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Abstract: Toughness and the transition from ductile to brittle behavior are long-standing concerns
for applications of ferritic steel such as line-pipe. Three algorithms have been developed to fit a hy-
perbolic tangent curve to any Charpy V-notch dataset and estimate the uncertainty for (1) the 85%
shear appearance area transition temperature and (2) the upper shelf absorbed energy. To fit the hyper-
bolic tangent curve to the data the (I) first algorithm relied on iterative estimation of four-parameters;
(II) the second algorithm on two parameters (after simplification based on physical assumptions);
and (III) the third algorithm on only one parameter (after further simplification). The algorithms
were written using the open-source programing language, R. The minimum input requirements for
the algorithm are experimental data for shear appearance area and absorbed energy from at least four
temperatures for the four-parameter algorithm, two temperatures for the two-parameter algorithm,
and one temperature for the one-parameter algorithm. The test temperatures and quantity of tests at
each temperature can vary. The algorithms are described in detail and demonstrated using a data
set of 12 Charpy test results (shear area and absorbed energy) from one API-5L grade X52 pipe with
4.5 mm thick Charpy bars. A future paper will test and compare the algorithms using a wide variety
of Charpy V-notch data sets to clarify their applicability and possible limitations.

Keywords: toughness; Charpy V-notch; line pipe steel; hyperbolic tangent; ductile; brittle; transition
temperature; upper shelf absorbed energy

1. Introduction
1.1. Importance of Toughness Testing

Toughness can be viewed as a measure of the amount of energy required to cause a
rapid fracture. In the 1800s and early 1900s, brittle, low-toughness iron and steel caused
many catastrophic failures [1–5]. Specifically, for steel pressure vessels and pipes, tough-
ness has been recognized as a critical parameter for evaluating burst pressure for over
100 years [6]. In the early 1900s, various impact tests were developed, originally to test
the quality of armor plate and boiler steels, and the ASTM E23 method for Charpy impact
testing procedure was tentatively released in 1933 [1]. The use of Charpy testing has
expanded greatly, and examples of industries that rely on Charpy testing today include
shipbuilding [7–9], nuclear power [10,11], armor [12], rail [13,14], construction [15], steam
turbine [16], piping and pressure vessel [17–19], liquified natural gas storage [20], hydrogen
storage [21], additive manufacturing [22], aluminum alloy development [23], and compos-
ites [24]. The principles and methods described in this paper are relevant to many critical
structural applications but will be analyzed and discussed with respect to steel line pipes
widely used in natural gas and hazardous liquid pipelines.
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1.2. Charpy Testing to Assess Steel Ductile and Brittle Behavior

Toughness is often evaluated using a Charpy test. The standard sample for a Charpy
test exhibits a 10 mm by 10 mm cross-section and a 2 mm notch. The sample is dynamically
fractured using a gravity-driven hammer. The energy lost by the hammer is recorded and
equated to the energy absorbed by the sample. The shear appearance area is measured from
the fracture surface of the sample. The absorbed energy and shear appearance correlate to
the toughness behavior of the steel.

Ferritic steels typically exhibit a transition from ductile behavior (high energy absorp-
tion) at room temperature to brittle behavior at low temperatures [25]. Structural steel
alloys, including those used for line pipe, are intended for use in their ductile regime. Often,
pipeline operators desire to know the ductile to brittle transition temperature to establish a
safe operating temperature range within which the material is likely to behave in a ductile
manner, thereby reducing the risk of catastrophic brittle failure.

When manufacturing line pipe, Charpy tests are usually required to be performed for
only one or two temperatures. ASME Boiler and Pressure Vessel Code Section XI (Division
1, Paragraph IWA-4665), API 5L, and ASTM A370 require a minimum toughness based
on three tests at one temperature. These tests enable pipe manufacturers and pipeline
operators to ensure sufficient toughness relative to some intended operating temperature.
However, Charpy testing at a single temperature is insufficient to quantify the change
in absorbed energy and shear appearance relative to temperature. Charpy test results
from multiple temperatures are necessary to enable the characterization of the transition
from ductile behavior to brittle behavior. Thus, operators sometimes request “full Charpy
curves”, i.e., Charpy tests performed at multiple temperatures (8–12) to characterize the
transition from ductile to brittle behavior and upper shelf energy.

1.3. Methods to Estimate Upper Shelf Absorbed Energy

Absorbed energy, E, versus test temperature, Ttest. Absorbed energy, E, forms a
sigmoidal curve when plotted versus test temperature, Ttest. Oldfield (1975) recognized
that the most appropriate function for fitting Charpy data is the hyperbolic tangent [26]:

E = AE + BEtanh
[

Ttest − DE
CE

]
. (1)

AE are BE are defined as:

AE =
EUS + ELS

2
, and (2)

BE =
EUS − ELS

2
(3)

where EUS is the upper shelf absorbed energy and ELS is the lower shelf absorbed energy.
The constant, CE, is the halfwidth of the transition region such that the slope of the transition
region is equal to BE/CE. The constant, DE, is the midpoint of the hyperbolic tangent
function. The relationships between the constants, AE, BE, CE, and DE, are demonstrated
by Figure 1.
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Figure 1. Example plot of Charpy sample absorbed energy vs. temperature data demonstrating the 
relationships between the hyperbolic tangent function (red line) and the parameters, 𝐴ா, 𝐵ா , 𝐶ா, 
and 𝐷ா (dashed construction lines). 
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there are various definitions for transition temperatures in different industries such as the 
28 J transition temperature from BS 7910 [28,29], the 47 J transition temperature for the 
nuclear industry [30], and the 50% cleavage transition temperature (𝑇ହ) used in the ship-
building industry [9]. In the pipeline industry, the 85% shear appearance area transition 
temperature (𝑇 ହ) is referenced for two reasons. Firstly, shear appearance is considered a 
better indicator of transition behavior than absorbed energy for metals with different pro-
cessing histories [9]. Secondly, fully ductile behavior can be assumed to be predominant 
for temperatures above the 𝑇 ହ [31,32]. Note that the Charpy test is a dynamic test and 
usually results in a ductile to brittle transition temperature that is much higher than the 
ductile to brittle transition temperature for crack initiation, which is more relevant for steel 
line pipe failures [31]. However, it is an important measure of the ability of a pipeline 
material to arrest a propagating fracture. The test also lends itself to evaluating product 
specification conformity during manufacturing. 

1.5. Methods to Estimate Uncertainty  
The 𝑇 ହ and 𝐸ௌ are useful for fitness-for-service and risk assessments, maximum 

flaw size estimation, maintenance and replacement procedure development, and ground 
shift risk mitigation [31]. The 𝑇 ହ and 𝐸ௌ are usually estimated by manually drawing 
or plotting a sigmoidal, hyperbolic tangent curve through the data (e.g., Refs. [28,33]). This 
labor-intensive, qualitative method requires curves to be evaluated one-by-one and does 
not provide a quantitative estimate of uncertainty. Oldfield developed a least squares 
curve fitting method, but the method does not provide an estimate for uncertainty, could 
be difficult to apply, and, for some data sets, may not converge in a satisfactory manner 
[26]. Lucon et al. presented an algorithm to fit the hyperbolic tangent function, but the 

Figure 1. Example plot of Charpy sample absorbed energy vs. temperature data demonstrating the
relationships between the hyperbolic tangent function (red line) and the parameters, AE, BE, CE, and
DE (dashed construction lines).

1.4. Methods to Estimate Ductile to Brittle Transition Temperature

Along with the EUS it is common to characterize the toughness of a type of steel
using the transition temperature [27]. Owing to the transition being generally continuous,
there are various definitions for transition temperatures in different industries such as
the 28 J transition temperature from BS 7910 [28,29], the 47 J transition temperature for
the nuclear industry [30], and the 50% cleavage transition temperature (T50) used in the
shipbuilding industry [9]. In the pipeline industry, the 85% shear appearance area transition
temperature (T85) is referenced for two reasons. Firstly, shear appearance is considered
a better indicator of transition behavior than absorbed energy for metals with different
processing histories [9]. Secondly, fully ductile behavior can be assumed to be predominant
for temperatures above the T85 [31,32]. Note that the Charpy test is a dynamic test and
usually results in a ductile to brittle transition temperature that is much higher than the
ductile to brittle transition temperature for crack initiation, which is more relevant for steel
line pipe failures [31]. However, it is an important measure of the ability of a pipeline
material to arrest a propagating fracture. The test also lends itself to evaluating product
specification conformity during manufacturing.

