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Abstract: Simulations of industrial roll-forming processes using the finite element method typically
require an extremely fine discretization to obtain accurate results. Running those models using a clas-
sical finite element method usually leads to suboptimal meshes where some regions are unnecessarily
over-refined. An alternative approach consists in creating non-conformal meshes where a number of
nodes, called hanging nodes, do not match the nodes of adjacent elements. Such flexibility allows for
more freedom in mesh refinement, which results in the creation of more efficient simulations. Conse-
quently, the computational cost of the models is decreased with little to no impact on the accuracy of
the results. Handling the generated hanging nodes can, however, be challenging. In this work, details
are first given about the implementation of these particular meshes in an implicit finite element
code with a special focus on the treatment of hanging nodes using Lagrange Multipliers. Standard
and non-conformal meshes are then compared to experimental measurements on the forming of a
U-channel. A more complex roll-forming simulation—a tubular rocker panel—is then showcased as
proof of the potential of the method for industrial uses. Our main results show that the proposed
method effectively reduces the computational cost of the roll-forming simulations with a negligible
impact on their accuracy.

Keywords: roll-forming; finite element method; non-conformal meshes; hanging nodes; Lagrange
Multipliers

1. Introduction

The considerable computational time required in Finite Element Analysis (FEA) of
roll-forming processes is a critical issue. Indeed, this type of simulation typically requires a
fine mesh all along the sheet to accurately model the contact with the tools, as well as a
high number of elements in the sheet thickness in order to accurately represent bending.
This leads to model sizes that grow very rapidly with the length of the sheet. Moreover,
the cost escalates further due to the handling of the contact detection between the sheet
and multiple tools. Examples of 3D roll-forming simulations using a fine FE discretization
can be found in [1–7]. Their usually high cost makes a lot of the published works use
a coarse discretization (e.g., [8]) or use shell instead of 3D solid elements (e.g., [9–12]).
While shell elements are sometimes adequate for such problems, an accurate study of the
transverse strains resulting from contact taking place on both the upper and lower surfaces
requires the use of 3D solid elements. Moreover, 3D elements have been linked to better
accuracy in spring back prediction [13]. More advanced methods, such as a step-by-step
re-meshing approach, have been proposed in [14]. Similarly, the authors have used the
Arbitrary Lagrangian-Eulerian (ALE) method in previous studies [2–4] as an attempt to
reduce Central Processing Unit (CPU) time.

This work takes a new approach by focusing on the creation of more efficient meshes
tailored to the process. Optimizing the discretization can indeed be of great use because
of the specific deformations obtained in roll forming. For example, the accurate modeling
of large bending deformations requires a higher number of elements through the sheet
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thickness localized to the bending zones. Therefore, an optimal FE mesh needs a high
number of elements through the sheet thickness in the bending zones and a smaller number
in the web and flange regions of the section. In practice, meeting these expectations is not
trivial and usually leads to issues. Attempts at creating more optimized meshes can be seen
in the literature (e.g., [15–20]). The resulting meshes can, however, be tedious to define due
to handling abrupt changes in the discretization between the fine and coarse regions [15] or
contain poorly shaped elements (e.g., [16,18]). Even when they are refined in the bending
regions, they are not always refined through the sheet thickness (e.g., [17,19,20]).

To the authors’ best knowledge, all the recent literature on roll-forming simulations
solely uses conformal FE meshes (e.g., [18–22]). This work proposes to use non-conformal
meshes, where some nodes of one element are not forced to match the nodes of adjacent
elements. The goal is to obtain more freedom in the meshing process and, therefore, allow
the creation of meshes that are better tailored to the specific needs of the problem. Defining
a high number of well-shaped elements through the sheet thickness in the bending zones
and a lesser number in the web and flange regions of the sheet is trivial using non-conformal
meshes (Figure 1). These refined bending regions could account for a very small portion of
the full-sheet geometry, thus allowing a substantial reduction of the computational cost of
the simulations.
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Figure 1. Example of a non-conformal mesh applied to the transverse section of a roll-formed sheet.
Initial undeformed configuration. (a) Classic conformal FE mesh; (b) Non-conformal FE mesh. In
both cases, the regions where bending will take place need to have a larger number of elements
through the thickness.

