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Abstract: Thin plates are widely used in various engineering applications. In some cases, these
structural components may buckle due to compressive loads, which can be aggravated by lateral loads.
Several authors have studied the elastoplastic buckling behavior of thin plates considering parameters
such as material and geometric properties, support conditions, and initial out-of-plane imperfections.
Some studies have also investigated the effects of notches and holes on the ultimate buckling stress
of thin plates. The main goal of the present work is to verify and validate a computational model
developed using the Finite Element Method via ANSYS® software, to simulate the mechanical
behavior of metallic plates under uniaxial or biaxial compression combined with lateral load. The
proposed numerical model was verified and validated by comparing its results with analytical,
numerical, and experimental solutions found in the literature, reaching maximum differences and
errors of around 5%. In sequence, the verified and validated computational model was used in a
simple case study: a simply supported plate with a centered rectangular perforation and subjected to
an in-plane compressive biaxial load combined with a lateral load, considering five different metallic
materials: AISI 4130 steel, AH-36 steel, spheroidal graphite iron (SGI), compact graphite iron (CGI)
and Al 7075-T651 aluminum alloy. The results obtained are consistent and, as expected, prove the
applicability of the proposed computational model. From this, the biaxial elastoplastic buckling
behavior was evaluated, indicating that among the studied cases the higher ultimate stress and the
smallest maximum deflection were achieved, respectively, by the plates made of AISI 4130 steel and
AH-36 steel.

Keywords: elastoplastic buckling; thin plates; structural numerical simulation

1. Introduction

Thin plates are commonly used in aircraft structures, ship hulls, or automobiles, and
are frequently exposed to biaxial compressive loads in their plane. In several industrial
or engineering applications, they are required to withstand different load types, which
may be in-plane (compression, tension, shear, etc.) and/or out-of-plane (bending, torsion,
etc.) [1]. In addition, due to uniaxial or biaxial compressive loads, the thin plates can suffer
an unwanted phenomenon known as buckling, which can be aggravated if the compressive
loads are combined with lateral loads, causing a significant reduction in the buckling
resistance of the structure [2,3].

Buckling is a problem of great concern in the structural engineering field, being one of
the most common instability phenomena. Some of the main parameters that are generally
considered in the project of thin metallic plates include material properties, geometric
properties (width/thickness ratio and aspect ratio), support conditions, and initial out-of-
plane imperfections [4–6].
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Plate buckling can occur in two forms: the first is elastic buckling, which occurs when
the plate is slender and instability occurs in the elastic regime of the material; the second
form is elastoplastic buckling, which is characterized when the plate reaches the plastic
state of the material before the occurrence of elastic buckling because as the load increases,
the stresses in all points of the plate will increase in the same proportion, and collapse may
occur due to loss of strength [2,7].

In this sense, the elastoplastic buckling behavior of plates has been numerically inves-
tigated by several authors. Rasmussen et al. [8] carried out experimental and numerical
analysis of the elastoplastic buckling of simply supported thin plates subjected to uniaxial
compressive loading. The material used was UNS31803 stainless steel, the plate’s thickness
was 3 mm, with nominal widths of 125 mm and 250 mm, while the nominal length of
the two plates was 750 mm. The authors demonstrated that excellent agreement with the
tests can be achieved using the stress–strain curve for longitudinal compression, assuming
isotropic hardening and modeling the measured geometric imperfection. The maximum
load obtained with this model was 3.6% lower and 1.2% higher than the loads experimen-
tally determined. Furthermore, the authors indicated that the anisotropy of the material
may not be important for numerical analyzes involving monotonic loading.

Mateus and Witz [4] developed the numerical analysis of thin plates subjected to
uniaxial elastoplastic buckling for Grade B and API X52 steels. The authors present and
discuss the results of a parametric investigation on the structural collapse of non-stiffened
steel plates when subjected to variations in aspect ratio, boundary conditions, initial out-of-
plane imperfection, and work hardening of the material. Through the obtained results, the
authors concluded that the aspect ratio has a significant influence on the ultimate resistance
of the plate. Plates with aspect ratios up to 1.5 have their ultimate strengths governed by
edge length. For aspect ratios above 1.5, they were dependent on the aspect ratio, the type
of initial imperfection, and the boundary condition. Therefore, the effect of work hardening
of the material on the strength of the plate is negligible for the maximum resistance to
collapse for plates with a slenderness ratio below 2.5.

Bezkorovainy et al. [9] investigated the effect of material properties on the compres-
sive strength of simply supported square metal plates, with a width of 100 mm and
slenderness ratios varying between 0.5 and 3. The materials studied were stainless steel
and aluminum. From the results, the authors obtained a generalized formulation that
allows the plate strength equation to be determined for a given alloy, requiring only the
Ramberg-Osgood parameters.

Paik et al. [10] numerically studied the effects of the shape, size (depth and diameter),
and location of the notches on the compressive capacity of simply supported steel plates.
The geometrical measurements of the plates analyzed were as follows: width of 800 mm,
aspect ratios of 1, 2, 3, 4, and 5, and thickness of 10 mm, 15 mm, and 20 mm. Through
the results, the authors observed that the final compressive strength of the plate is not
greatly affected by notch damage, as long as the notch diameter is small, regardless of its
depth. However, as the tooth diameter increases, the ultimate compressive strength of the
plate decreases significantly. In this case, the depth of the tooth also helps to accelerate
the trend of strength reduction. In addition, changing the location of the notch located
in the longitudinal direction of the board affects the maximum strength. As its location
approaches the edges of the unloaded plate, the maximum resistance decreases by 20%
compared to that of the notch in the center of the plate.

