Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter
Abstract
:1. Introduction
2. Industrial Test and Data Collection
2.1. Test Device
2.2. FeO Content in Slag of Conventional/Bottom-Blowing O2-CaO Process
2.3. Data Collection and Filtering
3. Prediction Model of FeO in Slag Based on MLR
3.1. Introduction and Establishment of MLR
3.2. Prediction Results and Test of Multiple Regression Prediction Model
4. Prediction Model of FeO in Slag Based on BP Neural Network
4.1. Introduction to BP Neural Network
4.2. Establishment of BP Neural Network Prediction Model
4.3. Prediction Results and Analysis of BP Neural Network Model
5. Prediction Model of FeO in Slag Based on PCA-BP Combined Neural Network
5.1. Mathematical Model of Principal Component Analysis
5.2. Establishment of PCA-BP Combined Neural Network Model
5.3. Prediction Results and Analysis of PCA-BP Combined Neural Network Model
6. Summary and Conclusions
- (1)
- By establishing the multiple linear regression model, the relationship between FeO content in slag and various influencing factors is obtained:
- (2)
- The average absolute error of the BP neural network prediction model is 1.631%, which is 0.3% lower than that of the multiple linear regression prediction model. When the prediction error range is 3.0%, the prediction hit rate of the model is 84%, and when the prediction error range is 2.0%, the prediction hit rate of the model is 68%. Compared with the multiple linear regression model, the BP neural network model has obviously improved prediction accuracy and stability.
- (3)
- The average absolute error of the PCA-BP combined neural network model is 1.178%, which is 0.78% lower than that of the multiple linear regression prediction model and 0.453% lower than that of the BP neural network prediction model. When the prediction error is within ±3.0%, the hit rate of the model prediction is 96%, and when the prediction error is within ±2.0%, the model prediction hit rate is 78%. The PCA-BP neural network prediction model has the highest prediction accuracy and has important reference value for actual production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, G.; Yang, J.; Zhang, R.; Yang, W.; Sun, H. Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity. Int. J. Min. Met. Mater. 2021, 28, 66. [Google Scholar] [CrossRef]
- Lee, C.M.; Fruehan, R.J. Phosphorus equilibrium between hot metal and slag. Ironmak Steelmak. 2005, 32, 503. [Google Scholar] [CrossRef]
- Tian, Z.; Li, B.; Zhang, X.; Jiang, Z.J. Double slag operation dephosphorization in BOF for producing low phosphorus steel. Iron Steel Res. Int. 2009, 16, 6. [Google Scholar] [CrossRef]
- Hamano, T.; Horibe, M.; Ito, K. The dissolution rate of solid lime into molten slag used for hot-metal dephosphorization. ISIJ Int. 2004, 44, 263. [Google Scholar] [CrossRef]
- Deng, T.; Gran, J.; Sichen, D. Dissolution of Lime in Synthetic ‘FeO’-SiO2 and CaO-‘FeO’-SiO2 Slags. Steel Res. Int. 2010, 81, 347. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, R.; Hu, S.; Li, W. Study on metallurgical characteristics of the bottom-blown O2–CaO converter. Ironmak Steelmak. 2021, 48, 142. [Google Scholar] [CrossRef]