The main drawback of using non-conformal meshes is the handling of “hanging
nodes”, which are non-matching nodes at the interfaces between the fine and coarse regions.
The literature includes three main categories of methods to deal with hanging nodes. The
first one consists in addressing the discontinuity introduced by the hanging nodes by using
a discontinuous finite element formulation (e.g., discontinuous Galerkin [23–25]). While
those methods are effective, changing the formulation can be impractical in an already
established finite element code. The second category keeps a continuous formulation but
imposes constraints on the hanging nodes to enforce the continuity of the solution. This
is usually done by removing the degrees of freedom of the hanging nodes and imposing
them in a post-computation step (e.g., condensation and recovery method [26,27]). This
second category is the most common in the literature and has proven its effectiveness.
However, its implementation requires advanced algorithmic treatment. Moreover, some
limitations are usually imposed on the created meshes for ease of implementation. The most
common limitation is not to allow constrained nodes to be part of multiple constraints (e.g.,
limitation to “one-irregular” mesh according to [27]). The third category of methods also
keeps a continuous formulation but maintains the continuity throughout the computation
with enrichments to the formulation (e.g., expanded shape function support [28,29], and
hanging nodes handled by Lagrange Multipliers [30,31]). Contrary to the second category,
no restrictions on the number of constraints on each node are required, making the methods
more flexible in the type of meshes that can be created.

In this work, the third category of methods is used by adding a constraint on the
hanging nodes using Lagrange Multipliers. Similar developments can be observed in [30]
in the scope of geomechanics and in [31] applied to eXtended Finite Element Method
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simulations. While the use of Lagrange Multipliers has the drawback of adding degrees of
freedom to the problem, the generality of the approach allows for a very easy and swift
definition of a wide variety of non-conformal meshes. The present work will highlight the
ease of use and implementation of this method in an implicit FE software combined with
its novel application to roll-forming simulations.

This work is the continuation of previous work done by the authors on roll-forming
simulations [1–4] using the in-house implicit non-linear finite element solver Metafor [32,33]
developed at the University of Liège. In previous publications, the ALE method was
adopted in an attempt to tackle the issue of high computational costs obtained with tradi-
tional Lagrangian models. While the ALE method could reproduce the results obtained
with a Lagrangian approach and is arguably better suited to model continuous roll-forming
processes, the CPU time remained excessively high. The present paper takes the first step to-
wards implementing non-conformal meshes to simulate roll forming using Metafor [32,33].
This work will initially be limited to a Lagrangian model, and further developments will
be needed to apply the proposed method to ALE models.

The paper is structured as follows: Section 2 shows the details of the implementation
of hanging nodes using Lagrange Multipliers. Section 3 shows increasingly complex
simulations using non-conformal meshes, including complex roll forming (forming of a
U-channel and tubular rocker panel). Section 4 presents the conclusions that can be drawn
from this work.

2. Method: Lagrange Multipliers and Hanging Nodes

The main feature of non-conformal meshes is the presence of hanging nodes, which
require specific treatment. Indeed, the finite element method assumes the continuity of the
displacement field all over the mesh. However, this continuity is usually satisfied thanks to
node sharing between adjacent finite elements. This does not hold true with non-conformal
meshes since there is no more guarantee that adjacent elements will share the same nodes.
As such, Figure 2 illustrates a possible discontinuous displacement between 2 adjacent
elements that can arise from the presence of hanging nodes if they are not handled. To fix
this issue, the position of each of them needs to be imposed with regard to its neighbors.
The proposed method consists in using Lagrange Multipliers to impose this constraint.
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Figure 2. Examples of possible discontinuous displacements that occur if a hanging node (in red) is
not correctly handled.

The constraint to be imposed on a single hanging node is such that its relative position
to the boundary of its neighbor element remains constant. Examples of such constraints can
be observed in Figure 3 for the connection of 5 hanging nodes to the 2D bilinear boundary
of a 3D trilinear hexahedral element. The general formulation of the constraints Ch reads:

Ch = xh −∑n
I NI(ξ, η) xI = 0, for h = 1 to Nh (1)

where Nh represents the total number of hanging nodes, xh is the position vector of the
hanging node, xI is the position vector of the ith node of the neighbor element and NI(ξ, η)



Metals 2023, 13, 895 4 of 25

is its associated shape function evaluated at the reduced isoparametric coordinates of
the hanging node on the boundary of the neighbor element. n is the number of nodes
of this boundary (e.g., 2 for a 1D linear boundary, 4 for a 2D bilinear boundary). This
constraint ensures that the position of the hanging node will remain at the same reduced
isoparametric coordinates (ξ, η) with respect to the boundary of the neighbor element. This
work is currently limited to linear elements.