El-Sawy et al. [2] analyzed the effect of the size and location of a circular hole in
the uniaxial buckling of square and rectangular plates, with different aspect ratios. The
results indicated that for square plates with concentric circular holes subjected to uniaxial
compression, the buckling failure remains elastic for small perforations, provided that the
slenderness ratio of the plate is less than 65 (for A36 steel), greater than 55 (for Grade 50 A572
sheets of steel) and greater than 50 (for Grade 60 A572 sheets of steel). Furthermore, for the
plates with concentric circular holes, the critical stress will always decrease as slenderness
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increases. However, this decline becomes more pronounced for large slenderness values,
especially for small hole sizes, where the failure changes from elastoplastic to purely elastic.

Ndubuaku et al. [1] investigated the effect of parametric variation of the stress-strain
properties of materials on the ultimate strength and on the deformation capacity of simply
supported plates subjected to uniform axial compression. Through this study, the authors
developed a new analytical expression to generate stress–strain curves used for paramet-
ric evaluation. This equation proved to be versatile in approximating the shape of the
stress–strain curve over the entire range of strains. Therefore, they provided a reasonable
approximation of the shape of the stress–strain curve using only two constitutive param-
eters of the model, facilitating the parameterizing process of the material stress–strain
properties for a wide variety of metallic materials.

Moreover, some studies on buckling in mechanical designs can be seen in the literature.
For instance, Pavlovic et al. [11] carried out the theoretical and numerical study of the
structure of a telescopic boom made of AISI 4130 steel. The structure has a working height
of 17 m, a platform height of 15 m, a load capacity of 200 kg (in all positions), and a working
range of 9 m. The objective of this study was to obtain a better understanding of the
structural strength and instability of the structure, allowing us to analyze the behavior of
the system in relation to the effect of the buckling modes. The authors observed that the
telescopic boom is able to withstand loads three times greater than those applied under
normal operating conditions. In this way, it was possible to state that the equipment is free
from the occurrence of buckling in the structure. In turn, Fragassa et al. [12] carried out the
experimental analysis of a telescopic boom made of AISI 4130 steel. The objective was to
validate the functionality and the level of security offered by the equipment. In this study,
external loads were applied and strains were measured in order to investigate the general
behavior of the bar under static and dynamic conditions, together with the presence of
buckling phenomena. In the analysis of the results, the authors observed that up to the
maximum load, the structure does not buckle because even before the occurrence of this
instability, problems arise in the plasticization of the material.

In Pinto et al. [13], different arrangements of steel plates with rectangular or trapezoidal
stiffeners were analyzed respect to their effects on deflections and stresses. In Troina
et al. [14] an advanced computational model was developed and applied with the scope
to perform a geometric optimization of thin steel plates with stiffeners when subjected to
uniform transverse loads. In Amaral et al. [15] the same discussion was focused on the
presence of symmetry boundaries and their effect on the stiffness of this plates.

In this context, the main goal of the present work is to verify and validate a compu-
tational model for the application of the Finite Element Method (FEM), using the ANSYS
Workbench®, Ver. 2023R1, by ANSYS Inc., Canonsburg, PA, €US, with the purpose of
evaluating the behavior of metallic plates subjected to elastoplastic buckling caused by
uniaxial or biaxial compression combined with lateral pressure (or not combined with
lateral pressure). The applied lateral load can have a constant or null value. Additionally,
the verified and validated computational model was used to perform a simple case study
of a simply supported rectangular plate with a centered rectangular hole, subjected to
combined loads (in-plane biaxial compression and lateral pressure). The purpose was
to evaluate the variation of the ultimate buckling stress of the plate as a function of the
increase in lateral load. To do so, five different metallic alloys were considered: AISI
4130 steel, AH-36 steel, spheroidal graphite iron (SGI), compact graphite iron (CGI) and
Al 7075-T651 aluminum alloy. This allowed us to investigate the plate behavior and its
material mechanical properties. It is important to highlight that numerical simulation of the
elastoplastic behavior of plates (which may or may not be perforated and with stiffeners)
subjected to uniaxial or biaxial in-plane compressive loads associated or not with lateral
loading is not a trivial task. Therefore, the development of a computational model by means
of the ANSYS Mechanical APDL® [16], by ANSYS Inc., to solve this complex problem
can be quite useful for scientific and practical engineering applications. In addition, the
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case study brings an association of geometric configuration for the plate with a type of
combined load that is not easily found in the literature.

2. Computational Model

The computational model was developed in the commercial software ANSYS Me-
chanical APDL®, using the finite element SHELL281. It was chosen because it is a suitable
element for thin to moderate-thickness plates, having eight nodes with six degrees of
freedom at each node: translations in the x, y, and z axes and rotations in the x, y, and
z axes. Its formulation is based on the first-order shear-strain theory (Reissner–Mindlin
Theory) [16].

