Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Materials
2.2. Experimental Procedures
2.3. Numerical Procedures
3. Results and Discussion
3.1. Notch Sensitivity
3.2. Fracture Toughness
3.3. TRIP Effect
3.4. SIMT Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Speer, J.; Streicher, A.; Matlock, D.; Rizzo, F.; Krauss, G.; Damm, E.; Merwin, M. Austenite Formation and Decomposition; TMS: Warrendale, PA, USA, 2003; pp. 505–522. [Google Scholar]
- Hosseini, N.; Forouzan, F.; Vuorinen, E. In-situ microstructural evolution during quenching and partitioning of a high-carbon steel by high-temperature X-Ray diffraction. Mater. Today Commun. 2022, 31, 103503. [Google Scholar] [CrossRef]
- Rong, X.; Hu, B.; Guo, H.; Enomoto, M.; Shang, C. Influence of cold rolling on the stability of retained austenite and mechanical properties of a Cu bearing low carbon low manganese steel. Mater. Sci. Eng. A 2022, 850, 143455. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S. Microstructure-property relationship in the quenching and partitioning (Q&P) steel. Mater. Charact. 2023, 196, 112561. [Google Scholar]
- Zhou, C.; Ye, Q.; Hu, J.; Zhao, T.; Gao, X.; Wang, Z. Ultra-high-strength multi-alloyed steel with enhanced cryogenic toughness using thermally stable retained austenite. Mater. Sci. Eng. A 2022, 831, 142356. [Google Scholar] [CrossRef]
- Jimenez-Melero, E.; Van Dijk, N.; Zhao, L.; Sietsma, J.; Offerman, S.; Wright, J.; Van der Zwaag, S. Martensitic transformation of individual grains in low-alloyed TRIP steels. Script. Mater. 2007, 56, 421–424. [Google Scholar] [CrossRef]
- Yang, H.; Bhadeshia, H. Austenite grain size and the martensite-start temperature. Script. Mater. 2009, 60, 493–495. [Google Scholar] [CrossRef]
- Timokhina, I.; Hodgson, P.; Pereloma, E. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall. Mater. Trans. A 2004, 35, 2331–2341. [Google Scholar] [CrossRef] [Green Version]
- Basuki, A.; Aernoudt, E. Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite. J. Mater. Process. Tech. 1999, 89, 37–43. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; De Cooman, B. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Script. Mater. 2011, 64, 649–652. [Google Scholar] [CrossRef]
- Wu, R.; Li, W.; Wang, C.; Xiao, Y.; Wang, L.; Jin, X. Stability of Retained Austenite Through a Combined Intercritical Annealing and Quenching and Partitioning (IAQP) Treatment. Acta Metall. Sinica 2015, 28, 386–393. [Google Scholar] [CrossRef]
- De Knijf, D.; Föjer, C.; Kestens, L.; Petrov, R. Factors influencing the austenite stability during tensile testing of Quenching and Partitioning steel determined via in-situ Electron Backscatter Diffraction. Mater. Sci. Eng. A 2015, 638, 219–227. [Google Scholar] [CrossRef]
- Socrate, S. Mechanics of Microvoid Nucleation and Growth in High-Strength Metastable Austenitic Steels. Ph. D. Thesis, MIT, Cambridge, MA, USA, 1995. [Google Scholar]
- Wu, R.; Li, J.; Li, W.; Wu, X.; Jin, X.; Zhou, S.; Wang, L. Effect of metastable austenite on fracture resistance of quenched and partitioned (Q&P) sheet steels. Mater. Sci. Eng. A 2016, 657, 57–63. [Google Scholar]
- Natori, M.; Song, S.; Sugimoto, K. The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-aided Bainitic Ferrite Steel. J. Soc. Mater. Sci. Jpn. 2014, 63, 662–668. [Google Scholar] [CrossRef]
- Lacroix, G.; Pardoen, T.; Jacques, P.J. The fracture toughness of TRIP-assisted multiphase steels. Acta Mater. 2008, 56, 3900–3913. [Google Scholar] [CrossRef]
- Srawkey, J.; Brown, W. Fracture Toughness Testing; Clearinghouse for Federal Scientific and Technical Information; National Aeronautics and Space Administration: Washington, DC, USA, 1965; pp. 133–136. [Google Scholar]
- Kobayashi, J.; Ina, D.; Futamura, A.; Sugimoto, K. Fracture Toughness of an Advanced Ultrahigh-strength TRIP-aided Steel. Isij Inter. 2014, 54, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Wang, L.; Qi, J.; Zuo, H.; Hiraoka, K. Enhancement of fracture toughness of high-strength Cr-Ni weld metals by strain-induced martensite transformation. Mater. Sci. Eng. A 2013, 579, 71–76. [Google Scholar] [CrossRef]