Metals 2023, 13, x FOR PEER REVIEW 4 of 26 
 

 

constraints can be observed in Figure 3 for the connection of 5 hanging nodes to the 2D 

bilinear boundary of a 3D trilinear hexahedral element. The general formulation of the 

constraints 𝑪𝒉 reads: 

𝑪ℎ  =  𝒙ℎ − ∑ 𝑁𝐼(𝜉, 𝜂)
𝑛

𝐼
𝒙𝐼 = 0, for ℎ = 1 to 𝑁ℎ (1) 

where 𝑁ℎ represents the total number of hanging nodes, 𝒙𝒉 is the position vector of the 

hanging node, 𝒙𝑰  is the position vector of the 𝑖𝑡ℎ  node of the neighbor element and 

𝑁𝐼(𝜉, 𝜂) is its associated shape function evaluated at the reduced isoparametric coordi-

nates of the hanging node on the boundary of the neighbor element. 𝑛 is the number of 

nodes of this boundary (e.g., 2 for a 1D linear boundary, 4 for a 2D bilinear boundary). 

This constraint ensures that the position of the hanging node will remain at the same re-

duced isoparametric coordinates (𝜉, 𝜂) with respect to the boundary of the neighbor ele-

ment. This work is currently limited to linear elements.  

 

Figure 3. Example of constraint relations obtained in the case of 5 hanging nodes (𝒙ℎ,1  to 𝒙ℎ,5 in 

red) connected to a 2D bilinear quadrangle boundary. Note that the general formulation has been 

used but some of the 𝑁𝐼 shape functions are null. (e.g., 𝑁3(0, −1) = 𝑁4(0, −1) = 0 in the expression 

for node 𝒙ℎ,1). 

Note that for each hanging node, one constraint is created per dimension of the sys-

tem, resulting in a total number of constraints of 𝑁𝑐 = 𝑑𝑁ℎ(𝑑 = 2 in 2D, 𝑑 = 3 in 3D). 

For the sake of simplifying the notation, the constraints are hereafter considered compo-

nent by component without loss of generality: 

𝐶ℎ  =  𝑥ℎ − ∑ 𝑁𝐼(𝜉, 𝜂)
𝑛

𝐼
𝑥𝐼 = 0, for ℎ = 1 to 𝑁𝑐 (2) 

where 𝐶ℎ, 𝑥ℎ and 𝑥𝐼 represent one component of 𝑪ℎ , 𝒙ℎ and 𝒙𝐼. 

To understand how the constraints are handled in Metafor [32,33], one must first un-

derstand how the classical conformal FE problem is solved. As a starting point, the gen-

eralized position vector 𝒒𝑡+Δ𝑡 at time 𝑡 + Δ𝑡 can be written as the sum of its value at the 

previous time 𝒒𝑡 and an increment 𝚫𝒒 during the time step Δ𝑡: 

𝒒𝑡+Δ𝑡 = 𝒒𝑡 + 𝚫𝒒 (3) 

where: 

Figure 3. Example of constraint relations obtained in the case of 5 hanging nodes (xh,1 to xh,5 in red)
connected to a 2D bilinear quadrangle boundary. Note that the general formulation has been used
but some of the NI shape functions are null. (e.g., N3(0,−1) = N4(0,−1) = 0 in the expression for
node xh,1).