According to Wang et al. [17], it is required to initially perform the analysis of elastic
buckling for the plate. This is necessary because the configuration of the first elastic buckling
mode is used to define the initial deformed configuration for the elastoplastic analysis.
The numerical solution through the ANSYS® software for the elastic buckling problem of
plates was performed by means of an eigenvalue and eigenvector approach. For this type
of analysis, according to Madenci and Guven [18], the finite element equilibrium equations
are analyzed by solving the homogeneous algebraic equations. The lowest eigenvalue
corresponds to the critical buckling load, and the associated eigenvector represents the
first buckling mode. Thus, the global system of equations for a finite element mesh can be
written as follows:

[K]{U} = {F} (1)

where [K] is the stiffness matrix of the system, {U} is the unknown vector, and {F} is the
force vector. According to the problem, the matrix [K] may be dependent on {U}, that is,
[K] = [K(U)] and {F}may be time-dependent, remaining {F} = {F(t)}. Due to the lateral
pressure applied to the external surface of each element, which is normal for the surfaces,
the force vector can be described as follows [19]:

{F} = {FN}+ {FPR} (2)

where {FN} is the nodal force applied to each element and {FPR} is the pressure vector on
each element.

The formulation used includes both linear and nonlinear terms, with the total stiffness
matrix [K] obtained by adding the conventional stiffness matrix for small deformations
[KE] with the geometric stiffness matrix [KG]. The latter, [KG], does not depend only on the
geometry, since the internal load,

{
N0

}
, existing at the beginning of the loading must be

considered. Thus, the total plate stiffness matrix for a load level
{

N0
}

, is given by

[K] = [KE] + [KG] (3)

In case the load reaches a level of
{

N
}
= λ

{
N0

}
, the stiffness matrix is written as

[K] = [KE] + λ[KG] (4)

where λ is a scalar.
Then, the governing equilibrium equations for the plate can be written as

[[KE] + λ[KG]]{U} = λ
{

N0
}

(5)

where {U} is the total displacement vector, which can be determined by

{U} = [[KE] + λ[KG]]
−1λ

{
N0

}
(6)

According to Przemieniecki [20], in the plate’s elastic buckling, the structural com-
ponent under analysis presents a large growth in displacements without an increase in
load. Therefore, by mathematical definition, the inverse matrix is determined as the ad-
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joint matrix divided by the determinant of the coefficients, so the displacements tend to
infinity when

det[[KE] + λ[KG]] = 0 (7)

The eigenvalue problem defined by Equation (7) is solved using the Lanczos numerical
method [16]. It is the smallest eigenvalue (λ1) corresponding to the critical buckling load
given by {

Ncr
}
= λ1

{
N0

}
(8)

which is the limit load where the phenomenon of elastic buckling begins. In addition, the
associated displacement vector {U} defines the shape of the elastic buckling mode.

Since plate buckling is not limited to the elastic regime of the material, due to its
non-linearity, it is necessary to adopt a small initial value of imperfections to perform its
elastoplastic numerical simulation. In the proposed computational model, the initial imper-
fection was defined from the first elastic buckling mode. This consideration is necessary
due to the function of the post-buckling problem not allowing an exact analysis directly,
having problems of response discontinuities at the neutral equilibrium point [2]. According
to El-Sawy et al. [2], the most accurate results for the ultimate stress of elastoplastic buckling
were obtained when

w0 =
b

2000
(9)

where w0 is the value of the initial imperfection and b is the plate width.
According to Helbig et al. [21], the ultimate load acting on the plate is given by

PY = σYt (10)

where σY is the yield stress of the material and t is the plate thickness. The Newton-Raphson
method is applied to determine the displacements that correspond to the plate equilibrium
configuration for each load increment.

According to Lima et al. [22], during the beginning of the loading stage i + 1, there is a
vector of unbalanced loads {ψ}, equal to the load increment

{
∆N

}
, between the vector of

external loads
{

N
}

i+1 and the vector of nonlinear internal forces {FNL}, which is equal to
the vector of previous external loads

{
N
}

i. Then, the Newton-Raphson method is applied
iteratively to reduce the unbalanced load vector {ψ} to a value below the prescribed
tolerance by means of the following equations:

{ψ} =
{

∆N
}
=

{
N
}

i+1 − {FNL}r =
{

N
}

i+1 −
{

N
}

i (11)

{ψ}r+1 =
{

N
}

i+1 − {FNL}r (12)

{ψ}r+1 = [Kt]r{∆U}r+1 (13)

{U}r+1 = {U}r + {∆U}r+1 (14)

where {ψ}r+1 is the updated unbalanced load vector, {FNL}r is the nonlinear force vector
in the iteration r, [Kt]r is the tangent stiffness matrix calculated from the displacement
vector {U}r, {∆U}r+1 is the updated displacement increment vector, and {U}r+1 is the
updated displacement vector.

According to Madenci and Guven [18], Helbig et al. [21], and Lima et al. [22], if
in a given load step it is not possible to reach convergence in the iterative process, this
characterizes the obtaining of the ultimate load of the elastoplastic buckling of the plate.
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3. Results and Discussions

First, the verification and validation of the proposed computational model were
performed. Then, through the verified and validated computational model, the case study
was carried out. Figure 1 shows the main dimensions of a thin plate: a is its length, b is its
width, and t is its thickness.
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Figure 1. Main dimensions of a thin plate.

