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Abstract: As an important means to realize intelligent manufacturing, a digital twin is a digital
expression of physical entities, which realizes virtual–real interaction and the iterative optimization
of product design and manufacturing by constructing a bridge of information mapping between
the physical world and the virtual world. Resistance spot welding technology is widely used in
automotive manufacturing, aerospace and other fields as a spot linking process for the manufacture
of thin sheet structures. The fusion nugget growth process of resistance spot welding is particularly
important for its joint quality. Resistance spot welding is a highly nonlinear coupled process, and
physical models make it difficult to accurately monitor its quality. Taking 2219/5A06 aluminum
plates with different thicknesses as the research object, digital twin technology is applied to monitor
the welding process of aluminum plate. In order to improve the key technologies such as information
interaction in the digital twin system, a data acquisition system for resistance spot welding process
is established and a real-time data processing technology based on wavelet threshold analysis is
proposed. Based on real-time data, the processed process parameters are tested in twin space to
validate the feasibility of the solution.

Keywords: digital twin; spot welding; quality monitoring; wavelet analysis

1. Introduction

Resistance spot welding technology is a kind of point connection technology widely
used in the manufacture of thin plate structures. Its principle is to apply a certain pressure
between two electrodes and the workpiece to be welded and use the resistance heat
generated when the current passes through the workpiece to melt the local metal and
form a welding spot process. Resistance spot welding is widely used in the automotive,
aerospace, home appliance and other manufacturing fields due to its advantages of low
cost and high production efficiency [1].

As an important process in traditional automobile manufacturing, resistance spot
welding is widely used in the welding process of body floor, roof, and body assembly.
In the manufacturing and welding process of the car body, each car body has about
4000–6000 resistance spot welding joints. Therefore, the quality of the solder joints directly
determines the quality of the car body, which in turn affects the manufacturing quality of the
vehicle. In the petrochemical industry, chemical materials in petroleum and natural gas are
all transported through pipelines. In the early days, only seamless steel pipes were used for
pipeline steel. Due to their manufacturing cost, the application of high-frequency resistance-
welded pipes in petroleum and other fields has gradually increased [2]. Resistance welding
is also widely used in the home appliance manufacturing industry. Because it is suitable
for welding thin steel plates and the joint quality is high, it has been widely used in
the manufacture of refrigerator and washing machine shells [3]. In the medical field,
dentists also use small-scale resistance welding for dimensional restorations of metal
molars. However, the resistance spot welding process involves force, heat, electricity,
magnetism and flow, which is a highly nonlinear coupling process, which makes it difficult
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to accurately monitor the quality of the physical model [4]. At the same time, it is affected
by interference factors such as assembly gaps and electrode wear, as well as welding quality
problems such as spatter and cracks appear, which increase the uncertainty of the welding
process. Therefore, an effective resistance spot welding monitoring technology is needed to
realize real-time monitoring of process elements in the welding process and ensure product
welding quality.

Since resistance spot welding is a fully closed process, direct observation of the nucle-
ation process is not possible, so the nucleation process can only be inferred by monitoring
the physical phenomena accompanying the spot-welding process. The former process
signals that can be applied to monitor spot weld quality in real time include dynamic
resistance [5,6], electrode pressure [7] and electrode displacement [8]. Dynamic resistance
is one of the most widely used process signals in the field of resistance spot welding
quality monitoring. In 1950, Roberts first experimentally discovered the change in dy-
namic resistance during resistance spot welding of mild steel [9]. The dynamic resistance
signal is obtained by measuring the welding current and the voltage signal across the
electrode and calculating it using Ohm’s law. In the welding high current operating en-
vironment, the time-varying characteristics of the current lead to large induced noise in
the voltage signal, and the traditional current/voltage ratio algorithm produces serious
calculation errors. Gong [10] proposed the current-over-zero derivative ratio method to
achieve the calculation of dynamic resistance by analyzing the voltage and current signals
of the primary circuit of resistance spot welding and retrograde modeling, which requires
calibration of the inductance value of the secondary circuit of the welding equipment before
use. Su et al. [11] performed dynamic resistance measurements using a recursive least
squares algorithm based on a forgetting factor, and optimized the genetic factor using
sensitivity analysis, which can effectively eliminate inductive noise. Ji et al. [12] found
a significant trend in electrode displacement during resistance spot welding of thin alu-
minum alloys. Panza et al. [13] used the analysis of the electrode unique signal from a
non-contact sensor installed in the welding machine to monitor the electrode degradation
during the welding process and thus analyze the quality of the welding process. In view
of the influencing factors of spot welding quality and the shortcomings of the method to
judge spot welding quality based on the monitoring waveform curve, a method to study
the monitoring waveform curve of welding machine process parameters and establish
the HMM (hidden Markov model) model to realize the quality judgment of resistance
spot welding was presented by Wang [14]. Tang’s [15] experimental studies have shown
that different electrode pressure signals are obtained when spot welding with different
welding equipment is applied to the same material, so the study of electrode pressure
signals needs to be differentiated according to the type of welding equipment. Sensing and
detection technology for different signals of the resistance spot welding process is relatively
mature; however, achieving accurate measurement of dynamic resistance under variable
current conditions has not been practically solved and failed to break through the electrode
displacement measurement technology of the weld clamp mechanism.