Note that for each hanging node, one constraint is created per dimension of the system,
resulting in a total number of constraints of Nc = dNh(d = 2 in 2D, d = 3 in 3D). For the
sake of simplifying the notation, the constraints are hereafter considered component by
component without loss of generality:

Ch = xh −∑n
I NI(ξ, η) xI = 0, for h = 1 to Nc (2)

where Ch, xh and xI represent one component of Ch, xh and xI .
To understand how the constraints are handled in Metafor [32,33], one must first

understand how the classical conformal FE problem is solved. As a starting point, the
generalized position vector qt+∆t at time t + ∆t can be written as the sum of its value at the
previous time qt and an increment ∆q during the time step ∆t:

qt+∆t = qt + ∆q (3)

where: {
qt+∆t =

[
xt+∆t

1 , . . . , xt+∆t
N

]
∆q = [∆x1, . . . , ∆xN ]

(4)

where N is the total number of unknowns (from hanging and non-hanging nodes).
For the pure conformal case, obtaining the solution at time t + ∆t from the solution at

time t means finding the ∆q that will keep the body in equilibrium at time t + ∆t. At each
time step, an estimate for ∆q is obtained using an iterative Newton–Raphson scheme. The
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equations to solve between each time step involve setting to zero the norm of the non-linear
out-of-balance forces Foob :∥∥∥Foob

(
qt+∆t

)∥∥∥ =
∥∥∥Fint

(
qt+∆t

)
− Fext

(
qt+∆t

)∥∥∥ = 0 (5)

where Fint
(
qt+∆t) and Fext

(
qt+∆t) respectively represent the internal and external forces

associated with the generalized position vector qt+∆t. Through classical FEA developments,
Foob

(
qt+∆t) is approximated by the following first-order Taylor expansion:

F(ite+1)
oob ≈ F(ite)

oob +

[
∂F(ite)

oob
∂q

]
q(ite)

∆q(ite) = 0 (6)

or
F(ite+1)

oob ≈ F(ite)
oob + K(ite)

tang∆q(ite) = 0 (7)

where (ite) is the Newton–Raphson iteration counter, q(ite) is the current estimate of
qt+∆t, ∆q(ite) is the iterative correction on q(ite) and K(ite)

tang is the tangent stiffness matrix
defined as:

K(ite)
tang =

∂
(

F(ite)
oob

)
∂q


q(ite)

=

[
∂F(ite)

int
∂q

]
q(ite)
−
[

∂F(ite)
ext

∂q

]
q(ite)

(8)

As we want F(ite+1)
oob = 0 in (7), the new estimate for qt+∆t is thus given by:∆q(ite) = −

(
K(ite)

tang

)−1
F(ite)

oob

q(ite+1) = q(ite) + ∆q(ite)
(9)

The procedure is repeated until we obtain a sufficient precision on (5), e.g., using:∥∥∥F(ite)
oob

∥∥∥∥∥∥F(ite)
ext

∥∥∥ < Tolerance⇒ qt+∆t = q
(ite)

(10)

where Tolerance is a user-defined tolerance on the norm of F(ite)
oob with a default value of

Tolerance = 10−4.
On top of the above procedure, for the non-conformal case, the treatment of the

hanging nodes requires enforcement of the constraints defined in (2). Following
Belytschko et al. [34], imposing such constraint using the Lagrange Multiplier method
leads to adding the following additional forces FCh associated to each constraint Ch:

FCh

(
qt+∆t, λt+∆t

h

)
= λt+∆t

h

[
∂Ch
∂q

]
qt+∆t

, for h = 1 to Nc (11)

where Ch is one constraint on one hanging node (see (2)) and λt+∆t
h represents its associated

Lagrange Multiplier. For each hanging node, one constraint and one degree of freedom
λt+∆t

h are added per dimension of the system (2 in 2D, 3 in 3D). By analogy with (3) the
newly added Lagrange Multiplier λt+∆t

h can be written as the sum of its value at the
previous time λt

h and its increment ∆λh for the current time step ∆t:

λt+∆t
h = λt

h + ∆λh, for h = 1 to Nc (12)
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Combining Equation (5) with the additional forces associated with the constraints (11),
one obtains a new force F*

oob

(
qt+∆t, λt+∆t

h

)
to set to zero defined as:∥∥∥F*

oob

(
qt+∆t, λt+∆t

h

)∥∥∥ =
∥∥∥Fint

(
qt+∆t

)
− Fext

(
qt+∆t

)
+ ∑Nc

h FCh

(
qt+∆t, λt+∆t

h

)∥∥∥ = 0 (13)

F*
oob

(
qt+∆t, λt+∆t

h

)
= Foob

(
qt+∆t

)
+ ∑Nc

h λt+∆t
h

[
∂Ch
∂q

]
qt+∆t

(14)