To perform the numerical simulation of the elastoplastic buckling of plates, it is
necessary to define the values to be used for the load increments, as well as the value of the
limit load. The value of the limit load used in each analysis is defined by Equation (10),
while the load increments were defined with an initial 100 load steps (it is possible to reach
a minimum of 50 steps and a maximum of 200 steps). The quantity of steps defines how
many times the limit load will be divided and defines the value of the increment for each
load step.

3.1. Computational Model Verification

The computational model verification process was developed by comparing the re-
sults generated in the present study with those obtained through analytical solutions or
numerical solutions presented in the literature. For the first verification, according to Pis-
copo [23], it was performed an analysis of the elastic buckling of a thin square plate, under
biaxial compressive load without lateral pressure. To do so, a holeless simply supported
plate was considered. It had the following dimensions: a = b = 1000 mm and t = 10 mm
(see Figures 1 and 2). The steel mechanical properties of the plate are a modulus of elasticity
E = 206 GPa and Poisson’s ratio ν = 0.3.
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Figure 2. Simply supported square plate without holes.

Piscopo [23] obtained the critical buckling load analytically and numerically via FEM,
reaching Ncr = 372 kN/m and Ncr = 373 kN/m, respectively. In turn, the proposed
computational model defined a critical buckling load of Ncr = 368.89 kN/m. Therefore,
we achieved differences of 0.84% and 1.10%, respectively, in relation to the analytical and
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numerical results of Piscopo [23], verifying the proposed elastic buckling computational
model. The results of the present study, including the mesh convergence test, can be seen
in Table 1. Figure 3 shows the deformed configuration for the first buckling mode.

Table 1. Mesh convergence test for the verification of the computational model by Piscopo [23].

Element Size (mm) Number of Elements Ncr (kN/m)

100 100 368.75

75 196 368.89

50 400 368.89

40 625 368.89

30 1156 368.89

25 1600 368.89
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Figure 3. Out-of-plane displacement due to the biaxial elastic buckling.

Through the analysis of Figure 3, it is possible to visualize a configuration of the
formed half-wave buckling, in which the blue color indicates regions with no displacement
and the red color represents the maximum deflection that occurred on the plate. Thus, as
expected, one can see that during the elastic buckling, the greatest displacement occurs at
the center of the plate.

After that, another computational model verification was developed regarding the
elastic biaxial buckling of a perforated plate, as earlier studied by Jayashankarbabu and
Karisiddappa [24]. The simply supported square plate with a centered square hole in
Figure 4 is subjected to a compressive in-plane load with no lateral pressure. The mechanical
properties of the steel and the dimensions of the plate are E = 210.924 GPa, ν = 0.3,
a = b = 1000 mm, and t = 10 mm. In addition, two values were considered for the square
perforation: a0 = b0 = 250 mm and a0 = b0 = 500 mm.
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Jayashankarbabu and Karisiddappa [24] obtained a critical load of 314.55 kN/m for
the plate with the 250 mm hole and 295.48 kN/m for the plate with the 500 mm hole. In
turn, the developed computational model achieved critical loads of Ncr = 314.34 kN/m
and Ncr = 297.49 kN/m, respectively, for the plate with the smallest and largest square hole.
Therefore, the differences between the proposed model and the work by Jayashankarbabu
and Karisiddappa [24] were 0.07% and 0.68% for the plate with a square hole of 250 mm
and 500 mm side, respectively, verifying the developed numerical model. In addition, the
mesh convergence test and the deformed configuration for the first biaxial elastic buckling
mode are presented in Table 2 and Figure 5, respectively.

Table 2. Mesh convergence test for the verification of the computational model by Jayashankarbabu
and Karisiddappa [24].

Square Hole
Dimensions a0 = b0 = 250 mm a0 = b0 = 500 mm

Element Size
(mm)

Number of
Elements Ncr (kN/m)

Number of
Elements Ncr (kN/m)

100 101 315.46 92 299.93

75 180 314.52 162 297.89

50 411 314.40 300 297.49

40 633 314.34 524 297.49

30 1116 314.34 920 297.49

25 1500 314.34 1200 297.49
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In Figure 5, as in Figure 4, a half-wave was formed due to the elastic buckling, ranging
from no displacement in the plate edges (in blue color) and the maximum deflection in
the hole edges (in red color). In addition, it can be seen that by increasing the size of the
square hole, the regions with greater deflections are concentrated in the center of the edges
of the holes.

In sequence, the computational model verification for the elastoplastic buckling of a
holeless simply supported plate subjected to an in-plane biaxial compressive load (with
no lateral load) was carried out, based on the analytical study presented by Shanmugam
and Narayanan [25]. The mechanical properties of the steel used are modulus of elasticity
E = 205 GPa, Poisson’s ratio ν = 0.3, and yield stress σY = 245 MPa; the plate dimensions
are a = 720 mm, b = 240 mm, and t = 4 mm (see Figure 1). The value found by Shan-
mugam and Narayanan (1998) for the ultimate buckling stress was σu = 56.35 MPa. On
the other hand, the proposed numerical model obtained the ultimate buckling stress of
σu = 55.13 MPa, presenting a difference of 2.17% in comparison with Shanmugam and
Narayanan [25]. The results obtained can be seen in Table 3 and Figure 6.