A welding quality inspection method using signal processing and artificial intelligence
was proposed by Wang [16]. This method uses a non-invasive Rogowski coil to extract
electrical signal features, uses RNN (recurrent neural network) to evaluate the size of the
hot zone in the welding process, and implements a new self-organizing map classifier to
detect the time of occurrence. At the same time, in order to achieve a rapid monitoring strat-
egy, only the easily obtained electrical signals are monitored for data reading. To improve
the efficiency of acquiring monitored features, a reliable quality assessment method for
resistance spot welding was proposed by Zhang [17]. This method reserves weld quality
information as much as possible and it avoids complex algorithm for extracting and select-
ing monitored features. A method based on generative adversarial networks (GANs) data
enhancement technology to improve the quality of resistance spot welding was proposed
by Dai [18]. This method is based on GANs data enhancement, classifier construction and
image splitting. Firstly, defective welding images and their characteristics are described.
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Secondly, transfer learning technique is used to construct the defect spot welding classi-
fier. Using simple geometric transformations and balancing GANs and gradient penalty
(BAGAN-GP) to enlarge the dataset, the resulting image is added to the original training
dataset. Finally, the trained classifier is used to classify the defective solder joints. Most of
the above methods rely on historical data analysis in the process of welding monitoring,
making it difficult to guide timely quality monitoring and subsequent process decisions.

The concept of the digital twin was originally developed by Grieves [19] and is used in
the military and aerospace sectors. Digital twin technology has gained widespread attention
and practical application in various fields of industry due to its features of virtual–real
integration and real-time interaction, iterative operation and optimization, and full-factor
data drive. Tao et al. [20] described a digital twin as a virtual model of a physical entity
created digitally to simulate the behavior of the physical entity in the real environment with
the help of data, providing a more real-time, efficient and intelligent service oriented toward
the whole product lifecycle process. A method of optimizing the spot welding sequence
for the assembly quality was proposed by Tabar [21], which uses a digital twin model
to simulate the parameters of the welding sequence for each assembly, and by using the
simulation time as the basis for the optimal sequence, the method reduces the spot welding
sequencing time by more than 60%. A digital twin with deep learning empowerment was
applied to pulsed gas tungsten arc welding (GTAW-P) for welded joint monitoring and
penetration control, and this method achieved a graphical user interface (GUI) for the user
to more intuitively feel the weld growth [22]. For the welding cell in the manufacturing
process of large excavation motor arm workpieces, a system framework, based on a digital
twin welding robot cell, was proposed and constructed in order to optimize the robotic
collaboration process of the welding workstation with digital twin technology. This method
realized the simulation verification of welding assisted by virtual twin environment [23].

In summary, most of the above-mentioned studies have contributed to the rapid
development of resistance spot welding quality monitoring technology. However, there
are limitations in the practical application of the current research results, and there is a
mismatch between the actual welding conditions and the experimental conditions. To this
end, this paper proposes a digital twin-based approach aimed at monitoring the resistance
spot welding process in real time, establishing a high-precision quality evaluation model
capable of adapting to a variety of situations, achieving dynamic control of welding quality,
and ensuring product stability.

The main contributions of this paper are as follows: establishing a multi-scale twin
model based on a real resistance spot welding environment, synchronizing the twin model
with the physical model in real-time, and realizing resistance spot welding process op-
timization and quality monitoring on the basis of data collected in the field. Based on
historical data and future data, the optimized process parameters are tested in twin space to
validate the feasibility of the optimized solution afterward. Feedback of process parameters
to physical entities for the online quality control of resistance spot welding is provided to
promote the stability of product quality during production.