Following Belytschko et al. [34], equation (14) is approximated by a first-order Taylor
expansion in both ∆q and ∆λh and its result is set to zero (λ(ite)

h is the current Newton-

Raphson estimate of λt+∆t
h , ∆λ

(ite)
h is its current iterative correction):

F*(ite+1)
oob = F(ite)

oob +
Nh

∑
h

λ
(ite)
h

[
∂Ch
∂q

]
q(ite)

+

[
∂F(ite)

oob
∂q

]
q(ite)

∆q(ite) +
Nh

∑
h

λ
(ite)
h

[
∂2Ch
∂q∂q

]
q(ite)

∆q(ite) +
Nh

∑
h

∆λ
(ite)
h

[
∂Ch
∂q

]
q(ite)

= 0 (15)

Then, if we define:

G(ite) =


[

∂C1
∂q

]T

...[
∂CNc

∂q

]T


q(ite)

and H(ite) =


∂2C1
∂q∂q

...
∂2CNc
∂q∂q


q(ite)

(16)

we obtain:

F*(ite+1)
oob = F(ite)

oob +G(ite)T
λ(ite)+K(ite)

tang∆q(ite)+λ(ite)T
H
(ite)

∆q(ite)+G(ite)T
∆λ(ite) = 0 (17)

where λ(ite) and ∆λ(ite) respectively represent vectors containing the Nc added Lagrange
Multipliers λ

(ite)
h and their associated iterative correction ∆λ

(ite)
h . If linear constraints are

used, as it is the case here, we have H(ite) = 0.
The Nc constraints Ch from (2) also need to be satisfied. Approximating each Ch by a

first order Taylor expansion and setting the results to zero yields:

Ch

(
q(ite)

)
+

[
∂Ch
∂q

]
q(ite)

∆q(ite) = 0, for h = 1to Nc (18)

Writing the Nc constraints Ch

(
q(ite)

)
in matrix form results in C(ite) defined as:

C(ite) =


C1

(
q(ite)

)
...

CNc

(
q(ite)

)
 (19)

we then obtain the following expression for (18):

C(ite) + G(ite)∆q(ite) = 0 (20)

The linear model resulting from (17) and (20) can be put in matrix form given by:[
K(ite)

tang G(ite)T

G(ite) 0

][
∆q(ite)

∆λ(ite)

]
=

[
−F(ite)

oob −G(ite)T
λ(ite)

−C(ite)

]
(21)
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where K(ite)
tang is the same tangent stiffness matrix as for the conformal case. The new estimates

of qt+∆t and λt+∆t are then given by:{
q(ite+1) = q(ite) + ∆q(ite)

λ(ite+1) = λ(ite) + ∆λ(ite) (22)

Similarly, as for the conformal case, the procedure is repeated until sufficient precision
is obtained on (13), e.g., using:∥∥∥F*(ite)

oob

∥∥∥∥∥∥F(ite)
ext

∥∥∥ < Tolerance⇒
{

qt+∆t = q(ite)

λt+∆t = λ(ite) (23)

Note that this development was done using a quasi-static assumption, but the same
procedure is also applicable for dynamic problems leading to similar linearized equations [34].

The practical impact of the Lagrange Multipliers on the finite element simulation is
that forces are added to the system of equations such that the Newton–Raphson iterative
solution naturally fulfills the constraint (see Figure 4).

Metals 2023, 13, x FOR PEER REVIEW 7 of 26 
 

 

‖𝑭𝑜𝑜𝑏
∗(𝑖𝑡𝑒)

‖

‖𝑭𝑒𝑥𝑡
(𝑖𝑡𝑒)

‖
< 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ⇒  {

𝒒𝑡+Δ𝑡 = 𝒒(𝑖𝑡𝑒)

𝝀𝑡+Δ𝑡 = 𝝀(𝑖𝑡𝑒)
 (23) 

Note that this development was done using a quasi-static assumption, but the same 

procedure is also applicable for dynamic problems leading to similar linearized equations 

[34].  

The practical impact of the Lagrange Multipliers on the finite element simulation is 

that forces are added to the system of equations such that the Newton–Raphson iterative 

solution naturally fulfills the constraint (see Figure 4). 