Table 3. Mesh convergence test for the verification of the computational model by Shanmugam and
Narayanan [25].

Element Size (mm) Number of Elements σu (MPa)

100 24 55.13

75 40 55.13

50 75 55.13

40 108 55.13

30 192 55.13

25 290 55.13
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Figure 6. The von Mises stress distribution for the rectangular plate with no hole.

For the verification of the model according to Shanmugam and Narayanan [25], one
can note in Figure 6 that the greatest stress points are located in the center of the plate.

Another verification for the biaxial elastoplastic buckling computational model was
carried out considering a simply supported square plate with a centralized circular hole
and subjected to a biaxial compressive load (without lateral load), according to Shan-
mugam et al. [26]. Figure 7 illustrates the thin steel plate with the following dimensions:
a = b = 125 mm, t = 6.25 mm, and a0 = b0 = 25 mm. Moreover, the mechanical properties
of the plate material are modulus of elasticity E = 205 GPa, Poisson’s ratio ν = 0.3, and
yield stress σY = 323.3 MPa.
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Figure 7. Simply supported square plate with centered circular hole.

Shanmugam et al. [26] used an analytical approach to achieve the ultimate stress of
σu = 257.13 MPa, while the proposed computational model obtained σu = 263.49 MPa. The
difference between the results is 2.47%, verifying the developed numerical model. One can
view the results generated by the present study in Table 4 and Figure 8.

Table 4. Mesh convergence test for the verification of the computational model by Shanmugam
et al. [26].

Element Size (mm) Number of Elements σu (MPa)

50 8 278.06

20 54 269.95

10 158 266.72

5 600 265.10

4 1010 263.49

3 1732 263.49

2.5 2400 263.49

Metals 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

Table 4. Mesh convergence test for the verification of the computational model by Shanmugam et 

al. [26]. 

Element Size (mm) Number of Elements 𝝈𝐮 
(MPa) 

50 8 278.06 

20 54 269.95 

10 158 266.72 

5 600 265.10 

4 1,010 263.49 

3 1,732 263.49 

2.5 2,400 263.49 

 

Figure 8. The von Mises stress distribution for the square plate with centered circular hole. 

According to Figure 8, it can be seen that for the biaxial elastoplastic buckling of a 

square plate with a circular hole, there is a predominance of the highest von Mises stresses 

on the entire surface of the plate, indicated by the colors red and orange. 

After that, the computational model was verified considering an elastoplastic buck-

ling caused by a uniaxial compressive load combined with a lateral load, as in the numer-

ical study presented by Kumar et al. [27]. A simply supported stiffened plate with a semi-

circular cut out was considered (Figure 9) and had the following dimensions: 𝑎 = 1500 

mm, t = 6 mm, with three different values for b (170 mm, 340 mm, and 510 mm), and d = 

b/2. The L-shaped stiffener in the center of the plate has 𝑟 = 45 mm, 𝑠 = 70 mm, and 𝑡 = 

6 mm. The mechanical properties of the metallic material used in the plate and stiffener 

are E = 200 GPa, 𝜈 = 0.3, and 𝜎𝑌 = 250 MPa. 

 

Figure 9. Simply supported stiffened plate with semi-circular opening (Adapted from [27]). 

To numerically simulate the plate of Figure 9 a mesh convergence test was performed 

(Table 5) taking into account the width of 170 mm, defining a finite element size of 20 mm. 

From this, both for the width of 170 mm and for the widths of 340 mm and 510 mm, this 

same spatial discretization was adopted. It is important to highlight that the last column 

of Table 5 presents the ratio between the ultimate buckling load when the lateral load is 

applied (𝑁uQ) and the ultimate buckling load when the lateral load is null (𝑁𝑢0), as in Ku-

mar et al. [27]. 
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According to Figure 8, it can be seen that for the biaxial elastoplastic buckling of a
square plate with a circular hole, there is a predominance of the highest von Mises stresses
on the entire surface of the plate, indicated by the colors red and orange.

After that, the computational model was verified considering an elastoplastic buckling
caused by a uniaxial compressive load combined with a lateral load, as in the numerical
study presented by Kumar et al. [27]. A simply supported stiffened plate with a semi-
circular cut out was considered (Figure 9) and had the following dimensions: a = 1500 mm,
t = 6 mm, with three different values for b (170 mm, 340 mm, and 510 mm), and d = b/2.
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The L-shaped stiffener in the center of the plate has r = 45 mm, s = 70 mm, and t = 6 mm.
The mechanical properties of the metallic material used in the plate and stiffener are
E = 200 GPa, ν = 0.3, and σY = 250 MPa.
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Figure 9. Simply supported stiffened plate with semi-circular opening (Adapted from [27]).

To numerically simulate the plate of Figure 9 a mesh convergence test was performed
(Table 5) taking into account the width of 170 mm, defining a finite element size of 20 mm.
From this, both for the width of 170 mm and for the widths of 340 mm and 510 mm, this
same spatial discretization was adopted. It is important to highlight that the last column
of Table 5 presents the ratio between the ultimate buckling load when the lateral load is
applied (NuQ) and the ultimate buckling load when the lateral load is null (Nu0), as in
Kumar et al. [27].

