote the total density of dislocation lines, in dimensions of length per unit reference
volume, as ρ, with b the magnitude of the full Burgers vector. Denote fe = χ as the fraction
of this density of edge character, and fs = 1 − χ the fraction of screw character, whereby
definition fe + fs = 1. Let B and G label the ambient bulk modulus and ambient shear
modulus, and B’ = dB/dp and G’ = dG/dp the derivatives of bulk and shear moduli with
respect to the external pressure p (here, the usual convention is positive in compression)
measured in the reference state. Let pc denote the dislocation core pressure and Fc the
local volume change per unit volume induced by the core pressure. When pc > 0⇒ Fc > 0,
the core exerts an outward pressure on the surrounding crystal, so dilatation takes place.
Negative pc would be tensile, causing lattice contraction.

Denoting the volume change per unit reference volume of an element of crystal due to
dislocations contained within as ∆V/V, extending prior work [43,45], we find

∆V
V

(ρ, χ, pc) = αeχb2ρ + αs(1− χ)b2ρ + Fc(ρ, χ, pc) (16)

αe =
Λ

(1− ν)2

[
1
2
(1− 2ν)2(B′ − 1

)
+

2
3

(
1− ν + ν2

)(
G′ − 3(1− 2ν)

2(1 + ν)

)]
, αs = Λ

[
G′ − 3(1− 2ν)

2(1 + ν)

]
(17)

The first term on the right side of Equation (16) is due to nonlinear elastic or an-
harmonic effects of edge dislocation components, the second to screw components, and
the third to core pressure. Dimensionless factors αe and αs contain the combined effects
of elastic constants and their pressure derivatives on anharmonicity and dislocation line
energy. Parameter Λ scales the dislocation energy per unit length [56–58], as discussed
following Equation (17) below.
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Equations (16) and (17) are derived by making the following substitutions in Equation (74)
of ref. [45] for the energies per unit length of screw and edge dislocations, respectively, Es

and Ee, and the ratio of ambient shear to bulk modulus, G/B:

Es = (1− ν)Ee = ΛGb2, Λ ≈ 1, G/B =
3(1− 2ν)

2(1 + ν)
(18)

The explicit effect of core pressure is also newly added in Equation (16), following
its possible significance discovered in ref. [46]. As newly derived in Equation (17), the
dimensionless volume change factors αe and αs depend only on dimensionless constants ν,
B’, and G’. Derivation of Equation (74) of [45] relies on the assumptions that the body is
self-equilibrated with a constitutive response described by a hyperelastic energy potential,
expanded to order three in the Lagrangian strain (i.e., strain energy with elastic constants of
second and third orders). This body contains internal discontinuities associated with jumps
in lattice displacements across slip planes, from Burgers vectors of dislocations. Traction is
continuous across discontinuity surfaces. The balance of linear momentum and nonlinear
elastic constitutive equations are substituted into the equation for vanishing volume-
averaged stress. Further assuming isotropic elastic symmetry and algebraic manipulations
produces Equation (74) in [45]. This is recast via (18) into (16) and (17) of the current work,
to which Fc has been appended.

In Equation (18), the dislocation line energy is approximated as Gb2 for screw disloca-
tions and Gb2/(1 − ν) for edge dislocations. These are likely upper bounds among known
linear elastic approximations [43,45,56,57], and they omit shielding effects from dislocation
structural rearrangements [56–58]. Lower bounds would multiply the predicted dilatation
of Equations (14)–(16) by a factor of Λ ranging from 1/2 to 1/(4π) [43,58].

Listed in Table 1 are elastic coefficients for ten metals used to test the hypothesis
framed for the question asked at the beginning of Section 4.3. Isotropic values are for
polycrystals from Guinan and Steinberg [59]. Also shown for comparison is the Zener
anisotropy factor A = 2C44/(C11 − C12), with A = 1 being isotropic. The larger the departure
of A from unity, the less valid the isotropy assumption inherent in Equations (15)–(17). For
hcp Mg, elastic anisotropy also depends on other combinations of elastic constants, but
anisotropy is generally very low in Mg for all such combinations. Anisotropy itself is also
worth considering alone for possible connections to screw core non-planarity and lattice
friction.

Table 1. Anharmonic volume change factors of dislocations from Equation (15), with elastic properties.
Experimental data for αexp from ref. [35] on Al 1100 and from ref. [34] on Ag, Au, Cu, and Ni.