2. Resistance Spot Welding System and Digital Twin Environment

With the change in the manufacturing industry to flexible and intelligent, traditional
welding process monitoring cannot meet the modern demand for fine and high-quality
production, and it is difficult to realize the intelligent control of welding processes. There-
fore, this paper proposes a digital twin model for the resistance spot welding process.
This model consists of five modules: a physical entity layer, a model layer, a data layer, a
communication layer, and an application layer, as shown in Figure 1.
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Figure 1. Framework of a digital twin system for the resistance spot welding process.

Physical entity layer. The physical entity layer is the physical foundation of the
digital twin technology and is also the underlying source for acquiring data. The physical
entity layer is composed of elements such as the resistance spot welding equipment, work
environment, workpieces, and operators, which contain a large amount of dynamic and
static data that affect the quality of the weld.

Model layer. The model layer is a key vehicle for weld quality prediction by using the
data obtained from the physical layer to build a high-fidelity simulation model. Its main
function is to model the system on a multi-physical and multi-scale level.

Data layer. The data layer is the basis for the operation of the digital twin system. The
constituent elements contain welding site sensor data, service data, and knowledge data,
such as welding current, welding voltage, electrode pressure, and workpiece geometry
information. The data layer is mainly responsible for data representation, classification,
storage, maintenance, and pre-processing, driving the fusion of physical entities and twin
models to realize their intelligent services.

Communication layer. According to the communication model, the communication
layer can configure a wired network (industrial Ethernet) and a wireless network (such
as industrial WiFi, ZigBee) to form a data transmission network, and use communication
protocols such as MQTT to realize the transmission and analysis of multi-source hetero-
geneous data, and open up data link. Its main purpose is to aggregate and transmit all
kinds of collected data online to realize two-way communication between the physical
layer, model layer, data layer and service layer.

Application layer. The application layer contains two modules for real-time data
processing and welding process monitoring. First, the data pre-processing module provides
technical support for realizing the real-time monitoring of the welding process, and its main
function is to monitor and analyze the real-time collected data and extract the data features.
Second, the welding process monitoring module represents the technical embodiment of
resistance spot welding process optimization. Its main function is to realize the dynamic
formation process of resistance spot welding nucleus based on the twin model.
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3. Welding Quality Monitor of Spot Welding Based on Digital Twin
3.1. System Working Framework and Process

The flowchart of the digital twin-based system proposed in this paper is shown below.
As shown in Figure 2.
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3.2. Data Acquisition System for Resistance Spot Welding Process

The digital twin system performs real-time dynamic mapping of physical entities,
and the real-time data collection and updating are of vital importance for the digital twin
system. The system expresses the welding status through distributed sensors collecting
various types of physical quantity information from the system, while using the built
transmission network to transmit the welding status information to the twin model in
an efficient, real-time and accurate manner to establish data support for realizing real-
time monitoring of the resistance spot welding process. As shown in Figure 3, the data
acquisition system for resistance spot welding process includes four layers: the physical
entity, data transmission, data processing and data sensing. The physical entity contains
the physical manufacturing unit. The manufacturing unit is the main body that builds the
data acquisition system and is the source of the quality data required for resistance spot
welding quality monitoring; data transmission is an important step to support data fusion
and integration. In the welding process, welding quality information is multi-sourced and
heterogeneous, usually acquired from different sensors, and the data transmission part is
able to meet the compatibility and scalability of processing welding quality information;
Welding data processing ensures the integrity and accuracy of the original data and other
quality prerequisites. Welding data processing is mainly responsible for the necessary
processing of the collected data for review, screening and transformation, including data
cleaning, data conversion, data fusion and data feature extraction methods, which can
effectively improve the quality and efficiency of data analysis and reduce the complexity
and time cost of the actual analysis. The data sensing via data awareness uses the original
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data, is real-time, effective and accurate, and provides accurate data for building digital
twin models.
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3.3. Real-Time Monitoring Data Processing and Storage

The monitoring data involved in the resistance spot welding process is detected and
dynamically updated in real time using a data acquisition system, and the data are trans-
mitted to the virtual space through technologies such as the Internet of Things. Real-time
data collected by intelligent sensing devices have massive and redundant characteristics
and cannot be used directly for welding process monitoring, requiring data pre-processing
to identify redundant and abnormal data, and data-model mapping technology is used to
drive a virtual space digital twin model to run simulations.