1.5. Methods to Estimate Uncertainty

The T85 and EUS are useful for fitness-for-service and risk assessments, maximum
flaw size estimation, maintenance and replacement procedure development, and ground
shift risk mitigation [31]. The T85 and EUS are usually estimated by manually drawing or
plotting a sigmoidal, hyperbolic tangent curve through the data (e.g., Refs. [28,33]). This
labor-intensive, qualitative method requires curves to be evaluated one-by-one and does
not provide a quantitative estimate of uncertainty. Oldfield developed a least squares curve
fitting method, but the method does not provide an estimate for uncertainty, could be
difficult to apply, and, for some data sets, may not converge in a satisfactory manner [26].
Lucon et al. presented an algorithm to fit the hyperbolic tangent function, but the algorithm
requires having multiple tests exhibiting > 95% shear appearance area and multiple tests
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exhibiting < 5% shear appearance area [34]. Orynyak et al. developed an analytical method
for calculating transition temperature uncertainty, but the method can be difficult to imple-
ment [30]. Marini described a Monte Carlo method to estimate probability distributions of
the transition temperature and upper shelf energy, but it requires manual adjustment of the
probability distributions for the input parameters [29]. Recently, Anderson et al. published
the concept of a four-parameter (general) algorithm and two-parameter (simplified) algo-
rithm for predicting the T85 and EUS and their uncertainty [35]. The current study presents
these algorithms in detail, and discusses their advantages, and disadvantages, and adds a
one-parameter algorithm to the discussion and comparison.

1.6. Objectives and Research Significance

The main aim of the present work was to develop new algorithms that can estimate T85
and EUS for several CVN datasets. It is important that the algorithms be robust (converge
for data with varying numbers of test temperatures, different spacings between the test
temperatures, and varying amounts of uncertainty). An understanding of uncertainty is
critical for risk assessments and fitness for service decisions in the pipeline industry, and
there is currently no standard method or algorithm to estimate uncertainty in predictions of
shear appearance transition temperature and upper shelf energy. Therefore, the proposed
algorithms should provide a consistent method for estimating that uncertainty.

1.7. Outline

This article will provide a detailed presentation of the three algorithms that were de-
veloped based on the hyperbolic tangent model from API 579 Fitness for Service Annex 9F
Material Properties for Crack-like Flaws Section 2.3 Charpy V-notch Transition Curve [32].
The proposed algorithms include: (1) a four-parameter algorithm requiring the input of
shear appearance area and absorbed energy data for at least four different temperatures,
(2) a two-parameter algorithm requiring the same data from only two different temper-
atures, and (3) a one-parameter algorithm requiring the same data from a minimum of
only one temperature. An open-source statistical programing language, R (version 4.1.1
10 August 2021) was used for algorithm development. The algorithms are herein described
in detail.

The algorithms are demonstrated using a data set of 12 Charpy test results (shear area
and absorbed energy) from one API-5L grade X52 pipe with 4.5 mm thick Charpy bars.
A future paper will test and compare the algorithms using a large data set to identify the
limitations of the algorithms. The predictions of shear appearance transition temperature
and upper shelf energy and uncertainty for each algorithm are compared and discussed
in terms of the effects of the algorithm assumptions and constraints. The advantages and
disadvantages of each algorithm are discussed along with approaches to planning Charpy
test temperatures such that the data will result in reliable predictions of T85 and EUS.

2. Materials and Methods
2.1. Material

The steel pipe from which the Charpy test samples were machined was an API-5L
grade X52 electric resistance welded pipe manufactured in ~1972. The Charpy test bars
were machined from base metal (not the weld). The pipe had an outside diameter of
324 mm and a reported nominal wall thickness of 5.56 mm. The steel pipe composition was
tested using optical emission spectroscopy and is given in Table 1.
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Table 1. Composition of the steel pipe sample, wt% (balance, iron).

Aluminum Carbon Chromium Copper

<0.005 0.20 0.04 0.06

Manganese Molybdenum Nickel Niobium

1.03 0.01 0.06 0.04

Phosphorus Silicon Sulfur Titanium/Vanadium

0.01 0.02 0.021 <0.005

2.2. Charpy Bar Machining and Testing

The 12 Charpy test bars were oriented in the longitudinal direction (the length of the
Charpy bar aligned with the rolling direction of the original plate) such that the crack grew
in the transverse direction (perpendicular to the rolling direction). The sample thickness
was 4.5 mm. Two tests at each the of six temperatures were conducted using a standard
Charpy hammer that recorded the absorbed energy. The guidance on how to interpret
shear appearance area and absorbed energy for Charpy samples from ASTM E23 [25] was
followed and the results are shown in Table 2. The assumed amount of error for these
data points is discussed in the section entitled “Monte-Carlo simulation for error and
uncertainty estimation”.

Table 2. Input data set from a series of Charpy V-notch tests at different temperatures.

Test Temperature (◦C) Shear Appearance Area (%) Absorbed Energy (J)

−87 1 7
−87 1 4
−73 23 8
−73 25 14
−59 74 31
−59 45 18
−46 83 41
−46 88 41
−18 99 45
−18 99 46

0 99 46
0 99 49

2.3. Algorithm Overview

Three algorithms were written to estimate the 85% shear appearance transition tem-
perature ( T85) and the upper shelf absorbed energy (EUS) for Charpy V-notch data sets.
The purpose of the algorithms was to fit the hyperbolic tangent function to the data. The
fitting was first attempted using the nonlinear least squares fitting function, “nls”, available
in the R package, “stats”. In preparation for the algorithms, the nls function was tested for
its applicability to a large database with a wide variety of Charpy V-notch data sets, but
the nls function was unable to converge for some data sets. Therefore a novel non-linear
least squares fitting function based on the Levenberg–Marquardt method [36,37], “nlsLM”
available in the R package, “minpack.lm” [38,39] was used. The complete R-Markdown
code for all three algorithms is contained in Appendix A, and the theoretical bases for the
code will be described here.
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2.3.1. Shear Appearance Area vs. Test Temperature

All three algorithms first fit the hyperbolic tangent function to the shear appearance
area vs. temperature data. Shear appearance area, S, forms a sigmoidal, hyperbolic tangent
curve when plotted versus test temperature, Ttest [31]:

S = AS + BStanh
[

Ttest − DS
CS

]
. (4)

The constants AS and BS are defined based on API 579 equation 9F-14 and 9F-15 as
follows [32]:

AS =
SUS + SLS

2
and (5)

BS =
SUS − SLS

2
, (6)

where SUS is the upper shelf for the shear appearance area, and SLS is the lower shelf
for the shear appearance area. Thus, the parameter AS defines the vertical center point
of the hyperbolic tangent curve and BS defines the vertical half-width. Similarly, DS
defines the horizontal center point of the hyperbolic tangent curve and CS defines the
horizontal half-width.

2.3.2. Absorbed Energy vs. Test Temperature

All three algorithms then fit the hyperbolic tangent function to the absorbed energy vs.
temperature data. Similar to shear appearance area, absorbed energy, E, forms a sigmoidal,
hyperbolic tangent curve when plotted versus test temperature, Ttest [32], as shown by
Equation (1):

E = AE + BEtanh
[

Ttest − DE
CE

]
.

where AE are BE were defined by Equations (2) and (3) as:

AE =
EUS + ELS

2
, and

BE =
EUS − ELS

2
.

where EUS and ELS are the upper and lower shelf, respectively, for the absorbed energy.
Again, the parameter AE defines the vertical midpoint of the hyperbolic tangent curve and
BE defines the vertical half-height. Similarly, DE defines the horizontal midpoint of the
hyperbolic tangent curve and CE defines the horizontal half-width.

2.4. Four-Parameter Algorithm

The first algorithm used to find a solution was a four-parameter algorithm wherein
none of the hyperbolic function’s constants were initially defined.

2.4.1. Calculation of Parameters AS, BS, CS, and DS and T85

The algorithm begins with the initial values for the constants as follows: AS,i = 50%
and BS,i = 50%. DS,i is taken as the test temperature where the shear area is closest to 50%;
and CS,i is calculated as half of the interquartile range for the test temperatures. Since the
model is fit based on whole numbers for percentages rather than decimal equivalent the
shear area, AS,i, is fixed at 50 rather than 0.5. If decimal equivalents to percentage are used
to fit the model 0.5 would be used in the equation.

To estimate T85, first, the nlsLM function iteratively calculates the values of the four
constants, AS, BS, CS, and DS to find the values that minimize the mean square error
between the observed and predicted values. The max number of iterations was fixed at 100
for all runs. To identify the shear area transition temperature, T85, the shear area data for
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each individual data set were fit to the hyperbolic tangent curve. The T85 is calculated by
rearranging Equation (4) to calculate the inverse hyperbolic tangent as follows:

T85 = tanh−1
[

S− AS
BS

]
× CS + DS. (7)

where a shear area, S, value of 85% was input in the formula to evaluate the function per
the definition of T85.