Table 5. Mesh convergence test for the stiffened plate with semi-circular opening and width of
170 mm.

Element Size (mm) Number of Elements NuQ/Nu0

50.0 390 0.896

40.0 646 0.851

30.0 1050 0.806

20.0 2280 0.776

17.5 2924 0.776

15.0 3800 0.776

Table 6 shows the numerical results of Kumar et al. [27] and those obtained in the
present study, as well as their differences. One can note that these differences range between
3.66% and 4.83%, indicating that the proposed computational model was verified.

Table 6. Computational model verification by Kumar et al. [27].

Plate Width (mm) NuQ/Nu0
(Kumar et al. [24])

NuQ/Nu0
(Present Study)

Difference (%)

170 0.750 0.776 3.66

340 0.766 0.803 4.83

510 0.766 0.796 3.92

In addition, Figure 10 depicted the von Mises stress distribution for the stiffened plate
with semi-circular cut out, for the three considered plate widths.
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Figure 10. The von Mises stress distribution for the stiffened plate with semi-circular opening and
width of (a) 170 mm, (b) 340 mm, and (c) 510 mm.

Through the analysis of Figure 10, one can note that always the highest stresses are
located close to the region of contact between the stiffener and the edge of the semi-circular
opening. It was also observed that as the width of the plate increases, there is an increase
in the area on the edge of the plate opposite to the cutout, which is subjected to high von
Mises stresses.

To finish the computational model verification step, the numerical study carried out
by Yu et al. [28] was reproduced here. To do so, the elastoplastic buckling of a simply
supported rectangular stiffened plate with a square centered hole was analyzed, being the
structure under uniaxial compression combined with uniform lateral loading. Figure 11
illustrates the stiffened perforated plate, which has the following dimensions: a = 1160 mm,
b = 960 mm, t = 5 mm and 12 mm (defining a plate slenderness ratio, respectively, of 2.45
and 1.02), and a0 = b0 = 300 mm for the centered square perforation. Moreover, the
L-shaped stiffeners have dimensions of r = 30 mm, s = 50 mm, and t = 5 mm (see Figure 9
for the stiffener geometry). The metallic material used for the plate and stiffeners has the
following mechanical properties: E = 198 GPa, ν = 0.3, and σY = 331 MPa.

Metals 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

illustrates the stiffened perforated plate, which has the following dimensions: 𝑎 = 1,160 

mm, b = 960 mm, t = 5 mm and 12 mm (defining a plate slenderness ratio, respectively, of 

2.45 and 1.02), and 𝑎0 = 𝑏0 = 300 mm for the centered square perforation. Moreover, the 

L-shaped stiffeners have dimensions of 𝑟 = 30 mm, 𝑠 = 50 mm, and 𝑡 = 5 mm (see Fig-

ure 9 for the stiffener geometry). The metallic material used for the plate and stiffeners 

has the following mechanical properties: E = 198 GPa, 𝜈 = 0.3, and 𝜎𝑌 = 331 MPa. 

 

Figure 11. Simply supported stiffened plate with centered square hole (Adapted from [28]), in 

mm. 

It is worth mentioning that the magnitudes of the lateral load considered in this case 

were 𝑄 = 2𝑞𝑢/3 and 5𝑞𝑢/6, where 𝑞𝑢 is the ultimate lateral load of the specimen (which 

is 341.3 MPa), as presented in Yu et al. [28]. In addition, the ultimate normalized stress 

(defined as 𝜎𝑛 = 𝜎𝑢/𝜎𝑌) was adopted for the evaluation of the results. 

To define adequate spatial discretization, a mesh convergence test was promoted 

considering the stiffened plate with a thickness of 5 mm and under a lateral load of 2𝑞𝑢/3, 

being the results described in Table 7. 

Table 7. Mesh convergence test for the stiffened perforated plate with t = 5 mm and 𝑄 = 2𝑞𝑢/3. 

Element Size (mm) Number of Elements 𝝈𝒏 

100 222 0.390 

80 320 0.370 

60 468 0.365 

50 604 0.360 

40 1,080 0.335 

30 1,564 0.335 

25 2,416 0.335 

One can observe in Table 7 a stabilization for the ultimate normalized stress value 

from an element size of 40 mm. Therefore, this element size was adopted for the spatial 

discretization of all simulated configurations. The results obtained in the present study 

and those found by Yu et al. [28] are shown in Table 8. 

Table 8. Model verification according to [28]. 

t (mm) 𝑸 
𝝈𝒏  

(Yu et al. [28]) 

𝝈𝒏 
(Present Study) 

Difference (%) 

Figure 11. Simply supported stiffened plate with centered square hole (Adapted from [28]), in mm.

It is worth mentioning that the magnitudes of the lateral load considered in this case
were Q = 2qu/3 and 5qu/6, where qu is the ultimate lateral load of the specimen (which
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is 341.3 MPa), as presented in Yu et al. [28]. In addition, the ultimate normalized stress
(defined as σn = σu/σY) was adopted for the evaluation of the results.

To define adequate spatial discretization, a mesh convergence test was promoted
considering the stiffened plate with a thickness of 5 mm and under a lateral load of 2qu/3,
being the results described in Table 7.

Table 7. Mesh convergence test for the stiffened perforated plate with t = 5 mm and Q = 2qu/3.