 

Figure 4. Forces generated by the Lagrange Multipliers 𝐹ℎ = 𝐹1 + 𝐹2. 

3. Results and Discussion 

In this section, the proposed hanging node implementation is assessed with progres-

sively more complex simulations. The correct implementation of the hanging nodes is first 

verified with a simple geometry, a cube submitted to simple shear. Then, a more complex 

2D simulation of the flanging of a metal sheet is conducted, including spring back. After-

ward, the first application of 3D roll forming of a U-channel is discussed and compared 

to numerical and experimental results as proof of the usefulness of the proposed method 

applied to roll forming simulations. Finally, the results of a more complex application are 

discussed, assessing the use of the proposed method for industrial purposes (forming of 

a tubular rocker panel). 

3.1. 2D Verification Tests 

3.1.1. Cube Submitted to Simple Shear 

As an indication of the good behavior of the implementation of the constraints at the 

hanging nodes in Metafor [32,33], a simple 2D test consisting of a 1 mm × 1 mm × 1 mm  

elastic cube (Young’s modulus 𝐸 = 250 MPa, Poisson’s ratio 𝜈 = 0.25) undergoing sim-

ple shear is hereafter shown. A state of plane strain assumption is made. To take into 

account large deformations, a hypoelastic model is considered, associated with a Jaumann 

objective derivative [33]. The mesh, as well as the boundary conditions, can be observed 

in Figure 5. The test is displacement driven with 𝑑 = 0.5 mm and one single time step is 

used. In this case, the boundary conditions have been chosen so that the vertical displace-

ment of the hanging node is the only free unknown of the system. This will allow a good 

insight into the correct behavior of the Lagrange Multipliers to handle the hanging node. 
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3. Results and Discussion

In this section, the proposed hanging node implementation is assessed with progres-
sively more complex simulations. The correct implementation of the hanging nodes is first
verified with a simple geometry, a cube submitted to simple shear. Then, a more complex
2D simulation of the flanging of a metal sheet is conducted, including spring back. After-
ward, the first application of 3D roll forming of a U-channel is discussed and compared
to numerical and experimental results as proof of the usefulness of the proposed method
applied to roll forming simulations. Finally, the results of a more complex application are
discussed, assessing the use of the proposed method for industrial purposes (forming of a
tubular rocker panel).

3.1. 2D Verification Tests
3.1.1. Cube Submitted to Simple Shear

As an indication of the good behavior of the implementation of the constraints at the
hanging nodes in Metafor [32,33], a simple 2D test consisting of a 1 mm× 1 mm× 1 mm
elastic cube (Young’s modulus E = 250 MPa, Poisson’s ratio ν = 0.25) undergoing simple
shear is hereafter shown. A state of plane strain assumption is made. To take into account
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large deformations, a hypoelastic model is considered, associated with a Jaumann objective
derivative [33]. The mesh, as well as the boundary conditions, can be observed in Figure 5.
The test is displacement driven with d = 0.5 mm and one single time step is used. In this
case, the boundary conditions have been chosen so that the vertical displacement of the
hanging node is the only free unknown of the system. This will allow a good insight into
the correct behavior of the Lagrange Multipliers to handle the hanging node.
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Figure 5. Mesh (left) and boundary conditions (right) for a 1 mm× 1 mm× 1 mm elastic cube
submitted to simple shear using a non-conformal mesh. Plane strain assumption. The imposed
displacements are represented by blue arrows with d = 0.5 mm. One single time step.

The impact of the Lagrange Multiplier on the vertical displacement of the hanging
node can be observed in Figure 6. The displacement is clearly discontinuous at the hanging
node in the case where no constraint has been applied, an overlap of finite elements can be
observed. The displacement is, however, perfectly continuous when the hanging node is
managed by the method. The results are as can be expected for an elastic cube submitted to
simple shear; one can indeed see a perfectly linear solution for the vertical displacement. In
the case including Lagrange Multipliers, Figure 7 shows the expected results of a constant
in-plane shear component (XY) of the Cauchy stress tensor. Overall, the method gives
correct results for this simple case.
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Figure 6. 2D simulation of a cube submitted to simple shear, vertical displacement. (left): no
Lagrange Multiplier; (right) Lagrange Multiplier.