- Matsui, A.; Nabeshima, S.; Matsuno, H.; Kishimoto, Y. Kinetics behavior of iron oxide formation under the condition of oxygen top blowing for dephosphorization of hot metal in the basic oxygen furnace. Tetsu Hagane 2009, 95, 207. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Sun, Y.H.; Luo, Y.H.; Zhao, C.L. The dynamic prediction model of FeO mass fraction in slag in 300 t top-bottom combined blowing converter. Steelmaking 2015, 31, 13. [Google Scholar]
- Gao, M.; Gao, J.T.; Zhang, Y.L.; Yang, S.F. Evaluation and Modeling of Scrap Utilization in the Steelmaking Process. JOM 2021, 73, 712. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Ju, Q.P.; Xie, F.M.; Wang, B.; Li, H.W. Prediction model of end-point manganese content for BOF steelmaking process. ISIJ Int. 2012, 52, 1585. [Google Scholar] [CrossRef]
- He, F.; Zhang, L.J. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network. Process Control. 2018, 66, 51. [Google Scholar] [CrossRef]
- Chen, C.; Wang, N.; Chen, M. Prediction Model of End-point Phosphorus Content in Consteel Electric Furnace Based on PCA-Extra Tree Model. ISIJ Int. 2021, 61, 1908. [Google Scholar] [CrossRef]
- Sasmita, S.; Sahoo, J. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865. [Google Scholar]
- Hsu, C.C.; Lin, J.; Chao, C.K. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws. Comput. Methods Programs Biomed. 2011, 104, 341. [Google Scholar] [CrossRef] [PubMed]
- Piro, N.S.; Mohammed, A.S.; Hamed, S.M. Evaluate and predict the resist electric current and compressive strength of concrete modified with GGBS and steelmaking slag using mathematical models. J. Sustain. Metall. 2023, 9, 194. [Google Scholar] [CrossRef]
- Bucur, A.; Dobrotă, G.; Oprean-Stan, C.; Tănăsescu, C. Economic and qualitative determinants of the world steel production. Metals 2017, 7, 163. [Google Scholar] [CrossRef]
- Su, X.W.; Cui, H.; Zhang, B.L.; Liu, Y.Q.; Luo, L. FeO prediction model of dephosphorization slag in converter for dephosphorization. JCQU-E 2018, 41, 56. [Google Scholar]
- Hunt, K.J.; Sbarbaro, D. Adaptive filtering and neural networks for realisation of internal model control. IEE Proc.-D Control Theor. 1991, 138, 431. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, S.S.; Liu, P.B. Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network. High Temp. Mater. Process. 2022, 41, 505. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Nominal capacity of converter | 300t | Weight of powder injection per heat | 2000–4000 kg |
Number of bottom-blowing guns | 2 | Type of carrier gas | O2/CO2/N2/Ar |
Total flow rate of bottom carrier gas | 2700 Nm3/h | Bottom-blowing powder flow rate | 0–240 kg/min |
Variable | Symbol | Unit | Variable | Symbol | Unit |
---|---|---|---|---|---|
Hot metal weight | X1 | t | Hot metal temperature | X2 | ℃ |
Hot metal [C] content | X3 | % | Hot metal [Si] content | X4 | % |
Tapping temperature | X5 | °C | Endpoint [C] content | X6 | % |
Endpoint [Si] content | X7 | % | Slag (CaO)content | X8 | °C |
Slag basicity | X9 | t | Dolomite weight | X10 | t |
Sinter weight | X11 | t | Bottom-sprayed CaO weight | X12 | t |
Top-added CaO weight | X13 | t | Top-blown O2 consumption | X14 | Nm3 |
Bottom-blown O2 consumption | X15 | Nm3 | Bottom-blown N2 consumption | X16 | Nm3 |
FeO content | Y | % |