Metal Structure B [GPa] G [GPa] ν B’ G’ A αe αs αexp
<111>

Spreading

Fe bcc 166 82 0.29 5.3 1.8 2.37 2.13 1.31 - Yes
Mo bcc 263 125 0.29 4.4 1.5 0.72 1.66 1.02 - Yes
Ta bcc 193 69 0.34 3.2 1.1 1.56 1.14 0.74 - Yes
W bcc 310 160 0.28 4.0 2.3 1.01 2.39 1.78 - Yes
Al fcc 76 26 0.35 4.4 1.8 1.22 2.14 1.46 2.04 No
Ag fcc 103 30 0.37 6.1 1.4 3.03 1.87 1.11 1.08 No
Au fcc 173 28 0.42 6.3 1.1 2.88 1.61 0.94 1.08 No
Cu fcc 137 48 0.34 5.5 1.4 3.21 1.77 1.05 1.23–1.68 No
Ni fcc 183 86 0.30 6.2 1.4 2.46 1.86 0.93 1.74–1.78 No
Mg hcp 35 17 0.29 3.9 1.7 0.98 1.78 1.21 - No

Most notably calculated in Table 1 are values of αe and αs that indicate the theoretically
predicted importance of anharmonic effects on dilatation from edge and screw dislocations,
respectively. For a density of perfect screw dislocations (e.g., <111> screws in a bcc metal of
current interest), fe = χ = 0, and thus αe and B’ would be inconsequential. However, the
core structure of a nonplanar, nominally pure screw <111> dislocation contains partial edge
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components that sum to zero [5]. Thus, αe and B’ could still be of relevance for correlating
non-Schmid effects. As might be expected, results in Table 1 confirm αe > αs for all ten
metals, meaning dilatation from edge dislocations should exceed that from pure screw
dislocations unless core pressure effects are larger from screw dislocations.

Experimentally obtained values of the dimensionless volume change factor, αexp, are
shown for comparison with model predictions of αe and αs in Table 1, where

αexp = G
∆V/V

Wc =
∆V/V
Λb2ρ

(19)

Values of αexp are calculated from Equation (19) using experimental data on volume
change ∆V/V and measured stored energy per unit volume of cold work Wc [34] or mea-
sured total dislocation line density ρ [35]. Available data do not allow delineation of screw
versus edge factors. Equation (18) follows from (15)–(17) with omission of the core term
Fc, which also cannot be deduced from experimental data. The relatively high value of
unity for Λ in (17) compensates for the neglect of a distinct core pressure. Agreement
between the theory and experiment is respectable since αs ≤αexp ≤αe for all fcc metals
except Ag. Even for Ag, the lower bound of the theory, αs, exceeds αexp by only 3%. The
discrepancy could be attributed to the large anisotropy of Ag (i.e., A exceeding 3), recalling
that Equation (17) relies on the isotropic assumption. The theory correctly predicts that
Al should have the largest dilatation among fcc metals in Table 1. Excluding anomalous
results for Ag, the theory correctly predicts that Au should have the lowest dilatation, with
Cu and Ni falling in between, depending on the fractions of edges and screws. Quantitative
data were found in the literature only for the five fcc metals in Table 1 and not bcc or hcp.
However, Spitzig and Richmond [35] stated that predictions of the analytical theory [51]
agreed with experimental measurements of dilatation and dislocation densities in Fe-based
metals.

Results in Table 1 show no positive correlations among observed non-Schmid ef-
fects [1,5] and any of αs, αe, or A. For example, for the two listed Group VIB metals, αs is
larger in W than Mo, but Mo shows stronger non-Schmid effects associated with experi-
mentally measured strength asymmetries [5]. Some of the fcc metals and Mg (hcp) have
larger values of αs than Mo, but these do not demonstrate non-Schmid effects from <111>
core spreading. The rank ordering from highest to lowest αs is W, Al, Fe, Mg, Ag, Cu, Mo,
Au, Ni, Ta. Ordering for αe is similar but not identical: W, Al, Fe, Ag, Ni, Mg, Cu, Mo, Au,
Ta.

The present analysis thus leads to the following conclusion: if dilatation from pre-
dominantly screw dislocation lines, dislocation core spreading, and non-Schmid effects
are positively connected, then the dilatation must be induced from an independent core
pressure, rather than anharmonic (i.e., nonlinear elastic) effects alone. A correlation with
core pressure appears logical since a larger core pressure might be expected to be exerted by
a more disordered non-planar core, leading, in turn, to greater dilatation. Results in Table 1
also show no correlation between elastic anisotropy factor A and non-Schmid effects. For
example, the Group VB metal Ta has weaker core spreading than the Group VIB metals W
and Mo [5], yet Ta is more anisotropic than W and Mo according to values of A.