2.4.2. Calculation of Parameters AE, BE, CE, and DE and EUS

The algorithm calculates the initial values for the constants as follows:

AE,i =
Emax + Emin

2
and (8)

BE,i =
Emax − Emin

2
(9)

where Emax and Emin are the largest and smallest absorbed energy readings in the data set,
respectively. The test temperature where the shear area was closest to 50% is taken as DE,i;
and CE,i is calculated as half of the interquartile range for the test temperatures.

The four-parameter algorithm uses the nlsLM function to converge on a solution for
the constants, AE, BE, CE, and DE, with no constraints. The constants DE and CE should be
numerically close to DS and CS since these constants relate to the center and width of the
transition zone in terms of the horizontal axis variable, temperature. The model calculates
EUS by rearranging Equations (2) and (3) as follows:

EUS = AE + BE. (10)

2.5. Two-Parameter Algorithm

The second algorithm was a two-parameter algorithm that sought to improve the
chances of convergence by defining AS, BS, CE, and DE based on physical principles. Since
the focus of the effort was to apply these automated algorithms to a large database of
Charpy V-notch data sets, the two-parameter algorithm was developed with the intent
of enabling the fit to converge for more Charpy data sets in case, for example, a few
Charpy samples could be extracted and tested from the pipe or test temperatures were
poorly chosen and led to narrow ranges of resulting shear appearance area and absorbed
energy values.

Assuming the shear appearance area for the upper shelf is 100% and the shear appear-
ance lower shelf is 0%, then the fitting terms, AS, and BS become

AS =
SUS + SLS

2
=

100% + 0%
2

= 50% and (11)

BS =
SUS − SLS

2
=

100%− 0%
2

= 50%. (12)

Thus, the nlsLM function is left only to solve for two parameters, DS and CS as shown:

S = 50% + 50%tanh
[

Ttest − DS
CS

]
. (13)

Then, the 85% shear appearance transition temperature is calculated as

T85 = tanh−1
[

85%− 50%
50%

]
× CS + DS ∼= 0.867× CS + DS. (14)
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Next, understanding that CS, represents the halfwidth of the transition region and
DS represents the midpoint of the hyperbolic tangent curve, these values should be the
same as CE and DE, respectively, for absorbed energy vs. temperature. Therefore, the
two-parameter algorithm equates these parameters (i.e., DS = DE and CS = CE):

E = AE + BEtanh
[

Ttest − DS
CS

]
. (15)

The nlsLM function is left only to solve for two parameters, AE and BE. Then the
upper shelf energy is calculated using Equation (10).

For the two-parameter algorithm the nlsLM function iterates on the four constants,
CS, DS, AE, and BE to converge to a solution compared with eight for the four-parameter
algorithm. This reduction of unknowns increases the probability of finding a solution
and allows a reduction of the minimum number of required data points. The minimum
input data requirement for the two-parameter algorithm is the shear appearance area
and absorbed energy data from at least two different temperatures (at least one test per
temperature).

2.6. One-Parameter Algorithm

The third algorithm is a further simplification from API 579 that defined most of the
parameters and only left DS and AE for the calculation. The one-parameter algorithm
was first published by Rosenfeld [31], and later included in API 579 [32] and gives the
relationship between shear appearance area and test temperature as:

S =

(
1 + exp

[
−Ttest − T85 + CA

CB

])−1
, (16)

where Ttest is the test temperature and CA and CB are known as the sigmoidal parameters
from API 579, listed in Table 3. Equation (16) is equivalent to:

S =
1
2

(
1 + tanh

[
Ttest − T85 + CA

2 ∗ CB

])
. (17)

Table 3. Sigmoidal parameters from API 579 (converted from US-customary to SI units).

Sigmoidal
Parameters

Charpy Specimen Thickness

1/4-Size
2.5 mm

1/3-Size
3.3 mm

1/2-Size
5.0 mm

2/3-Size
6.7 mm

Full-Size
10 mm

CA = T85 − DS
(where DS is the

center of the
transition region.)

12 ◦C (22 ◦F) 16 ◦C (28 ◦F) 20 ◦C (36 ◦F) 23 ◦C (41 ◦F) 28 ◦C (50 ◦F)

CB = CS/2
(where CS is the
half-width of the
transition region.)

11 ◦C (19 ◦F) 13 ◦C (24 ◦F) 17 ◦C (30 ◦F) 18 ◦C (32 ◦F) 18 ◦C (33 ◦F)

The sigmoidal parameters depend on sample thickness and were empirically derived
from tests on a variety of pipeline steels. They are sets of temperature offsets that help
describe the width of the transition region. For ease of interpolation for non-standard
Charpy sample thicknesses we fit these sigmoidal parameters to the following equations
where t is the Charpy sample thickness in mm:

CA = 11.1× ln(t) + 2.1, and (18)
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CB = 5.7× ln(t) + 6.3. (19)

The empirically determined sigmoidal parameters, CA and CB, relate to the hyperbolic
tangent parameters from the simplified model as DS = T85 − CA and CS = 2CB. Thus,
Equation (17) is equivalent to:

S = 50% + 50%tanh
[

Ttest − DS
CS

]
(20)

For example, for a full size (10 mm) Charpy V-notch sample, the sigmoidal parameter
CB = 18◦C defines the half-width of the transition region, CS, as 36 ◦C. Therefore:

T85 = tanh−1
[

85%− 50%
50%

]
× CS + DS ∼= 0.867× 2CB + DS (21)

Thus, the only fitting parameter for which to solve for the one-parameter model for
shear area is DS, the midpoint of the hyperbolic tangent curve.

Next, the one-parameter algorithm states that each sample’s absorbed energy is pro-
portional to 90% of the sample shear area plus a 10% offset:

EUS =
Etest

0.9× Stest + 0.1
(22)

where Etest and Stest are the sample absorbed energy and shear appearance area measure-
ments, respectively. The underlying assumption therefore is that the lower shelf energy
is 10% of the upper shelf energy. Substituting these values into Equations (2) and (3), we
obtain:

AE =
EUS + 0.1EUS

2
, and (23)

BE =
EUS − 0.1EUS

2
. (24)

Solving the above system of equations leads to BE = 0.818AE, and plugging this
relationship into Equation (15) gives:

E = AE

(
1 + 0.818tanh

[
Ttest − DS

CS

])
. (25)

The 10% offset ensures that the predicted lower shelf of the absorbed energy matches
the physical reality that absorbed energy is always above zero. The CS is again calculated
from the sigmoidal parameter as CS = 2CB, and the DS value is carried over from the shear
area curve fit. The upper shelf energy becomes:

EUS = 1.818AE. (26)

In summary, the one-parameter algorithm is like the two-parameter algorithm except
with the two additional assumptions that (1) the width of the transition zone is known,
and (2) that the absorbed energy lower shelf is 10% of the upper shelf. These additional
assumptions allow the algorithm to find a solution with only one data point, i.e., values for
shear area and absorbed energy for one temperature.

2.7. Monte-Carlo Simulation for Error and Uncertainty Estimation

In any regression solution, the assumption is that all the residual error between the
model and the observations follows a distribution with a mean of zero and a common
variance across the entire range of the independent variable. This is not likely the case as
there is a physical limitation of the shear area being between 0 and 100%, and the absorbed
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energy being greater than zero, therefore the potential absolute error at lower temperatures
is going to be much smaller than at higher temperatures.

To account for the uneven variance in shear estimates and absorbed energy, and their
effect on the model solution, a Monte Carlo (MC) simulation was employed. In the MC
process, the shear area and absorbed energy are treated as normally distributed stochastic
variables with a mean equal to the observed value. For the shear area, the standard
deviation was assumed to be 5% of the observed value based on ASTM E23. For absorbed
energy, the standard deviation was assumed to be a minimum of 0.6 J and increase with
increasing absorbed energy measurement, as prescribed by ASTM E23 at a rate of 2.6% of
the value (i.e., absorbed energy standard deviation = 0.6 + 0.026×measured value).

For each temperature, 1000 pairs of the test temperatures and absorbed energy or
shear areas are generated. After the data is generated, a solution is created for each set of
data, and the 95% sample quantile for each of the coefficients is calculated. The benefit
of using the sample quantile is that it makes no assumption about the distribution of the
coefficient solutions such as following a normal or t-distribution. It uses the quantiles from
the empirical distribution of results, thus preserving any skew to the data. In this study, the
median value and 95% quantile (uncertainty) are used for comparison with the parameter
estimates and confidence intervals between the three algorithms.