R | R2 | Adjust R2 | Error in Standard Estimation | F | Sig. |
---|---|---|---|---|---|
0.966 | 0.933 | 0.927 | 1.448 | 173.49 | 0.00 |
Independent Variable | Non-Standardized Coefficient | Standardized Coefficient | t | Sig. | |
---|---|---|---|---|---|
B | Standard Error | ||||
Constant | 38.840 | 12.118 | 3.205 | 0.002 | |
X1 | 0.106 | 0.019 | 0.130 | 5.594 | 0.000 |
X2 | −0.012 | 0.004 | −0.070 | −2.972 | 0.003 |
X3 | −1.491 | 1.028 | −0.035 | −1.451 | 0.148 |
X4 | 2.355 | 1.141 | 0.058 | 2.064 | 0.040 |
X5 | 0.0001 | 0.006 | 0.0004 | −0.019 | 0.985 |
X6 | 1.205 | 0.966 | 0.031 | 1.247 | 0.214 |
X7 | 14.302 | 6.362 | 0.047 | 2.248 | 0.026 |
X8 | −1.762 | 0.051 | −1.024 | −34.670 | 0.000 |
X9 | 15.221 | 1.039 | 0.371 | 14.644 | 0.000 |
X10 | −0.610 | 0.141 | −0.094 | −4.319 | 0.000 |
X11 | 0.085 | 0.080 | 0.026 | 1.059 | 0.291 |
X12 | 0.748 | 0.325 | 0.102 | 2.301 | 0.022 |
X13 | −0.011 | 0.195 | −0.002 | −0.055 | 0.956 |
X14 | 0.001 | 0.001 | 0.095 | 2.598 | 0.010 |
X15 | −0.015 | 0.003 | −0.192 | −4.360 | 0.000 |
X16 | 0.003 | 0.002 | 0.059 | 1.518 | 0.131 |
Dependent Variable | Fundamental Parameters | Values |
---|---|---|
y | Nodes of input layer | 16 |
Number of hidden layers | 1 | |
Nodes of hidden layer | 14 | |
Input layer activation function Sigmoid | Sigmoid | |
Nodes of output layer | 1 | |
Data division | random | |
Training function | Trainlm | |
Learning rate | 0.001 |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | % of Variance | Cumulative % | |
1 | 3.854 | 22.400 | 22.400 |
2 | 2.209 | 13.807 | 36.207 |
3 | 1.885 | 11.782 | 47.989 |
4 | 1.519 | 9.494 | 57.483 |
5 | 1.259 | 7.870 | 65.353 |
6 | 1.028 | 6.425 | 71.778 |
7 | 0.897 | 5.605 | 77.383 |
8 | 0.808 | 5.050 | 82.433 |
9 | 0.749 | 4.679 | 87.112 |
10 | 0.510 | 3.185 | 90.297 |
11 | 0.475 | 2.970 | 93.267 |
12 | 0.367 | 2.292 | 95.559 |
13 | 0.314 | 1.960 | 97.519 |
14 | 0.193 | 1.204 | 98.732 |
15 | 0.114 | 0.713 | 99.436 |
16 | 0.090 | 0.564 | 100.000 |
Dependent Variable | Fundamental Parameters | Values |
---|---|---|
Y | Nodes of input layer | 10 |
Number of hidden layers | 1 | |
Nodes of hidden layer | 14 | |
Input layer activation function Sigmoid | Sigmoid | |
Nodes of output layer | 1 | |
Data division | random | |
Training function | trainlm | |
Learning rate | 0.000001 |
Model | MLR | BP | PCA-BP |
---|---|---|---|
±1.0% | 26% | 38% | 54% |
±2.0% | 56% | 68% | 78% |
±3.0% | 76% | 84% | 96% |
Mean absolute error | 1.958% | 1.631% | 1.178% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Dong, K.; Feng, C.; Zhu, R.; Wei, G.; Wang, C. Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter. Metals 2023, 13, 782. https://doi.org/10.3390/met13040782
Ren X, Dong K, Feng C, Zhu R, Wei G, Wang C. Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter. Metals. 2023; 13(4):782. https://doi.org/10.3390/met13040782
Chicago/Turabian StyleRen, Xin, Kai Dong, Chao Feng, Rong Zhu, Guangsheng Wei, and Chunyang Wang. 2023. "Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter" Metals 13, no. 4: 782. https://doi.org/10.3390/met13040782
APA StyleRen, X., Dong, K., Feng, C., Zhu, R., Wei, G., & Wang, C. (2023). Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter. Metals, 13(4), 782. https://doi.org/10.3390/met13040782