The maximum magnitude of ∆V/V from either of the two anharmonic terms in
Equation (14) can be estimated as follows. The closest packing of dislocation lines is lim-
ited theoretically by the lattice spacing and repulsive forces between atoms to a maximum
ρ≈ 0.01/b2, or approximately one dislocation line per square patch of 10× 10 unit cells [60].
Thus, the absolute theoretical maximum dilatation, in percent, from anharmonicity is on the
order of αs or αe. From Table 1 for three bcc metals, this would be a maximum expansion
of 0.7% to 2.4%, depending on the particular metal and dislocation character (screw or
edge). For the most extreme case of edge dislocations in W, the predicted maximum is 2.4%;
the least extreme is for screw dislocations in Ta, predicted at 0.7%. Predictions for Mo fall
in between those for W and Ta. If the dislocation line energy is reduced by shielding, a
theoretical maximum of around 1% expansion is expected to be more realistic for W. These
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theoretical predictions are of comparable magnitudes to those for five fcc metals (validated
versus experimental data in Table 1) as well as hcp Mg.

Even in heavily cold-worked metals, the dislocation density is usually several orders
of magnitude smaller than the above theoretical maximum, which should limit ∆V/V
accordingly, except in very highly defective local regions at grain boundaries or cell walls.
Experiments [35] measured the volume change in Al 1100 as 5 × 10−5 at a strain of 0.1 and
dislocation density of 3 × 1014/m2

. The theoretical maximum of ρ with a typical Burgers
magnitude is around 1017/m2. A dislocation density of 1015/m2 is considered quite large
for a typical metal, and this in turn would give a maximum dilatation from anharmonic
effects on order of 0.01%, or 10−4. The pressure differential due to a dilatation from a
nucleation of this density of dislocations [61] is around 10−4B, on the order of 10 MPa for
the metals in Table 1. These values of residual volume change and pressure are sufficiently
small to omit in the continuum plasticity theory for bcc metals under ordinary conditions
(i.e., relatively low strain rates and temperatures), with Peierls yield and flow stresses on
the order of 1 GPa, as modeled in Sections 2 and 3 of this work. However, for very soft
metals such as Cu, 10 MPa might not be small compared to the yield stress, which can be
significantly lower than 100 MPa depending on its purity [62]. The potential significance of
plastic volume change under extreme loading conditions involving very high pressures,
strain rates, and/or temperatures [62–64] is given further consideration in Appendix A.

5. Conclusions

At low temperatures, the yield criterion and plastic potential in bcc metals are decou-
pled and display a tension–compression asymmetry. The asymmetry is a consequence of
screw dislocation non-planarity. Newly proposed in the current work is that the yield stress
and plastic potential each include an additional term which quantifies the spreading of
the dislocation core structure that leads to non-Schmid effects in plastic flow. The material
parameter controlling each new term is interpreted as an atomistically resolved friction
coefficient. This coefficient resembles the friction coefficient in Coulomb-type (e.g., brittle
or granular) materials, but in bcc metals, the coefficient arises at the atomistic scale of
the dislocation core. The theoretical analysis in Section 4 justifies the mechanisms-based
considerations at the continuum scale.

The theory predicts no obvious correlation between core spreading (which affects the
macroscopic friction coefficient) and dilatation from anharmonic effects under isothermal,
low-temperature conditions. If a correlation between screw dislocation core spreading
and residual lattice expansion exists, as logically hypothesized, such a correlation can be
represented through introduction of a finite, repulsive dislocation core pressure. Theoret-
ical predictions also justify the omission of volumetric plastic deformation arising from
anharmonic defect fields in bcc metals that show strong non-Schmid effects (i.e., Mo and
W) for conventional loading conditions, wherein dislocation densities are not excessive.
This conclusion is consistent with theoretical predictions and experimental data on plastic
dilatation and stored energy of cold work in fcc metals.
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Appendix A. Extension to Dynamic High-Pressure Regimes

The effects of residual lattice dilatation from dislocations on pressure are undeniable
in shock compression experiments, as stated in other studies [62–65]. Residual dilatation
has been extracted from velocity profile histories in shock compression experiments on
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materials of very low flow stress such as pure copper (Cu) [62,65]. Dislocation densities
measured in shock-recovered samples after 35-GPa impact exceed 2 × 1015/m2 [66], and
transient densities could be much larger [67]. For example, dislocation densities predicted
by discrete dislocation dynamics and atomistic simulations of shockwaves in Cu range from
1016/m2 to 2 × 1017/m2 for shock pressures from 30 GPa to 75 GPa [67,68]. The volume
change from the latter could attain, from Table 1, 0.013αe ≈ 2.3%. The pressure change
associated with such significant dilatation would be around 3.2 GPa, over 5% of the impact
stress [69] and much larger than the yield and flow stresses of Cu [65,68]. In cases such
as this, explicit inclusion of plastic volume changes from dislocations in the finite-strain
kinematics of continuum crystal plasticity theory [43,60,61,69], or later via Equation (18),
is prudent.