3. Results

First, for the example shear appearance area vs. temperature data from Table 2, all
three algorithms were used to fit the hyperbolic tangent curve and generate the values
for the parameters, AS, BS, CS, and DS, and their associated standard error (ε) as given
in Table 4. The four-parameter algorithm iteratively adjusted all four parameters to fit
a hyperbolic tangent curve to the data. On the contrary, for the two-parameter and one-
parameter the AS and BS parameters were set to 50 so that the hyperbolic tangent fitting
curve for shear appearance area must stay within the limitations of 0–100%. Furthermore,
for the one-parameter algorithm the CS was calculated to be 29.7 based on inserting the
sample thickness, 4.5 mm, into Equation (19) to calculate CB and finding CS using the
relationship, CS = 2CB. The relative agreement between all the parameters in each column
is represented by the similar shapes of the hyperbolic tangent curves in Figures 2–4.

Table 4. Shear area vs. temperature parameters from the hyperbolic tangent fit.

Algorithm Parameters

AS ± εAS (%) BS ± εBS (%) CS ± εCS (◦C) DS ± εDS (◦C)

Four-parameter 46.4 ± 6.7 51.5 ± 8.0 18.9 ± 5.9 −64.5 ± 3.5
Two-parameter Set to 50 Set to 50 18.2 ± 2.9 −62.6 ± 1.5
One-Parameter Set to 50 Set to 50 Calculated (29.7) −62.1 ± 2.8

Second, for the example absorbed energy vs. temperature data from Table 2, all three
algorithms were used to fit the hyperbolic tangent curves and generate the values for the
parameters, AE, BE, CE, and DE, and their associated standard error (ε) as given in Table 5.
The four-parameter algorithm iteratively adjusted all four parameters to fit a hyperbolic
tangent curve to the data. On the contrary, for the two-parameter and one-parameter the
CE and DE parameters were assumed to equal CS and DS. For the one-parameter algorithm
the BE was set to 0.818AE based on Equation (26). The relative agreement between all the
parameters in each column is represented by the similar shapes of the hyperbolic tangent
curves in Figures 5–7.
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Table 5. Absorbed energy vs. temperature parameters from the hyperbolic tangent fit.

Algorithm Parameters

AE ± εAE (J) BE ± εBE (J) CE ± εCE (◦C) DE ± εDE (◦C)

Four-parameter 25.6 ± 1.9 21.1 ± 2.3 15.6 ± 4.9 −58.9 ± 2.7
Two-parameter 23.4 ± 1.2 22.6 ± 1.6 Set to CS Set to DS
One-Parameter 25.6 ± 1.3 Set to 0.818AE Set to CS Set to DS

3.1. Estimates of Shear Appearance Transition Temperature (T85)

Firstly, we will compare the three algorithms in terms of their estimation of T85. For
the four-parameter algorithm, the Charpy V-notch shear area versus temperature data
(black points), the hyperbolic tangent fit (orange line), and the 95% quantile for T85 are
shown in Figure 2. The estimate for T85 (median) is shown as −46 ◦C, and the 95% quantile
is shown as −66 to −26 ◦C. One issue with the four-parameter algorithm is that the lower
shelf (lower left) goes below zero, which is physically impossible. There cannot be a shear
appearance area measurement below 0% shear appearance area.

For the two-parameter algorithm the hyperbolic tangent fit is shown in Figure 3.
The two-parameter model fixed the lower shelf shear appearance area at 0% to avoid the
physical impossibility of a negative shear appearance area and fixed the upper shelf shear
appearance area at 100% to avoid the physically impossible shear appearance area > 100%.
The T85 median value is −47 ◦C, nearly the same as for the four-parameter model. The
error range for the two-parameter model, −55 to −39 ◦C, is much smaller than that for the
four-parameter model because there were fewer parameters.

For the one-parameter algorithm, the hyperbolic tangent fit is shown in Figure 4. The
lower and upper shelf shear appearance area were fixed at 0% and 100%, respectively, like
the two-parameter. Additionally, the one-parameter model assumed the half-width of the
transition region (CS) as two times the sigmoidal parameter B ( CB), thus CS = 2CB. CB
was calculated using Equation (19). One issue is that the calculated CS parameter appears
to be larger than what would be expected from the data. Observe from Table 4 that the
CS value for the four-parameter and two-parameter models was 18–19 ◦C, whereas the
assumed CS for the one-parameter model is nearly 30 ◦C. Mostly due to the excessive CS
estimate, the median estimate for T85, −36 ◦C, was higher than that for the four-parameter
and two-parameter models. The range, −42 to −31 ◦C was the smallest because only one
parameter contributed error and the other three were fixed with an effective uncertainty of
zero. But observe that the one-parameter algorithm exhibits the largest differences between
the observed and predicted values represented by the curve.

3.2. Estimates of Upper Shelf Energy (EUS)

Secondly, we will compare the three algorithms in terms of their estimation of EUS.
For the four-parameter algorithm, the Charpy V-notch absorbed energy versus temperature
data (black points), the hyperbolic tangent fit (orange line), and the 95% quantile for EUS
are shown in Figure 5. The estimate for EUS is shown as 46 ± 8 J. For the two-parameter
algorithm is shown in Figure 6, showing an estimate for EUS of 46 ± 5 J. Finally, the
one-parameter algorithm in Figure 7 shows an estimate for EUS of 47 ± 5 J.
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4. Discussion
4.1. Function Convergence

Compared to the least squares curve fitting approach of Oldfield [26], the algorithms
developed in this work are easy to apply and are more likely to find convergence for more
Charpy V-notch datasets since a robust nonlinear least squares fitting function (nlsLM) is
being used. Additionally, unlike the algorithm presented by Lucon et al. [34], the algorithms
presented in this work do not require tests with <5% and >95% shear appearance area.

The four-parameter algorithm presented in this work allows the nlsLM function to find
a solution without defining any of the constants, AS, BS, CS, DS, AE, BE, CE, or DE. One
problem with the four-parameter algorithm is that the hyperbolic tangent fit could predict
a shear appearance area lower than 0% or higher than 100% (in some cases depending on
the scatter in the data), which are both physically impossible. Additionally, even though
the nlsLM function is quite robust, the quantity, four hyperbolic tangent fitting parameters
for each of two different solutions, is a large number and sometimes the function fails to
converge for all of the parameters.

By contrast, the two-parameter algorithm improves the chances of algorithm con-
vergence by incorporating some knowledge of the physical limits of the test data and
relationships between the data. The two-parameter algorithm sought to improve the
chances of convergence by defining half of the parameters based on physical principles.
Specifically, the shear appearance area lower limit was fixed at 0% and upper limit was
fixed at 100%, which fixed the AS and BS at 50% and 50%, respectively. Thus, to calculate
the T85, the nlsLM function iterated only on CS, and DS to converge on a solution. Next,
the two-parameter algorithm assumed that the width of the of the shear appearance area
vs. temperature curve transition region was the same as the width of the absorbed energy
vs. temperature curve transition region by assuming CS = CE. Also, the two-parameter
algorithm assumed that the midpoint of the shear appearance area vs. temperature curve
transition region was the same as the midpoint of the absorbed energy vs. temperature
curve transition region by assuming DS = DE.

4.2. Uncertainty Estimation

One advantage of the algorithms developed in this work is a simple, straightforward
estimation of uncertainty that relies on a Monte Carlo approach. As mentioned in the
Materials and Methods section, the Monte Carlo input parameters were based on the
typical test data error published in ASTM E23 for laboratory testing of Charpy V-notch
specimens and the 95% quantile was used for the output uncertainty (85% shear appearance
transition temperature and upper shelf energy). The authors consider the approach to be
simpler to implement in comparison with the analytical approach of Orynyak et al. [30].
Additionally, the estimate of uncertainty is directly quantified and does not require manual
adjustment, similar to the method given by Marini [29].

Comparing the algorithms developed in this paper, not only do the assumptions built
into the two-parameter algorithm improve the chances of convergence, but they could also
reduce the uncertainty in the predictions of T85 and EUS. For the data set analyzed in this
paper, the two-parameter method reduced the uncertainty range of T85 by 60%, from 40 ◦C
to 16 ◦C.

Additionally, the two-parameter method reduced the uncertainty range of the EUS
prediction by 38% from ±8 J to ±5 J. The uncertainty could decrease from the four-parameter
model to the two-parameter model because two of the parameters are fixed for the two-
parameter model and the effective uncertainty of the fixed parameters is zero in the calculation.

