Preparation of Black Ceramic Tiles with Chromium Slag and Copper Smelting Waste Slag
Abstract
:1. Introduction
2. Experiment
2.1. Raw Materials
2.2. Preparation of Black Ceramic Tiles
2.3. Sample Characterization
3. Results and Discussion
3.1. Effect of Fe/Cr Molar Ratio on the Chromatic Performance of Ceramic Tiles
3.2. Effect of Sintering Temperatures on the Chromatic Performance of Ceramic Tiles
3.3. Effect of Holding Time on the Chromatic Performance of Ceramic Tiles
3.4. Effect of Cooling Methods on the Chromatic Performance of Ceramic Tiles
3.5. Effect of Sintering Atmosphere on the Chromatic Performance of Ceramic Tiles
3.6. Compression and Leaching Tests of Ceramic Tiles
4. Conclusions
- The optimum parameters of producing ceramic tile using chromium slag and copper smelting waste slag are the Fe/Cr molar ratio of 1.5, the sintering temperature of 1200 °C, holding time of 30 min and cooling in the furnace. The values of L*, a*, and b* of produced ceramic tile are 22.5, 0, and −1.6, respectively.
- Although extending holding time can enhance the reaction between the compounds, it restricts the coloring ability of Fe3+ at elevated temperatures, which deteriorates the chromatic performance of ceramic tiles.
- Increasing the cooling rate of produced ceramic tile promotes the formation of cracking and fragile in the ceramic tile and reduces the chromaticity value of the ceramic tile.
- The compressive strength of produced ceramic tile is 127.2 MPa, and the leaching concentration of Cr6+ is 3.31 mg/L, both of which meet the relevant national standards.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qing, P.H.; Xu, H.S.; Dong, Y.M.; Wang, X.R.; Zhu, K.S.; Niu, R.J.; Meng, J.J.; Chen, X.X.; Chen, H.X.; Zhang, H.L. Chromium extraction and detoxification of processing residue from lime-free roasting process of chromite ore. Inorg. Chem. Ind. 2020, 52, 6. [Google Scholar]
- Bai, Z.P.; Han, Y.; Xi, Z.G. Indoor Air Pollution and Prevention; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Liu, Z.B.; Zheng, J.Y.; Liu, W.Z.; Liu, X.M.; Chen, Y.X.; Ren, X.Q.; Ning, P.; Lin, Z. Identification of the key host phases of Cr in fresh chromite ore processing residue (COPR). Sci. Total Environ. 2020, 703, 135075. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.X.; Jiang, L.Y.; Zhang, S.; Zhang, Y.H. New calcareless roasting process of chromite and utilization of chromium residue. Chromium Salt Ind. 2006, 1, 46–50. [Google Scholar]
- Liang, H.Q.; Yu, S.H. Recycling of precious metal secondary resources. Jiangsu Metall. 1989, 000, 53–54. [Google Scholar]
- Zhang, T.A.; Niu, L.P.; Dou, Z.H.; Wang, C.; Zhang, X.H.; Zhang, Z.M.; Liu, Y.; He, Y.C.; Jiang, X.L. A Method of Smelting Antibacterial Stainless Steel Containing Copper Directly by Reducing Hot Metal with Copper Slag: CN104120351B. 2016. Available online: https://dr2am.wust.edu.cn/--/cn/com/wanfangdata/d/hs/_/patent/ChJQYXRlbnROZXdTMjAyMjEyMDcSEENOMjAxNDEwMzQ1MTk3LjIaCHp3c2s5cm44.2014-10-29 (accessed on 2 March 2023).
- Kang, J.X.; Yu, C.B.; Song, L.; Guo, S.H.; Wang, C.L.; Liu, Z.G.; Wang, X.; Wang, Y.Y. Recovery of Valuable Metals from Copper slag: CN202010198102. 2020. Available online: https://dr2am.wust.edu.cn/--/cn/com/wanfangdata/d/hs/_/patent/ChJQYXRlbnROZXdTMjAyMjEyMDcSEENOMjAyMDEwMTk4MTAyLjQaCDJjbXEyZnJh.2020-06-12 (accessed on 2 March 2023).
- Zheng, K.P.; Jiang, X.P.; Chen, C.; Li, X.H.; Liao, Y.Q. Effect of Co2O3 doping on the structure and electrical properties of (Na0.8K0.2)0.5Bi0.5TiO3 ceramics. Chin. Ceram. 2013, 49, 5-8+20. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.Q.; Ma, G.J.; Wang, Q.; Liu, M.K. Research progress of spinel-type cobalt-free black ceramic pigments. Bull. Chin. Ceram. Soc. 2021, 40, 1318–1329. [Google Scholar] [CrossRef]
- He, B.; Du, Y.; Xu, H.X.; Ma, J.C.; Cheng, C.B.; Du, M.X. Synthesis of ceramic pigments with chromium content from leather waste. T Indian Ceram Soc. 2021, 80, 103–109. [Google Scholar] [CrossRef]
- Du, M.X.; Du, Y.; Chen, Z.T.; Li, Z.F.; Yang, K.; Lv, X.J.; Feng, Y.B. Synthesis and characterization of black ceramic pigments by recycling of two hazardous wastes. Mater. Sci. Process. 2017, 123, 568–575. [Google Scholar] [CrossRef]
- Yang, Y.G.; Xu, J.H.; Cai, B.; Wang, Q.C.; Xiu, D.P.; Zhao, Z.B.; Sun, Q.Z.; Cao, S.L. Synthesis and applications of black ceramic from recycled industrial wastes. Adv. Appl. Ceram. 2013, 112, 146–148. [Google Scholar] [CrossRef]
- Zhang, L.F.; Kang, Z.S.; Liu, Z.K.; Yan, K.; Li, S.; Lian, Y.C.; Cao, R.X. Aluminum Based Solid Waste Porous Material and Its Preparation Method: CN114105611A. 2022. Available online: https://dr2am.wust.edu.cn/--/cn/com/wanfangdata/d/hs/_/patent/ChJQYXRlbnROZXdTMjAyMjEyMDcSEENOMjAyMTExNTQ5NDkwLjcaCDdxaWUxeTRx.2022-03-01 (accessed on 2 March 2023).