The resistance spot welding process releases a large number of acoustic, optical and
thermal signals; while these signals are susceptible to interference from external condi-
tions, the collected welding electrical signals need to be denoised to reduce the impact of
interference. Common denoising methods include low-pass filtering, smoothing filtering
and wavelet filtering in the frequency domain, among which wavelet filtering has good
time–frequency localization characteristics to remove noise while retaining the detailed
information of the original signal.
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3.3.1. Theory of Wavelet Analysis

Since the time-domain sliding window processing of the conventional short-time
Fourier transform is equivalent to the filtering of a frequency-domain filter bank, the
frequency characteristics of each filter are the same, and the center frequencies are dis-
tributed at equal intervals along the analyzed frequency band, the time-domain equal-width
method of analyzing non-smooth signals is not applicable. The wavelet transform is a
multi-resolution signal analysis method which uses a grid to divide the time–frequency
surface so that different time–frequency locations have different resolutions.

The theory of wavelet analysis is as follows.
Let x(t) be a square-integrable function, denoted as x(t) ∈ L2(R), and ψ(t) is the

fundamental wavelet function. Then

WTx(α, τ) =
1√
α

+∞∫
−∞

x(t)ψ(
t− τ

α
)dt (1)

where α is the scale factor, α = 〈x(t), ψατ(t)〉 > 0. τ indicates displacement. The above
equation is called continuous wavelet transform. Its equivalent frequency domain is
expressed as

WTx(α, τ) =

√
α

2π

+∞∫
−∞

X(ω)ψ(α, ω)e+jwτdω (2)

By performing a denoising linear transformation of a signal using wavelet analysis,
the wavelet transform of a signal can be viewed as a wavelet transform of the original
signal and the noise.

3.3.2. Wavelet Threshold Noise Cancellation Analysis of Welding Process Signals

Since the electrical signals of the resistance spot welding process collected by the
welding data acquisition system are interspersed with environmental noise, switching
noise and other unavoidable interference, the collected signals need to be processed for
noise reduction in order to eliminate the influence of external noise on the later data analysis
results [24].

The wavelet threshold noise cancellation method is formulated as follows: assume
that a one-dimensional signal model containing Gaussian noise is expressed in the
following form,

yi = xi + e · zi(i = 0, 1, 2, . . . , n− 1), (3)

where xi is the true signal, and zi is the standard Gaussian white noise zi−iidN(0, 1), e is
the noise level. yi indicates the signal with noise. Wavelet multi-resolution analysis can
perform multi-resolution decomposition of the signal at different scales, decomposing the
original signal into components of different frequency bands. In the actual welding process,
the useful signal usually behaves as a low-frequency signal, while the noise component has
high-frequency characteristics. By processing the noise part of the signal through wavelet
thresholding, the original signal yi is recovered from the noise-containing signal xi to
achieve the purpose of noise cancellation. The steps of wavelet threshold noise cancellation
are as follows.

(1) Perform orthogonal wavelet transform on the noise-containing signal, select the
appropriate wavelet and wavelet decomposition level j, and obtain the corresponding
wavelet decomposition coefficients.

(2) Thresholding of wavelet coefficients at different scales is shown below.

The hard threshold method is as follows:

x = Th(y, T) =

{
Y |y| ≥ T
0 |y|< T

(4)
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where y is the original signal, T is the threshold value, and Th(y, T) is the signal after
quantization by threshold.

The soft threshold method is shown below.

x = Th(y, T) =

{
sgn(y)(|y| − T) |y| ≥ T
0 |y| < T

(5)

The soft thresholding approach first makes the elements with absolute values less than
the threshold zero, and second shrinks the remaining non-zero elements toward zero. The
hard threshold is discontinuous at y = ±T, while the soft threshold is continuous at y = ±T.

(3) Wavelet reconstruction. The signal is reconstructed by the low-frequency coefficients of
the jth layer of wavelet decomposition and the high-frequency coefficients of the first to
jth layers after quantization to obtain a signal with noise components eliminated.