Another benefit of the two-parameter algorithm is that CVN data from only two tem-
peratures are required to obtain T85 and EUS predictions, rather than the four temperatures
required for the four-parameter method. This reduction in the number of samples necessary
could help conserve material if the amount of test material is limited and could also help
reduce test time and costs.
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The one-parameter algorithm makes two assumptions that could help reduce test time
and costs but could also lead to non-conservative results with inappropriate material or test
temperature selection. The one-parameter model assumes the width of the transition region
(2CS), is known, but the width of the transition region is a material sensitive parameter and
has been shown to increase with carbon content and higher transition temperatures and
carbon content [40]. On the other hand, the width of the transition region decreases with
lower transition temperatures. The steel in this study exhibited a low (subzero) transition
temperature, and that could be part of the reason that the transition region width predicted
by the one-parameter algorithm was too wide and did not fit the data well. This wide
prediction for the transition region caused the overestimation of the T85 by about 10 ◦C.
Specifically, the T85 predicted by the four-parameter algorithm was −46 ◦C and the T85 pre-
dicted by the one-parameter algorithm was −36 ◦C. The main benefit of the one-parameter
algorithm is that it only requires CVN data from one temperature (one test) to generate an
estimate of both T85 and EUS. However, the further from 85% shear area the observations
come from, the more likely the T85 is to lose accuracy, unless the actual width of the transi-
tion region is exactly as expected from the original data fit performed by Rosenfeld [31]
and API-579 [32]. For this one set of Charpy test data, the EUS prediction appears to be at
least as accurate and precise as that of the four-parameter and two-parameter algorithms.
In comparison with the one-parameter approach of Rosenfeld [31] and API-579 [32], the
two-parameter algorithm should provide better fitting of the hyperbolic tangent curve to
the data because the two-parameter algorithm has the freedom to adjust the width of the
transition region (2CS).

4.3. Advantages and Disadvantages of Each Algorithm

The four-parameter algorithm is best suited for CVN datasets with test data from
more than four temperatures that adhere well to the hyperbolic tangent shape. The four-
parameter algorithm will fail if there are fewer than four temperatures represented in
the data set because the algorithm solves for four unknown constants. The algorithm
could also fail if the data do not generally follow the expected sigmoidal shape. A large
number of degrees of freedom means that if the data do not generally follow the expected
sigmoidal shape for a hyperbolic tangent curve, then the curve fitting algorithm could
have difficulty converging. A related type of failure is poor convergence. Evidence for
this type of failure could include unreasonably high uncertainty in the shear appearance
transition temperature value (i.e., greater than the value for the half-width of the transition
range, CS), an unreasonably high predicted upper shelf energy value (i.e., thousands of
J), or high uncertainty in the upper shelf energy value (i.e., greater than the upper shelf
energy prediction).

For CVN datasets for which the four-parameter algorithm does not converge or
generate unreasonable results, the two-parameter algorithm (with its helpful physical
constraints) could be used to identify a more sensible solution. Both the four-parameter
algorithm and the two-parameter algorithm could fail if the test temperatures are all the
same value, which results in a “singular gradient error”. One solution to this problem
that was applied in the code was to automatically add an insignificant amount of random
error to each recorded data item, including the temperature, shear appearance area, and
absorbed energy.

The algorithms will also fail if all the shear appearance area readings are at either
the upper shelf energy or lower shelf energy. This failure would be the result of poor
selection of test temperatures. One must select at least one temperature within the transition
region such that the shear appearance area is not 0% or 100%, but somewhere in between.
The one-parameter algorithm must be used if the CVN dataset includes data from only
one temperature.
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4.4. Recommendations for Selection of Test Temperatures for Unknown Steel

For the four-parameter model, the best results will be obtained if the samples’ shear
appearance areas are roughly spaced evenly between 0% and 100%, with at least one or two
additional tests at the high temperature end of the range exhibiting a shear appearance area
close to 100%. If testing was conducted at a minimum of four temperatures, for example,
the target shear appearance areas would be 5%, 40%, 70%, and 100%.

Similarly, for the two-parameter model, the best results will be obtained if the samples’
shear appearance areas are evenly spaced between 0% and 100%, with at least one or two
additional tests at the high-temperature end of the range exhibiting a shear appearance area
close to 100%. If testing was conducted at the minimum of two temperatures, for example,
an optimal data set would include shear appearance areas of 50% and 100%. Note that
since the important outputs, T85 and EUS, are on the right side of the hyperbolic tangent
curve, it is more important to have data for high values of shear area (50% or greater) than
low values.

For the one-parameter algorithm, it is best to have data near 85% shear appearance
area. This minimizes any possible error that could be introduced due to the calculation of
the width of the transition region.

Finally, it is recommended to choose Charpy test temperatures one at a time, rather
than prescribe all the test temperatures at once. If there is no other information known about
the steel pipe, 0 ◦C would be a good temperature to select for the first test. After recording
the shear appearance area for the 0 ◦C sample, if the shear appearance area was <70%,
then the next test temperature could be 20 to 60 ◦C higher than the first test temperature.
On the other hand, if the shear appearance area was >70%, then the next temperature
could be 20 to 60 ◦C lower than the first test temperature. From those starting points, test
temperatures could be chosen to generate data according to the recommendations for the
desired algorithm as discussed above.

5. Conclusions

Three algorithms were created and tested for predicting the T85 and EUS for car-
bon steel that exhibits a ductile-brittle transition with temperature. The advantages and
disadvantages for each algorithm are as follows:

• Four-parameter algorithm

# Best algorithm for a large data set with low noise that follows the sigmoidal
hyperbolic tangent curve quite well.

# Requires test data from a minimum of four temperatures.
# Could result in convergence failure if the data set exhibits high noise, does not

match the sigmoidal curve shape very well or the initial estimates are poor.

• Two-parameter algorithm

# Constrains the shear appearance area to physical limits of 0% and 100%.
# Excellent algorithm to use if the four-parameter algorithm results in conver-

gence failure or high uncertainty.
# If data are available from only two or three temperatures, this is the best

algorithm to use.

• One-parameter algorithm

# If data are available from only one temperature, this is the only algorithm that
will work.

# Exhibits the least error if the shear appearance area from the test is close to 85%.
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Appendix A. R-Markdown Code for the Algorithms Discussed in the Paper (For
Reference Only)

—
title: "Hyperbolic Tangent Function"
author: "RSI Pipeline Solutions"
date: "‘r format(Sys.time(), ’%d %B, %Y’)‘"
output:
html_document:
df_print: paged

editor_options:
chunk_output_type: inline

—

“‘{r setup, include=FALSE}
#Beginning of R-code
#setup for rendering
knitr::opts_chunk$set(
echo = FALSE, #does not echo the codes in the document.
message = FALSE, #suppressing library message.
warning = FALSE, #suppress warning.
dpi = 300 #render images with 300 dots per inch.

)

“‘

“‘{r libraries and data}

#load libraries
library(tidyverse) #data analysis and cleaning.
library(tidymodels) #machine learning
library(minpack.lm) #non-linear least square analysis

# Set the theme across all plots, no need to set theme on each plot
theme_set(theme_minimal(14))

“‘

“‘{r plot theme}
# text size for annotations, change this number to adjust consistently across
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# all plots
annosize <- 5

#Consistent theme through all plots
mdpi_plot_theme <-
theme_bw() +
theme(
axis.title.x = element_text(size = 14),
axis.text.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
axis.text.y = element_text(size = 14)
)

“‘

“‘{r data}
# create data frame for analysis
cvn_data <- data.frame(

id = 1, # create id column
charpy_thickness_mm = 4.5, #sample thickness in milliliter
#temperature in Celsius
temp_c = c(-87,-87,-73,-73,-59,-59,-46,-46,-18,-18,0,0),
#shear appearance area percent_ sub-size
sa_ss = c(1, 1, 23, 25, 74, 45, 83, 88, 99, 99, 99, 99),
#absorbed energy sub-size in joule.
ae_ss_J = c(7, 4, 8, 14, 31, 18, 41, 41, 45, 46, 46, 49))

# add a tiny bit of noise to avoid the "singular gradient matrix at initial parameter es-
timates" error
cvn_data <- cvn_data %>%
mutate(

#add noise to shear area.
sa_ss = sa_ss + rnorm(length(cvn_data$id[cvn_data$id == 1]), mean = 0, sd = .02),
#add noise to temperature
temp_c = temp_c + rnorm(length(cvn_data$id[cvn_data$id == 1]), mean = 0, sd = .02),
#add noise to absorbed energy
ae_ss_J = ae_ss_J + rnorm(length(cvn_data$id[cvn_data$id == 1]), mean = 0, sd = .02)

)

# establish hyperbolic tangent function for repetitive use.
func <- function(temp_c, A, B, C, D) {
A + B * tanh((temp_c - D) / C)