In addition, a volume change can be a byproduct of nano-scale dynamic excitations
triggered by a collective motion of dislocations [64]. Excitations distort the lattice and,
we hypothesize, affect lattice stretch. Under quasi-static conditions, pressure points can
be ignored; however, shocks magnify the core pressure and anharmonicity to explicitly
contribute to overall dilatant behavior. Dynamic excitations triggered by a synchronized
motion of dislocations generate micro-kinetic energy, which in turn may act as phono-to-
phonon vibrations; that is, micro-kinetic energy expands the lattice. Dynamic behaviors
magnify effects in both time and space. The magnitude of micro-kinetic energy must be
large enough for these effects to be noticeable, which happens only under extreme loading
conditions. A method has been set forth to calculate micro-kinetic energy [64]; thus, one
can introduce additional lattice stretch, a kind of local anharmonic thermal stretch.

The tensor representation concept of Sections 2 and 3 has all the features suitable
for a proper physics-based interpretation of these phenomena. The TRM analysis can be
easily extended to shock conditions. The second term in Equation (8) provides a means for
restraining out-of-plane spreading of dislocations at high pressures. It has been reported
that single crystalline Ta, among other metals, subjected to impact loading, experiences
highly localized plastic slip [70]. Dynamic loading alters the mechanisms of plastic flow.
That brings us back to Equations (7) and (9), where we search for explanations of the
intriguing problem. The equivalent stress σeq in (9) consists of shear stress along the glide
plane and includes the non-glide contribution. One may argue that, because it tightens
interatomic spaces, high shock pressure also over-constrains spreading of dislocation cores.
For this reason, we modify Equation (7) by rendering the out-of-plane contribution the
needed sensitivity to the changes in mass density:

Mij = α

[(
N1

ij − N3
ij

)
+ µϕ

(
δij/3− ρ0

ρ
N2

ij

)]
(A1)

Here, ρ0 and ρ are initial and current mass densities, not dislocation densities. In a
linear elastic regime, the ratio ρ0/ρ is nearly unity, so its effects can be omitted. At high pres-
sure, equations of state quantify pressure-volume-temperature-entropy responses [62–64].

Suppose that the pressure is 50 GPa, which translates to ρ0/ρ ∼= 0.8. Now, temperature
is high due to adiabatic shock heating and thermoelastic coupling, and, therefore, we
conclude that µ0 = 0. This also means that the associated flow rules are reestablished. In
Figure A1, the yield surface marked in black is unaffected by the change of mass density
(ρ0/ρ = 1). The second envelope, marked in red, is plotted for ρ0/ρ ∼= 0.8. Shapes of the
envelopes are distinctly different.

In the next step, we assume a plate impact problem where the uniaxial stress points in
direction 1. We calculate the plastic strain rates along three directions, mainly r12 = M11/M22,
r13 = M11/M33, and r23 = M22/M33. The ratios are r12 = −2.172, r13 = −2.172, and
r23 = 1, respectively. We find that there is a small increase of volume

.
ε

p
kk = 0.0367

.
ep

eq
since the tensor in (7) is no longer traceless. Thus, a high-pressure loading generates
small plastic dilatation. Experimentally observed perturbations in surface velocity profiles
for shock compression of W- and Al-based metals [71,72] suggest a pressure variation,
which we argue can be a result of residual dilatation from magnified core pressure and/or
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anharmonic effects, especially since W and Al have the largest values of dilatation factors
αe and αs in Table 1. However, this source of perturbations cannot, in general, be uniquely
separated from other phenomena related to microstructure heterogeneities.

Shock relief (ρ0/ρ = 1.2) generates external tensile pressure, and the trends are re-
versed. Now, the ratios are smaller, r12 = −1.854, r13 = −1.854, and r23 = 1, and the rate of
plastic dilatation

.
ε

p
kk = −0.0367

.
ep

eq opposes the elastic stretch. Thus, in tension, the plastic
contraction of dislocation cores tends to absorb the already large interatomic distances.
A local volume reduction can also be associated with a transient decrease in dislocation
density after the shockwave has passed and the material relaxes to equilibrium.

Incompressibility is the commonly used assumption in classical constitutive mod-
els [73]. The phenomenology omits non-planarity of plastic flow and thus cannot predict
phenomena associated with plastic volume changes. In the proposed continuum descrip-
tion, the second term in Equation (7) includes the local mass density ratio, which enables a
richer description of the metal behavior at shock conditions. In conclusion, the proposed
concepts can be used to study the plastic responses of bcc metals at low temperatures, as
we have demonstrated for Mo in Section 3, and can be extended to extreme high-pressure
conditions, as newly proposed in this appendix.
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