Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Room-Temperature Hardness
3.3. Compressive Properties
4. Conclusions
- (1)
- All the as-cast alloys display typical dendritic and inter-dendritic morphology. B element has weaker constitutional supercooling effects than Mg and Zr elements, which results in well-developed primary dendrite arms and poorly-developed secondary dendrite arms in the B0.5 alloy.
- (2)
- All three alloys are composed of BCC phase, FCC phase, and L12 nano phase precipitated in FCC phase. In comparison to Mg and Zr elements, the average particle size of L12 precipitates in the alloy doped with B is relatively small. To a certain extent, the addition of B can promote the formation of L12 nano-precipitates with smaller particle sizes in the alloy.
- (3)
- Due to the high content of BCC in the B0.5 alloy, it has the highest hardness and compression yield strength. FCC is more susceptible to slip deformation than BCC, resulting in more plasticity but lower hardness in Mg0.5 and Zr0.5 alloys with predominant FCC structure. The B0.5 alloy has the lowest compressive strain. The Zr0.5 alloy has a higher hardness than the Mg0.5 alloy, due to the solution strengthening and microstructure refining effects of the Zr element. Solid solution strengthening and precipitates strengthening are the main strengthening mechanisms of these alloys.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.; Choudhury, A.; Mallick, A.B.; Ghosh, M. Phase Prediction in High Entropy Alloys by Various Machine Learning Modules Using Thermodynamic and Configurational Parameters. Met. Mater. Int. 2022, 29, 38–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Gangireddy, S.; Gwalani, B.; Soni, V.; Banerjee, R.; Mishra, R.S. Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: Single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 2019, 739, 158–166. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Lin, S.; Fu, H.; Li, H.; Wang, A.; Lin, X.; Zhang, H.; Zhu, Z. Dislocation slip induced tensile plasticity and improved work-hardening capability of high-entropy metallic glass composite. Intermetallics 2022, 141, 107407. [Google Scholar] [CrossRef]
- Qi, Y.L.; Zhao, L.; Sun, X.; Zong, H.X.; Ding, X.D.; Jiang, F.; Zhang, H.L.; Wu, Y.K.; He, L.; Liu, F.; et al. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries. J. Mater. Sci. Technol. 2021, 86, 271–284. [Google Scholar] [CrossRef]
- Traversier, M.; Mestre-Rinn, P.; Peillon, N.; Rigal, E.; Boulnat, X.; Tancret, F.; Dhers, J.; Fraczkiewicz, A. Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA). Mater. Sci. Eng. A 2021, 804, 140725. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperature structural intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Seol, J.B.; Bae, J.W.; Kim, J.G.; Sung, H.; Li, Z.; Lee, H.H.; Shim, S.H.; Jang, J.H.; Ko, W.-S.; Hong, S.I.; et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater. 2020, 194, 366–377. [Google Scholar] [CrossRef]
- Qi, Y.; Cao, T.; Zong, H.; Wu, Y.; He, L.; Ding, X.; Jiang, F.; Jin, S.; Sha, G.; Sun, J. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping. J. Mater. Sci. Technol. 2021, 75, 154–163. [Google Scholar] [CrossRef]
- Azakli, Y.; Tarakci, M. Towards understanding the effects of magnesium addition on microstructural and thermal properties of NiAlCr alloys in as-cast and heat treated states. J. Alloys Compd. 2017, 699, 151–159. [Google Scholar] [CrossRef]
- Ge, H.L.; Youdelis, W.V.; Chen, G.L.; Zhu, Q. Interfacial segregation of magnesium in nickel base superalloy: Carbide morphology and properties. Mater. Sci. Technol. 2013, 5, 985–990. [Google Scholar] [CrossRef]
- Floreen, S.; Davidson, J.M. The effects of b and zr on the creep and fatigue crack growth behavior of a Ni-base superalloy. Met. Trans. A 1983, 14, 895–901. [Google Scholar] [CrossRef]
- Kalavathi, V.; Kumar Bhuyan, R. A detailed study on zirconium and its applications in manufacturing process with combinations of other metals, oxides and alloys—A review. Mater. Today Proc. 2019, 19, 781–786. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B.; Li, S.; Li, W.; Xu, K.; Liang, J.; Zhou, F.; Wang, C.; Wang, J. On the segregation behavior and influences of minor alloying element Zr in nickel-based superalloys. J. Alloys Compd. 2022, 897, 163169. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Zhou, J.; Song, M.; Zhang, D.; Zhu, D. Effect of Zr Additions on Phase Transformations, Microstructure and Wear Resistance of High-Entropy AlCoCrCuFe Alloy. Met. Sci. Heat Treat. 2022, 63, 470–478. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.H.; Jiao, Z.B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.T.; et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Zheng, T.; Hu, X.; He, F.; Wu, Q.; Han, B.; Chen, D.; Li, J.; Wang, Z.; Wang, J.; Kai, J.-j.; et al. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. J. Mater. Sci. Technol. 2021, 69, 156–167. [Google Scholar] [CrossRef]