- Antolovich, S.; Chanani, G. Subcritical crack growth of TRIP steels in air under static loads. Engin. Fract. Mech. 1972, 4, 765–776. [Google Scholar] [CrossRef]
- Mei, Z.; Morris, J. Analysis of transformation-induced crack closure. Eng. Fract. Mech. 1991, 39, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, K.; Dwarakadasa, E. A study on fatigue crack growth in dual phase martensitic steel in air environment. Bullet. Mater. Sci. 2000, 23, 193–199. [Google Scholar] [CrossRef]
- Wang, L.; Feng, W. Development and Application of Q&P Sheet Steels; Advanced Steels; Springer: Berlin/Heidelberg, Germany, 2011; pp. 255–258. [Google Scholar]
- Sugimoto, K.; Kanda, A.; Kikuchi, R.; Hashimoto, S.I.; Kashima, T.; Ikeda, S. Ductility and formability of newly developed high strength low alloy TRIP-aided sheet steels with annealed martensite matrix. Isij Inter. 2002, 42, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.; Furnémont, Q.; Pardoen, T.; Delannay, F. On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater. 2001, 49, 139–152. [Google Scholar] [CrossRef]
- Wu, R.; Li, W.; Zhou, S.; Zhong, Y.; Wang, L.; Jin, X. Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels. Metall. Mater. Trans. A 2014, 45, 1892–1902. [Google Scholar]
- Rice, J.; Sorensen, E. Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J. Mech. Phy. Solid. 1977, 26, 163–186. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, N.; Butt, A.; Zhao, L.; Sietsma, J.; Offerman, S.; Wright, J.; van der Zwaag, S. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005, 53, 5439–5447. [Google Scholar] [CrossRef]
- Miller, R. A Rapid X-ray Method for the Determination of Retained Austenite. Trans. ASM 1964, 57, 892–899. [Google Scholar]
- Zhao, L.; van Dijk, N.; Brück, E.; Sietsma, J.; van der Zwaag, S. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels. Mater. Sci. Eng. A 2001, 313, 145–152. [Google Scholar] [CrossRef]
- Li, Y.; Luo, M.; Gerlach, J.; Wierzbicki, T. Prediction of shear-induced fracture in sheet metal forming. J. Mater. Process. Tech. 2010, 210, 1858–1869. [Google Scholar] [CrossRef]
- Samek, L.; De Moor, E.; Penning, J.; De Cooman, B. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels. Metall. Mater. Trans. A 2006, 37, 109–124. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Hsu, T.; Zhou, S.; Wang, L.; Jin, X. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning-tempering treatment. Script. Mater. 2015, 97, 21–24. [Google Scholar] [CrossRef]
- Zhou, S.B.; Hu, F.; Zhou, W.; Cheng, L.; Hu, C.Y.; Wu, K.M. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel. J. Mater. Res. Tech. 2021, 14, 1021–1034. [Google Scholar] [CrossRef]
- Tu, X.; Hu, B.; Xu, R.; Guo, Q.; Luo, H. Prominent work hardening and ultrahigh yield strength both realized in 3Mn steel multiply alloyed with Cu/Ni/Al/V. Mater. Sci. Eng. A 2022, 849, 143473. [Google Scholar] [CrossRef]
- Chhajed, B.; Mishra, K.; Singh, K.; Singh, A. Effect of prior austenite grain size on the tensile properties and fracture toughness of nano-structured bainite. Mater. Charact. 2022, 192, 112214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Xu, Y.; Li, K. Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels. Metals 2023, 13, 762. https://doi.org/10.3390/met13040762
Wu R, Xu Y, Li K. Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels. Metals. 2023; 13(4):762. https://doi.org/10.3390/met13040762
Chicago/Turabian StyleWu, Riming, Yi Xu, and Kuicen Li. 2023. "Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels" Metals 13, no. 4: 762. https://doi.org/10.3390/met13040762
APA StyleWu, R., Xu, Y., & Li, K. (2023). Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels. Metals, 13(4), 762. https://doi.org/10.3390/met13040762