Element Size (mm) Number of Elements σn

100 222 0.390

80 320 0.370

60 468 0.365

50 604 0.360

40 1080 0.335

30 1564 0.335

25 2416 0.335

One can observe in Table 7 a stabilization for the ultimate normalized stress value
from an element size of 40 mm. Therefore, this element size was adopted for the spatial
discretization of all simulated configurations. The results obtained in the present study and
those found by Yu et al. [28] are shown in Table 8.

Table 8. Model verification according to [28].

t (mm) Q σn
(Yu et al. [28])

σn
(Present Study) Difference (%)

5
2qu/3 0.323 0.335 3.72

5qu/6 0.244 0.255 4.51

12
2qu/3 0.591 0.575 2.71

5qu/6 0.546 0.565 3.48

The results of Table 8 presented relative differences ranging from 2.71% to 4.51%,
ensuring that the proposed computational model can be considered verified. To illustrate,
Figure 12 shows the von Mises stress distribution for the four cases of Table 8, being possible
to infer that for the thickness of 5 mm, the greatest von Mises stresses are concentrated in
the region around the square hole; while for the thickness of 12 mm, a wider distribution of
high-stress regions occurred.
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Figure 12. The von Mises stress distribution for the stiffened plate with centered square hole, with
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3.2. Computational Model Validation

The computational model validation process was performed by confronting the results
of the current study with those obtained in the experimental tests found in the literature.
For the first validation, the elastoplastic biaxial buckling analysis of a simply supported
square plate (see Figures 1 and 2) under biaxial compressive loads and no lateral loading
was carried out, according to Shanmugam and Narayanan [25]. The dimensions of the
metallic plate are a = b = 56 mm and t = 2.032 mm, while its mechanical properties are
E = 205 GPa, ν = 0.3, and σY = 334.7 MPa. The mesh convergence test performed and the
ultimate biaxial buckling stress obtained can be viewed in Table 9.

Table 9. Mesh convergence test for the validation of the computational model by Shanmugam and
Narayanan [25].

Element Size (mm) Number of Elements σu (MPa)

20.0 9 185.76

10.0 36 192.45

7.5 64 192.45

5.0 144 192.45

4.0 196 192.45

3.0 361 192.45

2.5 529 192.45

Since Shanmugam and Narayanan [25] experimentally obtained an ultimate biaxial
buckling stress of 203.43 MPa, one can infer from Table 9 that the proposed computational
model generated a result with an error of 5.40%, validating the developed numerical model.
The von Mises stress distribution numerically generated in the present study can be viewed
in Figure 13, in which the regions with the highest stress (in red color) are concentrated at
the corners of the square plate.
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After that, it was considered a simply supported square plate with a centered circular
hole that was previously experimentally investigated by Narayanan and Chow [26]. The
perforated plate was subjected to a biaxial compressive load with no lateral load. Its
dimensions are a = b = 125 mm, t = 1.625 mm, and a0 = b0 = 25 mm (see Figure 3). The
mechanical properties of the metallic material of the plate are E = 205 GPa, ν = 0.3, and
σY = 323.3 MPa. Narayanan and Chow [29] experimentally defined an ultimate biaxial
buckling stress of σu = 73.80 MPa, while the proposed computational model obtained
σu = 77.59 MPa (as indicated in Table 10, by a mesh convergence test). Therefore, an error
of 5.14% was found between the proposed numerical model and the experimental result,
ensuring its validation.

To illustrate the mechanical behavior of the perforated plate under biaxial elatoplastic
buckling, Figure 14 depicted its von Mises stress distribution. It was possible to observe
that, in addition to the regions of greatest stress located in the corners of the plate already
observed in Figure 13, high values of von Mises stress were also identified in the region
around the centered circular hole.

Table 10. Mesh convergence test for the validation of the computational model by Narayanan and
Chow [29].

Element Size (mm) Number of Elements σu (MPa)

20.0 54 63.34

10.0 158 77.59

7.5 301 77.59

5.0 600 77.59

4.0 1010 77.59

3.0 1732 77.59

2.5 2400 77.59
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3.3. Case Study

The verified and validated computational model was employed here for the analysis
of the elastoplastic buckling behavior of a metallic perforated plate subjected to an in-plane
biaxial compressive load combined with a uniformly distributed lateral pressure (pz) of
0.0507 MPa. The plate is simply supported, having a centered rectangular hole. Considering
Figure 4, the plate dimensions are a = 2000 mm, b = 1000 mm, t = 12 mm, a0 = 450 mm,
and b0 = 667 mm. It should be noted that plates with this geometric configuration subjected
to this type of combined loading are not easily found in the literature. In addition, five
different metallic materials were taken into account for the perforated plate: AISI 4130
steel [30], AH-36 steel [31], spheroidal graphite iron [32–34], compact graphite iron [32–34]
and Al 7075-T651 aluminum alloy [35]. Its mechanical properties are described in Table 11.

Table 11. Mechanical properties of the metallic materials considered in the case study [30–35].