4. Case Study
4.1. Case Background

In order to verify the effectiveness of the proposed digital twin-based resistance spot
welding process quality monitoring method, simulations were performed with 2219 and
5A06 aluminum alloy resistance spot welding process data. The validation process of the
digital twin-based resistance spot welding process quality monitoring method consists
of three aspects. (1) A digital twin system. A physical-virtual welding process system is
required to assist the process personnel in welding process monitoring, parameter tuning
and evaluation of process instructions. (2) Real-time data pre-processing of the welding
process. Sensor devices are used to obtain parameters such as welding current and electrode
force in the resistance spot welding process, which are processed for noise reduction to
obtain the input data needed for simulation. (3) Digital twin-based monitoring of the
resistance spot welding process.

4.2. Welding Conditions and Materials

Figure 4 shows the size of the specimens used in the experiment and the working
conditions of the margins. The specimen size is 30 × 300 × 7 (mm) and 30 × 280 × 2 (mm),
respectively.
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Two kinds of plates with different thicknesses and strengths were selected for the
experiments: 2219 and 5A06, and their chemical composition and mechanical and thermal
properties are shown in Table 1 and Figure 5.

Table 1. Chemical composition of 2219 and 5A06.

Material Si Fe Cu Mg V Mn Zr Zn Ti Ag Li Al

2219 0.06 0.17 6.3 0.02 0.1 0.31 0.15 0.02 0.07 - - Bal.
5A06 0.06 0.13 0.03 6.4 0.6 0.02 0.05 - - Bal.
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4.3. Finite Element Modeling

In this section, Simufact Welding simulation software is used to study heat transfer
behavior and nucleation law in the resistance spot welding of unequal-thickness aluminum
plates [25]. The finite element model established in this section is shown in Figure 6 and
contains 14,428 nodes and 25,850 nodes. The welded parts are two plates, the materials
are 2219 and 5A06, the thicknesses are 7 mm and 2 mm, and the lengths and widths of
the welded parts are 30 mm × 300 mm and 30 mm × 280 mm, respectively. Electrodes
are selected from ISO5821 A0-16-20-100 and A0-13-18-100, with two welders completely
fixed. A gap of 0.1 mm is set in the middle of the weld to simulate the assembly gap in
the actual spot welding process. Due to the different degrees of roughness and cleanliness
of the contact interface between the electrode and the weld and between the welds, there
are different degrees of additional film resistance between the contact interface, and by
setting the contact film thickness to take into account the influence of film resistance on the
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calculation, this section sets the contact film thickness to 0.05 mm. The elastic deformation
of the electrode is not considered in the calculations in this paper—that is, the electrode is
set as a rigid body. The finite element simulation of resistance spot welding of aluminum
plates with unequal thicknesses was carried out by using the spot welding heat source
model of Simufact software.
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The initial mesh of the welded part is a 2 mm × 2 mm × 0.75 mm hexahedron, and
the mesh of the central area of the spot weld is automatically refined during the calculation.
This section sets the refinement level to 2 and the refinement radius to 5 mm, i.e., the
mesh is refined within 5 mm of the weld joint location, and one refinement can cut a
hexahedral mesh into 8 small hexahedra. The refinement level is 2, i.e., the weld joint area
is tangentially refined twice. The software automatically performs the connection process
for the excess area of the coarse and fine mesh.

The contact resistance used in this paper is calculated by the following formula:

ρ = 3(
σs

σn
)(

ρ1 + ρ2

2
) + ρc (6)

where σn is the contact surface pressure; σs is the temperature-dependent rheological stress
of the softer material; ρ1 and ρ2 are the temperature- and phase-organization-dependent
resistances of the two materials on the contact surface; and ρc is the contact resistance
resulting from the coating and impurities.

The electrodes are made of chromium-zirconium copper, and the physical parameters
of the electrodes are shown in the Table 2.

Table 2. Physical properties of chromium-zirconium copper electrodes.

Temperature/◦C Thermal
Conductivity/(W/(m·◦C)) Resistivity/(10−8Ω·m) Specific Heat

Capacity Poisson’s Ratio Density

21 390 2.64 39.8

0.31 8900

204 370 3.99 42.0
426 345 6.19 44.3
649 320 8.00 46.5
871 310 9.48 48.0

1091 301 9.48 48.0

It is assumed that the welding current is uniformly distributed on the upper surface
of the upper electrode and is allowed to pass through the contact area of the electrode–
workpiece and workpiece–workpiece interfaces, eventually reaching the lower surface of
the lower electrode. The bottom of the lower electrode is set to zero voltage. The convective
heat transfer coefficients of the air to electrode and the cooling water to electrode were
19.4 and 3800 Wm−2K−1, respectively. The temperature of the cooling water and air was
determined to be 20 ◦C.