}
“‘

## Initial values

“‘{r}
##create initial values for regression analysis
Ai_sa <- 50 #initial value for A equal 50 for shear area
Bi_sa <- 50 #initial value for B equal 50 for shear area
Ci <- IQR(cvn_data$temp_c) / 2 #initial value for C equal 1/2 inner quartile range
#initial value for D is temperature which shear area close to 50%
Di <- (cvn_data$temp_c[which.min(abs(50 - cvn_data$sa_ss))])
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# initial value for A is the average of min and max absorbed energy
Ai_ae <- (max(cvn_data$ae_ss_J) + min(cvn_data$ae_ss_J)) / 2
#initial value for B is half the difference between min and max absorbed energy.
Bi_ae <- (max(cvn_data$ae_ss_J) - min(cvn_data$ae_ss_J)) / 2

“‘

## Pre-model conditions and data

“‘{r}
ntemp <- nrow(cvn_data) #number of data points

nsim <- 1000 #number of iterations

sa_mc <- as.list(cvn_data$sa_ss) # list of shear areas for monte carlo analysis

ae_mc <- as.list(cvn_data$ae_ss_J) # list of absorbed energy for monte carlo analysis

“‘

## nlsLM models with MC error

“‘{r four_parameter_sa}

#simulate the uncertainty in the solution due to measurement error with a monte
#carlo simulation

sa_mx_four <-
map(sa_mc, ~ rnorm(n = nsim, mean = ., sd = 5)) %>%
#simulate 1000 measurements with Standard deviation of 5% error per ASTM E10
tibble() %>% #covert into a data frame
rename(cx = ’.’) %>% #renaming the column
mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(cx = case_when(cx < 0 ~ abs(cx),

#Simulated values of shear area must be >0
cx > 100 ~ 100,
#Simulated values of shear area must be <100
TRUE ~ cx)) %>% #values < 100 and > 0 or unchanged

pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "sa_ss") %>% #create a long data frame
mutate(temp_c = rep(cvn_data$temp_c, nsim), #assigned temperature to each value

name = rep(1:nsim, each = ntemp)) %>% #create an id column
nest(-name) %>% #nest by id

#solve the regression for each simulation
mutate(mods = map(data, ~ nlsLM(
sa_ss ~ func(temp_c, A, B, C, D),
data = . ,
start = list(
A = Ai_sa,
B = Bi_sa,
C = Ci,
D = Di

)
)),
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#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r four_parameter_sa_param}
#shear area 4 parameters solution

param_sa_four <- sa_mx_four %>% #calling the data frame of solutions
unnest(tidied) %>% #unnesting the solutions
select(name,term:std.error) %>% #selecting variables needed
group_by(term) %>% #grouping by coefficient
summarize(estimate=mean(estimate), #calculate the mean of each coefficient

std.error= mean(std.error)) #calculate the mean of each standard error

#create a table with solutions+
flextable::flextable(param_sa_four) %>%
flextable::colformat_double(digits = 1)%>%
flextable::set_caption("Four-Parameter Model Parameters for Shear Area") %>%
flextable::autofit()

#save parameters for calculations
A_sa_four <- param_sa_four$estimate[1] #shear area A parameter
B_sa_four <- param_sa_four$estimate[2] #shear area B parameter
C_sa_four <- param_sa_four$estimate[3] #shear area C parameter
D_sa_four <- param_sa_four$estimate[4] #shear area D parameter

#save parameters for errors
A_sa_four_error <- param_sa_four$std.error[1] #shear area A error
B_sa_four_error <- param_sa_four$std.error[2] #shear area B error
C_sa_four_error <- param_sa_four$std.error[3] #shear area C error
D_sa_four_error <- param_sa_four$std.error[4] #shear area D error

#calculating the transition temperature for the 4 parameters model
TT_four <- C_sa_four * atanh((85 - A_sa_four) / B_sa_four) + D_sa_four

#95% upper confidences level for transition temperature
TT_four_95_high <- (C_sa_four + 1.96 * C_sa_four_error) *
atanh((85 - (A_sa_four - 1.96 * A_sa_four_error)) /

(B_sa_four + 1.96 * B_sa_four_error)) +
(D_sa_four + 1.96 * D_sa_four_error)

#95% lower confidences level for transition temperature
TT_four_95_low <- (C_sa_four - 1.96 * C_sa_four_error) *
atanh((85 - (A_sa_four + 1.96 * A_sa_four_error)) /

(B_sa_four - 1.96 * B_sa_four_error)) +
(D_sa_four - 1.96 * D_sa_four_error)

“‘

“‘{r four_parameter_ae}

#simulate the uncertainty in the solution due to measurement error with a monte
#carlo simulation

ae_mx_four <-
#simulate 1000 measurements with Standard deviation of SD y = 9.51831e-

0.00712x per ASTM E10
map(ae_mc, ~ rnorm(n = nsim, mean = ., sd = 0.0262 * . + 0.6)) %>%
tibble() %>% #covert into a data frame
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rename(cx = ’.’) %>% #renaming the column
mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(

#Simulated values of absorbed energy must be >0
cx= case_when(
#Simulated values of absorbed energy must be <100
cx<0~abs(cx),
TRUE~cx #values < 100 and > 0 or unchanged

)) %>% pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "ae_ss") %>% #create a long data frame
mutate(temp_c = rep(cvn_data$temp_c, nsim), #assigned temperature to each value

name = rep(1:nsim, each = ntemp)) %>% #create an id column
nest(-name) %>% #nest by id

#solve the regression for each simulatio
mutate(mods = map(data, ~ nlsLM(
ae_ss ~ func(temp_c, A, B, C, D),
data = . ,
start = list(
A = Ai_ae,
B = Bi_ae,
C = Ci,
D = Di

)
)),

#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r four_parameter_ae_param}
#absorbed energy 4 parameters solution

param_ae_four <- ae_mx_four %>% #calling the data frame of solutions
unnest(tidied) %>% #unnesting the solutions
select(name,term:std.error) %>% #selecting variables needed
group_by(term) %>% #grouping by coefficient
summarize(estimate=mean(estimate), #calculate the mean of each coefficient

std.error= mean(std.error)) #calculate the mean of each standard error

#create a table with solutions
flextable::flextable(param_ae_four) %>%
flextable::colformat_double(digits = 1)%>%
flextable::set_caption("Four-Parameter Model Parameters for Absorbed Energy") %>%
flextable::autofit()

#save parameters for calculations
A_ae_four <- param_ae_four$estimate[1] #absorbed energy A parameter
B_ae_four <- param_ae_four$estimate[2] #absorbed energy B parameter
C_ae_four <- param_ae_four$estimate[3] #absorbed energy C parameter
D_ae_four <- param_ae_four$estimate[4] #absorbed energy D parameter

#save parameters for errors
A_ae_four_error <- param_ae_four$std.error[1] #absorbed energy A error
B_ae_four_error <- param_ae_four$std.error[2] #absorbed energy B error
C_ae_four_error <- param_ae_four$std.error[3] #absorbed energy C error
D_ae_four_error <- param_ae_four$std.error[4] #absorbed energy D error
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#upper shelf energy for the 4 parameters solution
us_four <- A_ae_four+B_ae_four

“‘

“‘{r four_parameter_sa_plot, fig.cap="Four-
Parameter Model for Shear Appearance vs. Temperature", fig.asp = 0.75, fig.width = 6.5}
# Four-parameter general model shear area plot —————————————-

cvn_data %>%
ggplot(aes(temp_c, sa_ss)) + #plot between temperature vs shear area
geom_point() +
#plot regression solution
stat_function(fun = func,

args = list(A_sa_four,
B_sa_four,
C_sa_four,
D_sa_four),

col=’orangered’) +
mdpi_plot_theme +
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
labs(x = "Temperature (\u00B0C)",

y = "Percent Shear Area (%)") +
#confidence interval for transition temperature
geom_errorbarh(
aes(xmin = TT_four_95_low,

xmax = TT_four_95_high,
y = 85),

height = 5,
col = ’blue’,
lwd = 0.9

) +
geom_point(aes(x = TT_four, y = 85),

col = ’blue’,
size = 2) +

annotate(
"text",
label = paste(
round(TT_four_95_low, 0),
"to",
round(TT_four_95_high, 0),
"\u00B0C"

),
x = (TT_four),
y = 60,
size = annosize

) +
annotate(
"text",
label = paste("Median:", round(TT_four, 0), "\u00B0C"),
x = (TT_four),
y = 52.5,
size = annosize
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)