Material E (GPa) ν σY (MPa)

AISI 4130 210.0 0.30 460

AH-36 210.0 0.30 355

SGI 170 0.24 340

CGI 150 0.22 270

Al 7075-T651 71.7 0.33 502

To define the spatial discretization, a mesh convergence test was performed for the
plate made of AH-36 steel, defining a regular independent mesh with an element size of
30 mm. Therefore, the numerical simulations for the case study were carried out with
this finite element size. The results obtained for the ultimate biaxial buckling stress (σu)
and maximum out-of-plane displacement (uZ) for each case are presented in Table 12.
Moreover, the von Misses stress distribution for the perforated plate made of AISI 4130
steel, AH-36 steel, spheroidal graphite iron (SGI), compact graphite iron (CGI) and Al
7075-T651 aluminum alloy are illustrated in Figures 15–17.

Table 12. Ultimate biaxial buckling stress and maximum deflection of the case study.

Material σu (MPa) uZ (mm)

AISI 4130 31.74 63.51

AH-36 28.76 47.39

SGI 24.48 59.47

CGI 20.66 55.15

Al 7075-T651 18.32 144.02
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The highest ultimate stress was reached by AISI 4130 steel (31.74 MPa), being:

• 9.39% higher than AH-36 steel (28.76 MPa)
• 42.28% higher than Al 7075-T651 (18.32 MPa)
• 22.87% higher than SGI (24.48 MPa)
• 34.91% higher than CGI (20.66 MPa).

The smallest deflection was achieved by AH-36 steel (47.39 mm), being:

• 34.02% less than AISI 4130 steel (63.51 mm)
• 203.90% less than Al 7075-T651 (144.02 mm)
• 25.49% less than SGI (59.47 mm)
• 16.37% less than CGI (55.15 mm).

Analyzing the von Mises stress distributions, one can infer that for the steel plates (see
Figure 15), as expected, similar mechanical behavior can be observed, despite the small
differences existing in the upper and lower perforation edges as well as in the plate edges.
This is what also happens in the case of cast iron plates (see Figure 16), whose behavior
does not differ much from what was found for steel. However, when comparing the von
Mises stress distributions of the steel (Figure 15) and cast iron (Figure 16) plates with that of
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the Al 7075-T651 aluminum alloy plate(Figure 17), it is possible to realize that the regions
submitted to the maximum stresses are much smaller for the plate made of Al 7075-T651.

Through the analysis of the data obtained in the case study, as expected, when chang-
ing the plate material, the ultimate buckling stress, the maximum out-of-plane displacement,
and the von Mises stress distributions change from one case to another. This coherent
behavior for the studied metallic plates also proves the effectiveness and accuracy of the
proposed model.

4. Conclusions

The present work proposed a computational model for the elastoplastic biaxial buck-
ling of plates due to combined loads, developed using the FEM in the ANSYS® software.
Numerical simulations considering uniaxial or biaxial compressive in-plane loads combined
or not with lateral loading for plates with or not stiffeners and having or not perforations
can be performed.

As the main objective, the verification and validation of the computational model
taking into account different load type combinations, mechanical properties, and geometric
configurations for metallic plates were carried out. To do so, the numerical results obtained
were compared with analytical, numerical, and experimental solutions presented in the lit-
erature. Maximum relative differences of 2.47% and 4.83% were achieved when comparing
the numerical results of the present study with analytical and numerical previous results,
respectively. In addition, a maximum relative error of 5.40% was reached when confronting
the results generated by the developed computational model with those experimentally
found in the literature. Therefore, one can conclude that the developed numerical model
was adequately verified and validated.

Thereafter, the computational model was employed to simulate a case study of a
rectangular metal plate with a centered square perforation submitted to a biaxial compres-
sive in-plane load combined with a lateral load. Although it is a simple case, no studies
were found in the literature regarding the elastoplastic buckling of plates considering this
geometric configuration associated with this type of combined loading and considering
different metallic materials (AISI 4130 steel, AH-36 steel, spheroidal graphite iron (SGI),
compact graphite iron (CGI) and Al 7075-T651 aluminum alloy). To do so, the ultimate
stress, maximum deflection, and von Mises stress distribution were evaluated. The ob-
tained results indicated that the AISI 4130 steel plate achieved an ultimate buckling stress of
31.74 MPa, which is 9.39%, 42.28%, 22.87% and 34.91% superior to the limit stress reached
by the AH-36 steel plates, Al 7075-T651 aluminum alloy, SGI and CGI, respectively. In turn,
the out-of-plane displacement of the AH-36 steel plate presented a maximum deflection of
47.39 mm, which is 34.02%, 203.90%, 25.49% and 16.37% less than the deflection achieved by
the plates made of AISI 4130 steel, Al 7075-T651 aluminum alloy, SGI and CGI, respectively.
With regard to the von Mises stress distributions, as expected, the plates made of AISI 4130
steel and AH-36 steel presented a similar behavior, being different from those that occurred
for the Al 7075-T651 plate.

The results of the case study are coherent and corroborate with the verification and
validation performed, proving that the proposed computational model is capable of nu-
merically simulating the elastoplastic buckling of plates subjected to uniaxial or biaxial
compressive loads combined with lateral loading.

Finally, it is important to mention that the results obtained by the present work are
useful to the quasi-static deformation analysis. However, as per Maruschak et al. [36],
when considering repeated loadings (fatigue), some approaches allow taking into account
the material damages accumulated during operation and formulating criteria to evaluate
deformation processes at different scale levels.
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