- Ma, L. Inverstigation of Fabrication, Microstructure and Hot Corrosion Properties of Ni-Fe Spinel Composite Coating; Central South University: Changsha, China, 2012. [Google Scholar]
- HJ/T299-2007; Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid Nitric Acid Method. China Environmental Press: Beijing, China, 2007.
- Chang, G.Y. Preparation of Several Chromium Containing Spinel Catalysts and Their Methane Combustion Performance; Inner Mongolia University: Hohhot, China, 2006. [Google Scholar]
- Li, Z.Q.; Zhang, X.; Ma, G.J.; Zheng, D.L.; Du, T.Y.; He, R.X. Effect of the nickel molar content on the preparation and properties of spinel-type black ceramic pigment by microwave processing from stainless steelmaking dust. Mater. Today Commun. 2022, 32, 104–151. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K.; Premchand. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Fan, Y.; Shibata, E.; Iizuka, A.; Nakamura, T. Crystallization behavior of copper smelter slag during molten oxidation. Metall. Mater. Trans. B 2015, 46, 2158–2164. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, X.; Ma, G.J.; Liu, M.K.; Wang, Q. Preparation and coloring performance analysis of Fe-Cr-Ni-Mn system black ceramic pigment. Bull. Chin. Ceram. Soc. 2021, 40, 4092–4101. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Zhang, J.S. Crystallization behaviors of molten ash slag under different temperatures and colling rates. J. Chem. Ind. Eng. 2018, 69, 8. [Google Scholar] [CrossRef]
- Ye, D. Mineral Gemmological Characteristics and Heat Treatment of Ruby from Yuanjiang, Yunnan; Kunming University of Science and Technology: Kunming, China, 2007. [Google Scholar]
- GB/T4100-2006; Ceramic Tiles. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- GB 5085.3-2007; Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007.
- Laforest, G.; Duchesne, J. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel. J. Hazard. Mater. 2006, 135, 156–164. [Google Scholar] [CrossRef] [PubMed]
Component | Fe2O3 | FeO | Cr2O3 | SiO2 | Al2O3 | CaO | MgO | Na2O | TiO2 | ZnO |
---|---|---|---|---|---|---|---|---|---|---|
Chromium slag | 40.83 | 1.18 | 8.59 | 7.10 | 10.73 | 6.77 | 11.27 | 8.17 | 1.20 | - |
Copper slag | 9.41 | 38.94 | 0.24 | 33.44 | 5.68 | 2.90 | 2.03 | - | - | 2.01 |
Fe/Cr Molar Ratio | Chromium Slag | Copper Smelting Waste Slag |
---|---|---|
0.5 | 93.07 | 6.93 |
1.0 | 84.77 | 15.23 |
1.5 | 77.78 | 22.22 |
2.0 | 71.83 | 28.17 |
2.5 | 66.69 | 33.31 |
Fe/Cr Molar Ratio | Sintering Temperature (°C) | Sintering Time (min) |
---|---|---|
0.5, 1.0, 1.5, 2.0, 2.5 | 1100, 1125, 1150, 1175, 1200 | 15, 30, 45, 60, 90 |
Leachable Elements | Mixed Raw Material | Ceramic Tile | GB 5085.3-2007 | U.S. EPA |
---|---|---|---|---|
Cr6+ | 16.65 | 3.31 | 5.0 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Yu, J.; Li, Z.; Hai, Y.; Xu, J.; Zheng, D. Preparation of Black Ceramic Tiles with Chromium Slag and Copper Smelting Waste Slag. Metals 2023, 13, 537. https://doi.org/10.3390/met13030537
Hou Y, Yu J, Li Z, Hai Y, Xu J, Zheng D. Preparation of Black Ceramic Tiles with Chromium Slag and Copper Smelting Waste Slag. Metals. 2023; 13(3):537. https://doi.org/10.3390/met13030537
Chicago/Turabian StyleHou, Yanglai, Jiajie Yu, Zhiqiao Li, Yuanhao Hai, Ju Xu, and Dingli Zheng. 2023. "Preparation of Black Ceramic Tiles with Chromium Slag and Copper Smelting Waste Slag" Metals 13, no. 3: 537. https://doi.org/10.3390/met13030537
APA StyleHou, Y., Yu, J., Li, Z., Hai, Y., Xu, J., & Zheng, D. (2023). Preparation of Black Ceramic Tiles with Chromium Slag and Copper Smelting Waste Slag. Metals, 13(3), 537. https://doi.org/10.3390/met13030537