“‘

“‘{r four_parameter_ae_plot, fig.cap="Four-
Parameter Model Absorbed Energy vs. Temperature", fig.asp = 0.75, fig.width = 6.5}
#Four-parameter general model absorbed energy plot

cvn_data %>%
ggplot(aes(cvn_data$temp_c, ae_ss_J)) + #plot between temperature vs absorbed en-ergy
geom_point() +
#plot limit for x and y axis
ylim(0,us_four+1.96*A_ae_four_error+1.96*B_ae_four_error+5)+
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
stat_function(fun = func,

args = list(A_ae_four,
B_ae_four,
C_ae_four,
D_ae_four),

col=’orangered’) +
mdpi_plot_theme +
labs(x ="Temperature (\u00B0C)",

y ="Absorbed Energy (J)")+
#confidence interval for transition temperature
geom_errorbar(

aes(x = max(cvn_data$temp_c)-5,
ymin = us_four-1.96*A_ae_four_error-1.96*B_ae_four_error,
ymax = us_four+1.96*A_ae_four_error+1.96*B_ae_four_error
),

width = 5,
col = ’blue’,
lwd = 0.9

) +
annotate("text",

label=paste(round(us_four,0),"+/-
",round(1.96*A_ae_four_error+1.96*B_ae_four_error,0),"J"),

x = max(cvn_data$temp_c),
y = us_four-1.96*A_ae_four_error-1.96*B_ae_four_error-5,
hjust = 1,
size = annosize)+

geom_hline(yintercept = us_four,
lty = 2,
col = ’grey25’,
alpha = 0.75)

“‘

“‘{r two-parameter_sa}

# Stimulate the uncertainty in the solution due to measurement error with a
#Two-parameter simplified model shear area.

sa_mx_two <-
#simulate 1000 measurements with Standard deviation of 5% error per ASTM E10
map(sa_mc, ~ rnorm(n = nsim, mean = ., sd = 5)) %>%
tibble() %>% #covert into a data frame
rename(cx = ’.’) %>% #renaming the column
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mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(cx = case_when(

#Simulated values of shear area must be >0
cx < 0 ~ abs(cx),
#Simulated values of shear area must be <100
cx > 100 ~ 100,
TRUE ~ cx #values < 100 and > 0 or unchanged

)) %>%
pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "sa_ss") %>% #create a long data frame
mutate(temp_c = rep(cvn_data$temp_c, nsim),

#assigned temperature to each value
name = rep(1:nsim, each = ntemp)) %>% #create an id column

nest(-name) %>% #nest by id

#solve the regression for each simulation
mutate(mods = map(data, ~ nlsLM(
sa_ss ~ func(temp_c, 50, 50, C, D),
data = . ,
start = list(
C = Ci,
D = Di

)
)),

#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r two-parameter_sa_param}
#shear area 2 parameters solution
#simplified Model

param_sa_two <- sa_mx_two %>% #calling the data frame of solutions
unnest(tidied) %>% #unnesting the solutions
select(name, term:std.error) %>% #selecting variables needed
group_by(term) %>% #grouping by coefficient
summarize(estimate = mean(estimate), #calculate the mean of each coefficient

std.error = mean(std.error)) #calculate the mean of each standard error

#create a table with solutions
flextable::flextable(param_sa_two) %>%
flextable::colformat_double(digits = 1) %>%
flextable::set_caption("Two-Parameter Model Parameters for Shear Area") %>%
flextable::autofit()

#save parameters for calculations
C_sa_two <- param_sa_two$estimate[1] #shear area C parameter
D_sa_two <- param_sa_two$estimate[2] #shear area D parameter

#save parameters for errors
C_sa_two_error <- param_sa_two$std.error[1] #shear area C error
D_sa_two_error <- param_sa_two$std.error[2] #shear area D error

#calculating the transition temperature for the 2 parameters model
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TT_two <- C_sa_two*atanh((85-50)/50)+D_sa_two

#95% upper confidences level for transition temperature
TT_two_95_high <- (C_sa_two + 1.96 * C_sa_two_error) *
atanh((85 - (50)) / (50)) +
(D_sa_two + 1.96 * D_sa_two_error)

#95% lower confidences level for transition temperature
TT_two_95_low <- (C_sa_two - 1.96 * C_sa_two_error) *
atanh((85 - (50)) / (50)) +
(D_sa_two - 1.96 * D_sa_two_error)

“‘

“‘{r two-parameter_ae}
# Stimulate the uncertainty in the solution due to measurement error with a
#Two-parameter simplified model absorbed energy.

ae_mx_one <-
#simulate 1000 measurements with Standard deviation of SD y = 9.51831e-

0.00712x per ASTM E10
map(ae_mc, ~ rnorm(n = nsim, mean = ., sd = 0.0262 * . + 0.6)) %>%
tibble() %>% #covert into a data frame
rename(cx = ’.’) %>% #renaming the column
mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(
#Simulated values of absorbed energy must be >0
cx= case_when(
#Simulated values of absorbed energy must be <100
cx<0~abs(cx),
TRUE~cx #values < 100 and > 0 or unchanged

)) %>% pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "ae_ss") %>% #create a long data frame
mutate(temp_c = rep(cvn_data$temp_c, nsim), #assigned temperature to each value

name = rep(1:nsim, each = ntemp)) %>% #create an id column
nest(-name) %>% #nest by id

#solve the regression for each simulation
mutate(mods = map(data, ~ nlsLM(
ae_ss ~ func(temp_c, A, B, C_sa_two, D_sa_two),
data = . ,
start = list(
A = Ai_ae,
B = Bi_ae

)
)),

#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r two-parameter_ae_param}
#absorbed energy 2 parameters solution
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#simplified Model

param_ae_two <- ae_mx_one %>% #calling the data frame of solutions
unnest(tidied) %>% #unnesting the solutions
select(name,term:std.error) %>% #selecting variables needed
group_by(term) %>%#grouping by coefficient
summarize(estimate=mean(estimate), #calculate the mean of each coefficient

std.error= mean(std.error)) #calculate the mean of each standard error

#create a table with solutions
flextable::flextable(param_ae_two) %>%
flextable::colformat_double(digits = 1)%>%
flextable::set_caption("Two-Parameter Model Parameters for Absorbed Energy") %>%
flextable::autofit()

#save parameters for calculations
A_ae_two <- param_ae_two$estimate[1] #absorbed energy A parameter
B_ae_two <- param_ae_two$estimate[2] #absorbed energy B parameter

#save parameters for errors
A_ae_two_error <- param_ae_two$std.error[1] #absorbed energy A error
B_ae_two_error <- param_ae_two$std.error[2] #absorbed energy B error

#upper shelf energy for the 2 parameters solution
us_two <- A_ae_two +B_ae_two

“‘

“‘{r two-parameter_sa_plot, fig.cap="Two-
Parameter Model for Shear Appearance vs. Temperature", fig.asp = 0.75, fig.width = 6.5}

# Two-parameter simplified model shear area plot
cvn_data %>%
ggplot(aes(cvn_data$temp_c, sa_ss)) + #plot between temperature vs shear area
geom_point() +
stat_function(fun = func,

args = list(50,
50,

C_sa_two,
D_sa_two),

col=’orangered’) +
mdpi_plot_theme +
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
labs(x ="Temperature (\u00B0C)",

y ="Percent Shear Area (%)")+
#confidence interval for transition temperature
geom_errorbarh(
aes(xmin = TT_two_95_low,

xmax = TT_two_95_high, y = 85),
height = 5,
col = ’blue’,
lwd = 0.9

) +
geom_point(aes(x = TT_two, y = 85),

col = ’blue’,
size = 2) +
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annotate(
"text",
label = paste(
round(TT_two_95_low, 0),
"to",
round(TT_two_95_high, 0),
"\u00B0C"

),
x = (TT_two ),
y = 60,
size = annosize

) +
annotate(
"text",
label = paste("Median:", round(TT_two, 0), "\u00B0C"),
x = (TT_two ),
y = 52.5,
size = annosize

)
“‘

“‘{r two-parameter_ae_plot, fig.cap="Two-
Parameter Model for Absorbed Energy vs. Temperature", fig.asp = 0.75, fig.width = 6.5}
#Two-parameters simplified model absorbed energy plot

cvn_data %>%
ggplot(aes(temp_c, ae_ss_J)) + #plot between temperature vs absorbed energy
geom_point() +
#plot limit for x and y axis
ylim(0,us_two+1.96*A_ae_two_error+1.96*B_ae_two_error+5)+
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
stat_function(

fun = func,
args = list(
A = A_ae_two,
B = B_ae_two,
C = C_sa_two,
D = D_sa_two

),
col = ’orangered’

) +
mdpi_plot_theme +
theme(panel.grid.minor = element_blank()) +
#confidence interval for transition temperature
geom_errorbar(
aes(
x = max(cvn_data$temp_c)-5,
ymin = us_two-1.96*A_ae_two_error-1.96*B_ae_two_error,
ymax = us_two+1.96*A_ae_two_error+1.96*B_ae_two_error

),
width = 5,

col = ’blue’,
lwd = 0.9) +

labs(x = "Temperature (\u00B0C)",
y = "Absorbed Energy (J)")+

annotate("text",
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label=paste(round(us_two,0),"+/-
",round(1.96*A_ae_two_error+1.96*B_ae_two_error,0),"J"),

x=max(cvn_data$temp_c),
y = us_two-1.96*A_ae_two_error-1.96*B_ae_two_error-10,
hjust = 1,

size = annosize)+
geom_hline(yintercept = us_two,

lty = 2,
col = ’grey25’,
alpha = 0.75)

“‘

“‘{r one-parameter_sa}
#simulate the uncertainty in the solution due to measurement error 1 parameter
#simplified shear area simulation.