3.1.2. 2D Flanging of a Metal Sheet

The proposed method is applied to a 2D flanging simulation as proof of the usefulness
of the method in the scope of bending operations. The principle of the process can be
observed in Figure 8. The sheet thickness is 1 mm. The radii of the sheet holder, die, and
punch are respectively 3 mm, 3 mm, and 1 mm. The width of the sheet holder, die, and
punch are respectively 6 mm, 6 mm, and 5 mm. The distance between the sheet holder and
the punch is 1 mm.
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Figure 7. A 2D simulation of a simple submitted to pure shear, in-plane shear (XY) component of the
Cauchy stress tensor. (left): no Lagrange Multiplier; (right) Lagrange Multiplier.
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Figure 8. Principle of the 2D flanging process, meshed sheet, rigid tools. (a) Initial configuration;
(b) Imposed shape after maximum punch displacement of 20 mm; (c) Shape after spring back.

This test consists in the flanging of a steel sheet. The evolution of the process over time
is shown in Figure 9. It is as follows: first at t = 0.0 s the sheet is fitted between the die and
the sheet holder. The punch is placed right against the sheet. From t = 1.0 s to t = 3.0 s the
punch moves downwards and bends the sheet up to a 90◦ angle. The punch then keeps
moving downwards until t = 10.0 s (maximal displacement = 20 mm). At t = 10.0 s, the
punch then starts going back upward towards its original position. The spring back of the
sheet occurs between t = 16.0 s and t = 18.0 s.

The simulation is performed with a state of plane strain assumption. Values of 210 GPa
and 0.3 have been chosen for the Young’s modulus and Poisson’s ratio. The sheet is modeled
with a linear isotropic hardening, the initial yield strength and the hardening coefficient are
taken at 396 MPa and 1495 MPa, respectively.

The leftmost part of the sheet is clamped. A frictionless contact is used between the
sheet and the die, the punch, and the blank holder. The contact is modelled by a penalty
method. The forming angle and the amplitude of the resultant force applied by the punch
are compared between simulations using seven different finite element meshes using four-
noded bilinear quadrangular elements. Both conformal and non-conformal meshes are
considered (Figure 10). A four Gauss point quadrature rule is used for spatial integration
of the element. To avoid locking, a constant pressure element is used (Q4P0).
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Figure 9. A 2D flanging simulation in Metafor [32,33]. Evolution of the process over time.

Table 1. A 2D flanging simulation. Number of elements and computation time (on one Intel Core
i7-9750H 2.6 GHz processor) for the seven different FE meshes. Nr

y and Nc
y , respectively, represents the

number of elements through the thickness in the refined zone and in the coarse zone (see Figure 10).

Mesh
Name Nr

y Nc
y

Number of
Elements

Number of
Hanging

Nodes

CPU Time
(1 Core)

C2-2 2 2 140 0 23 s
C4-4 4 4 280 0 35 s
C8-8 8 8 560 0 62 s

C16-16 16 16 1120 0 102 s
NC8-1 8 1 294 14 35 s
NC8-2 8 2 332 12 37 s
NC8-4 8 4 408 8 48 s
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Figure 10. A 2D flanging simulation, seven different finite element meshes, conformal (C) or non-
conformal (NC) with a varying number of elements through the thickness (see Table 1 for number
of elements).

The name and number of elements associated with each of the created meshes are
available in Table 1. Three different non-conformal meshes have been created with 1, 2, or
4 elements though the thickness in the coarse regions (Nc

y = 1, 2, 4) and 8 elements through
the thickness in the refined region (Nr

y = 8), where the bending will mainly occur (green
region in Figure 10). As a reference, four different conformal meshes have been created
with a varying number of elements (2, 4, 8, 16) through the full sheet thickness.