- Seol, J.B.; Bae, J.W.; Li, Z.; Chan Han, J.; Kim, J.G.; Raabe, D.; Kim, H.S. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018, 151, 366–376. [Google Scholar] [CrossRef]
- Chen, J.; Niu, P.; Liu, Y.; Lu, Y.; Wang, X.; Peng, Y.; Liu, J. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 2016, 94, 39–44. [Google Scholar] [CrossRef]
- Niu, Z.; Xie, Y.; Axinte, E.; Xu, J.; Wang, Y. Development and characterization of novel Ni-rich high-entropy alloys. J. Alloys Compd. 2020, 846, 156342. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Zhou, W.; Ma, L.; Zhang, M.; Li, G. Aluminum and titanium alloyed non-equiatomic Co–Fe–Ni medium-entropy alloy with ultra high strength and hardness. Mater. Sci. Eng. A 2021, 817, 141297. [Google Scholar] [CrossRef]
- Jia, Z.Y.; Zhang, S.Z.; Zheng, L.W.; Zhang, W.G.; Zhang, C.J.; Kong, F.T. Multi-principal element intermetallic based alloy with excellent mechanical properties by thermo-mechanical treatment. Mater. Lett. 2022, 314, 131861. [Google Scholar] [CrossRef]
- Jia, Z.Y.; Zhang, S.Z.; Huo, J.T.; Zhang, C.J.; Zheng, L.W.; Kong, F.T.; Li, H. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties. Mater. Sci. Eng. A 2022, 834, 142617. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Peng, H.; Liu, Y.; Liu, B.; Li, S. Enhancing strength-ductility synergy in a casting non-equiatomic NiCoCr-based high-entropy alloy by Al and Ti combination addition. Scr. Mater. 2021, 200, 113898. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wu, G.; Yu, Y.; Ma, Y.; Ma, J.; Baker, I.; Zhang, Z. The effect of Al/Ti ratio on the evolution of precipitates and their effects on mechanical properties for Ni35(CoCrFe)55AlxTi10−x high entropy alloys. J. Alloys Compd. 2022, 906, 164291. [Google Scholar] [CrossRef]
- Samal, S.; Rahul, M.R.; Kottada, R.S.; Phanikumar, G. Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy. Mater. Sci. Eng. A 2016, 664, 227–235. [Google Scholar] [CrossRef]
- Zhi, Q.; Tan, X.; Liu, Z.; Liu, Y.; Zhang, Q.; Chen, Y.; Li, M. Effect of Zr content on microstructure and mechanical properties of lightweight Al(2)NbTi(3)V(2)Zr(x) high entropy alloy. Micron 2021, 144, 103031. [Google Scholar] [CrossRef]
- Li, R.; Gao, J.C.; Fan, K. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Mater. Sci. Forum 2010, 650, 265–271. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, Z.; Xu, H.; Sun, Y. Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys. J. Alloys Compd. 2018, 741, 826–833. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, B.S.; Ren, M.X.; Yang, C.; Fu, H.Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng. A 2008, 491, 154–158. [Google Scholar] [CrossRef]
- Joseph, J.; Annasamy, M.; Kada, S.R.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. Optimising the Al and Ti compositional window for the design of γ’ (L12)-strengthened Al–Co–Cr–Fe–Ni–Ti high entropy alloys. Mater. Sci. Eng. A 2022, 835, 142620. [Google Scholar] [CrossRef]
- Chen, Q.-s.; Lu, Y.-p.; Dong, Y.; Wang, T.-m.; Li, T.-j. Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-compenent alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 2958–2964. [Google Scholar] [CrossRef]
Regions | Compositions | |||||
---|---|---|---|---|---|---|
Ni | Co | Fe | Al | Ti | B/Mg/Zr | |
B0.5 (A) | 48.7 | 28.0 | 13.7 | 0.2 | 9.4 | 0 |
B0.5 (B) | 45.9 | 23.7 | 26.0 | 1.8 | 2.6 | 0 |
B0.5 (C) | 8.6 | 6.6 | 7.5 | 0.2 | 69.4 | 7.7 |
B0.5 | 49.3 | 21.0 | 20.9 | 2.8 | 5.5 | 0.5 |
Mg0.5 | 47.0 | 21.9 | 22.2 | 2.8 | 5.2 | 0.9 |
Zr0.5 | 50.3 | 19.5 | 13.6 | 2.2 | 7.3 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Zhang, S.; Han, J.; Zhang, C.; Kong, F. Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements. Metals 2023, 13, 646. https://doi.org/10.3390/met13040646
Wu C, Zhang S, Han J, Zhang C, Kong F. Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements. Metals. 2023; 13(4):646. https://doi.org/10.3390/met13040646
Chicago/Turabian StyleWu, Chunfen, Shuzhi Zhang, Jianchao Han, Changjiang Zhang, and Fantao Kong. 2023. "Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements" Metals 13, no. 4: 646. https://doi.org/10.3390/met13040646
APA StyleWu, C., Zhang, S., Han, J., Zhang, C., & Kong, F. (2023). Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements. Metals, 13(4), 646. https://doi.org/10.3390/met13040646