#sigmoidal parameter C_B*2
C_one <- 2*(20.8*log(cvn_data$charpy_thickness_mm,2.7183)-4.8*

log(cvn_data$charpy_thickness_mmˆ2,2.7183)-4.4)

sa_mx_one <-
#simulate 1000 measurements with Standard deviation of 5% error per ASTM E10
map(sa_mc, ~ rnorm(n = nsim, mean = ., sd = 5)) %>%
tibble() %>% #covert into a data frame
rename(cx = ’.’) %>% #renaming the column
mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(cx = case_when(

#Simulated values of shear area must be >0
cx < 0 ~ abs(cx),
#Simulated values of shear area must be <100
cx > 100 ~ 100,
#values < 100 and > 0 or unchanged
TRUE ~ cx)) %>%

pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "sa_ss") %>% #create a long data frame
mutate(temp_c = rep(cvn_data$temp_c, nsim), #assigned temperature to each value

name = rep(1:nsim, each = ntemp)) %>% #create an id column
nest(-name) %>% #nest by id

#solve the regression for each simulation
mutate(mods <- map(data, ~ nlsLM(
sa_ss ~ func(temp_c, 50, 50, C_one, D),
data = . ,
start = list(D = Di)

)),

#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r one-parameter_sa_param}

#shear area one parameter solution

param_sa_one <- sa_mx_one %>% #calling the data frame of solutions
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unnest(tidied) %>% #unnesting the solutions
select(name,term:std.error) %>% #selecting variables needed
group_by(term) %>% #grouping by coefficient
summarize(estimate=mean(estimate), #calculate the mean of each coefficient

std.error= mean(std.error)) #calculate the mean of each standard error

#create a table with solutions
flextable::flextable(param_sa_one) %>%
flextable::colformat_double(digits = 1)%>%
flextable::set_caption("One-Parameter Model Parameters for Shear Area") %>%
flextable::autofit()

#save parameter for calculation
D_sa_one <- param_sa_one$estimate[1] #shear area D parameter

#save parameter for error
D_sa_one_error <- param_sa_one$std.error[1] #shear area D error

#calculating the transition temperature for 1 parameter model
TT_one <- C_one*atanh((85-50)/50)+D_sa_one

#95% upper confidences level for transition temperature
TT_one_95_high <- (C_one)*atanh((85-(50))/(50))+(D_sa_one+1.96*D_sa_one_error)

#95% lower confidences level for transition temperature
TT_one_95_low <- (C_one)*atanh((85-(50))/(50))+(D_sa_one-1.96*D_sa_one_error)

“‘

“‘{r one-parameter_ae}
#simulate the uncertainty in the solution due to measurement error 1 parameter
#simplified absorbed energy simulation

# hyperbolic tangent function for 1 parameter
func_one <- function(temp_c, A, C, D) {
A + 0.818 * A * tanh((temp_c - D) / C)

}

ae_mx_one <-
#simulate 1000 measurements with Standard deviation of SD y = 9.51831e-

0.00712x per ASTM E10
map(ae_mc, ~ rnorm(n = nsim, mean = ., sd = 0.0262 * . + 0.6)) %>%
tibble() %>% #covert into a data frame
rename(cx = ’.’) %>% #renaming the column
mutate(id = 1:ntemp) %>% #create the id column
unnest(cx) %>% #unnesting the column
mutate(

#Simulated values of absorbed energy must be >0
cx= case_when(
#Simulated values of absorbed energy must be <100
cx<0~abs(cx),
TRUE~cx #values < 100 and > 0 or unchanged

)) %>% pivot_wider(names_from = id, values_from = cx) %>% #create wide data frame
unnest(everything()) %>% #unnest the columns
pivot_longer(cols = everything(), values_to = "ae_ss") %>% #create a long data frame
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mutate(temp_c = rep(cvn_data$temp_c, nsim), #assigned temperature to each value
name = rep(1:nsim, each = ntemp)) %>% #create an id column

nest(-name) %>% #nest by id

#solve the regression for each simulation
mutate(mods = map(data, ~ nlsLM(
ae_ss ~ func_one(temp_c, A, C_one, D_sa_one),
data = . ,
start = list(
A = Ai_ae
)

)),

#collecting all the regression solutions and standard errors
tidied = map(mods, tidy))

“‘

“‘{r one-parameter_ae_param}

#absorbed energy 1 parameter solution

param_ae_one <- ae_mx_one %>% #calling the data frame of solutions
unnest(tidied) %>% #unnesting the solutions
select(name,term:std.error) %>% #selecting variables needed
group_by(term) %>% #grouping by coefficient
summarize(estimate=mean(estimate), #calculate the mean of each coefficient

std.error= mean(std.error)) #calculate the mean of each standard error

#create a table with solutions
flextable::flextable(param_ae_one) %>%
flextable::colformat_double(digits = 1)%>%
flextable::set_caption("One-Parameter Model Parameters for Absorbed Energy") %>%
flextable::autofit()

#save parameters for calculations
A_ae_one <- param_ae_one$estimate[1] #absorbed energy A parameter

#save parameters for errors
A_ae_one_error <- param_ae_one$std.error[1] #absorbed energy A error

#upper shelf energy for 1 parameter solution
us_one <- 1.818 * A_ae_one

“‘

“‘{r one-parameter_sa_plot, fig.cap="One-
Parameter Model for Shear Appearance vs. Temperature", fig.asp = 0.75, fig.width = 6.5}

# One-parameter simplified model shear area plot
cvn_data %>%
ggplot(aes(cvn_data$temp_c, sa_ss)) + #plot between temperature vs shear area
geom_point() +
#plot regression solution
stat_function(fun = func,

args = list(50,
50,
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C_one,
D_sa_one),

col=’orangered’) +
mdpi_plot_theme +
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
labs(x ="Temperature (\u00B0C)",

y ="Percent Shear Area (%)")+
#confidence interval for transition temperature
geom_errorbarh(
aes(xmin = TT_one_95_low,

xmax = TT_one_95_high, y = 85),
height = 5,
col = ’blue’,
lwd = 0.9

) +
geom_point(aes(x = TT_one, y = 85),

col = ’blue’,
size = 2) +

annotate(
"text",
label = paste(
round(TT_one_95_low, 0),
"to",
round(TT_one_95_high, 0),
"\u00B0C"

),
x = (TT_one ),
y = 60,
size = annosize

) +
annotate(
"text",
label = paste("Median:", round(TT_one, 0), "\u00B0C"),
x = (TT_one ),
y = 52.5,
size = annosize

)
“‘

“‘{r one-parameter_ae_plot, fig.cap="One-
Parameter Model for Absorbed Energy vs. Temperature", fig.asp = 0.75, fig.width = 6.5}

# One-parameter simplified model absorbed energy plot

cvn_data %>%
ggplot(aes(temp_c, ae_ss_J)) + #plot between temperature vs absorbed energy
geom_point() +
#plot limit for x and y axis
ylim(0,us_one+2*1.96*A_ae_one_error+5)+
xlim(min(cvn_data$temp_c)-10,

max(cvn_data$temp_c)+10)+
stat_function(

fun = func,
args = list(
A = A_ae_one,
B = 0.818*A_ae_one,
C = C_one,
D = D_sa_one
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),
col = ’orangered’

) +
mdpi_plot_theme +
theme(panel.grid.minor = element_blank()) +
#confidence interval for transition temperature
geom_errorbar(aes(
x = max(cvn_data$temp_c)-5,
ymin = us_one-1.96*(1.818*A_ae_one_error),
ymax = us_one+1.96*(1.818*A_ae_one_error)

),
width = 5,

col = ’blue’,
lwd = 0.9) +

labs(x = "Temperature (\u00B0C)",
y = "Absorbed Energy (J)")+

annotate("text",
label=paste(round(us_one,0),"+/-",round(1.96*(1.818*A_ae_one_error),0),"J"),
x = max(cvn_data$temp_c),

y = us_one-1.96*(1.818*A_ae_one_error)-5,
hjust = 1,

size = annosize)+
geom_hline(yintercept = us_one,

lty = 2,
col = ’grey25’,
alpha = 0.75)

“‘
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