We set the contact conductivity between the electrodes and 5A06 and 2219, respectively,
to the valuesshown in Figure 7.
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Figure 7. (a) contact conductivity between 2219 and electrode, (b) contact conductivity between 5A06
and electrode.

4.4. Real-Time Data Collection and Processing of the Welding Process

The welding process data acquisition system is produced by HKS Technology GmbH,
Halle, Germany, with a sampling rate of 8000 HZ. The welding signal is collected from
0.012 s before power on, and the collected signal contains the welding current, welding
voltage and electrode force. Figure 8 shows the original curve collected during the resistance
spot welding experiment, and the pre-processed curve after noise elimination is obtained by
using wavelet threshold noise elimination analysis with the following specific parameters—
the wavelet type is DB4, the number of noise eliminations is 6, and the threshold value is
50% each time.
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The data from the wavelet threshold noise elimination analysis are used as inputs
for the resistance spot weld simulation to implement a finite element simulation based on
real-time data acquisition. The finite element simulation welding parameters are shown
in Figure 9.
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5. Results and Discussion

The use of a digital twin model for 5A06/2219 spot welding process temperature
field and current density changes with time simulation is presented in this paper. At the
beginning of spot welding, the temperature field after 100 ms of welding current is shown
in Figure 10a, and it can be seen from the figure that the temperature of the contact area
between the spherical electrode and the aluminum plate is significantly higher than in
other parts; at this time, the contact resistance is the dominant factor affecting the heat
generation, and the heat is mainly generated at the interface.
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Setting the spot welding time to 150 ms (Figure 10b), the time spent in the preheating
phase of the second heating pulse is greater compared with the time spent in the preheating
of the initial temperature field, when the heat production gradually increased from the
contact resistance to the body resistance. Setting the spot welding time to 200 ms, for
which the temperature field is shown in Figure 10c, the time entered the welding phase, the
highest temperature of the workpiece reached 910 K, began to melt, and the overall source
of heat at this time was the body resistance dominated by the resistance heat effect, causing
the rapid growth of the molten nucleus. At 400 ms, for which the temperature field is
shown in Figure 10d, the temperature field distribution trend did not change significantly,
and the welding process tended to stabilize, at which point the welding process was
complete, followed by the spot welding maintenance phase. After 1.25 s, the spot welding
process ends.
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As shown in Figure 11, in the current study, the diameter of the molten core was
monitored by means of the digital twin technique for the resistance spot welding process
with 96% accuracy. The time consumption of the digital twin technique is negligible
compared to the iterative calculation of the FEM. Real-time monitoring of the welding
process can be achieved using digital twin technology, whereas FEM requires a significant
amount of computation time. With the support of a data acquisition system, the digital
twin technique allows for real-time monitoring of the welding process.
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Through the comprehensive comparison of digital twin simulation and experimental
verification, the results of monitoring the resistance spot welding process using digital
twin technology accurately reflect the shape of the heat-affected zone and melting zone
of the plastic adhesion of resistance spot welding, providing a theoretical reference for
actual production.

6. Conclusions

Digital twin technology is a key technology to realize the fusion of physical and virtual
models. In this paper, we propose a simulation calculation of the temperature field of the
resistance spot welding process of heterogeneous materials using the digital twin model.
A data acquisition system for the resistance spot welding process is established, and the
data obtained are processed as an input source for the welding simulation using wavelet
threshold noise elimination analysis. A case study of resistance spot welding of 5A06/2219
aluminum alloy is analyzed.

The digital twin model is used to obtain the temperature distribution of the workpiece
at different times, and the formation and size change of the nuggets, so that the nugget
formation process of resistance spot welding is clear and intuitive, and the numerical
simulation based on sensor data is synchronized with the physical resistance spot welding
process. The digital twin modeling of the resistance spot welding process proposes a feasible
physical fusion method, which can provide a theoretical reference for production practice.

Meanwhile, the results of resistance spot weld monitoring with the application of
digital twin technology are in general agreement with experimental measurements. The
results show the practicality of digital twin technology for real-time monitoring of resistance
spot welds.
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