The impact of the number of finite elements through the sheet thickness on the angle
between the sheet and the die is depicted in Figure 11a,b using only conformal meshes. The
spring back can be observed in Figure 11b. Those tests indicate that 8 elements are required
through the thickness for a good convergence of the angle after spring back. The same
conclusion can be made by observing the resultant force applied by the punch (Figure 11c,d).
Indeed, a noticeable difference is observed for meshes with only 2 or 4 elements through
the thickness (C2-2 and C4-4), while almost no difference can be observed for the meshes
having 8 or 16 elements through the thickness (C8-8 and C16-16). The oscillations observed
in the punch force (Figure 11c,d) are present due to the rather coarse discretization in the
longitudinal direction and more elements should be used if a more accurate representation
of the physical process is required. The current study, however, focuses on the verification
of the results between different meshes and as such this longitudinal discretization is
deemed sufficient. The optimal number of elements through the thickness for a good
accuracy of the results thus seems to be 8 and mesh C8-8 will now be considered as the
reference mesh for future comparisons.
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Figure 11. A 2D flanging simulation, conformal meshes C2-2, C4-4, C8-8, and C16-16 (see Table 1 for
mesh details). (a) Angle between sheet and die over time; (b) Zoom on the angle (visible spring back);
(c) Total force applied by the punch over time; (d) Zoom on the total force (during bending).

Likewise, the angle after spring back also converges to the same value for all tested
non-conformal meshes and no significant differences can be observed (Figure 12a,b). The
resultant force applied by the punch is almost undistinguishable between the reference
mesh and the non-conformal meshes for the first 3.0 s of the process, where most of the
sheet deformation takes place. After the first 3.0 s, a slight difference can be observed
for Mesh NC8-1 while the other meshes keep equal results (Figure 12c,d). Overall, the
results using non-conformal meshes show little to no impact on the accuracy of the model
compared to the reference mesh C8-8.

The computation time for the seven different meshes are shown in Table 1. The
simulations using non-conformal meshes reveal that one can obtain coarser FE meshes,
resulting in overall less costly models, with a negligible impact on the accuracy. It should
be noted that although the gains obtained in this rather small 2D test are already promising
(~43% CPU gain for similar accuracy between mesh C8-8 and NC8-1), the potential gains
in computational time are expected to be greater when expanding those results to 3D
simulations. Although the use of Lagrange Multipliers to impose the constraints on the
hanging nodes added degrees of freedom to the problem, the method allowed a substantial
reduction in mesh sizes.
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Figure 12. A 2D flanging simulation, meshes NC8-1, NC8-2, and NC8-4 are compared to conformal
mesh C8-8 (see Table 1 for mesh details). (a) Angle between sheet and die over time; (b) Zoom on the
angle (visible spring back); (c) Total force applied by the punch over time; (d) Zoom on the total force
(during bending).

3.2. 3D Roll Forming Applications
3.2.1. Forming of a U-Channel

We consider here the case of the forming of a symmetric U-channel described in [2]
(width = 102 mm, thickness = 1.6 mm, bending radius = 6 mm) where the mill features
six forming stands with the following sequence of forming angles: 15◦, 32◦, 50◦, 68◦, 80◦,
and 90◦. The model contains an additional purely numerical 0◦ stand to help drive the
sheet through friction. The distance between two consecutive stands is 500 mm. The length
of the sheet is chosen equal to 2000 mm. The forming velocity is 200 mm/s and the friction
coefficient µ between the rolls and the sheet is equal to 0.2. The rolls are assumed to be
perfectly rigid, and the contact is modelled by a penalty method.

The progress of a roll-forming simulation in Metafor [32,33] is as follows [2–4]: initially,
the sheet is positioned in front of the roll-forming mill (Figure 13). A prescribed displace-
ment is applied to the front and rear sides of the sheet until friction with the rotating
rolls becomes sufficient to drive the sheet in the forming direction. Similarly, additional
boundary conditions are used when releasing the sheet from the last two forming stands.
See [2–4] for further details.

The material used for all roll-forming simulations in this work is a high-strength
DP980 steel, with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. An isotropic
hardening model is considered using the following Swift law:

σyield = 330.3(1 + 591.72εp)
1

5.35 (24)

The constitutive material behavior has been studied extensively [35,36] in the scope of
this particular forming mill. Previous studies suggest that the kinematic hardening may be
safely neglected since no plastic unbending occurs during the forming process [1].

Measurements such as the forming angle and the final shape of the sheet are all
analyzed in the middle section of the sheet (white line in Figure 14). This section is the most
representative of a continuous forming process since it is the furthest away from both front
and rear ends of the sheet, thus mitigating the impact of edge effects as well as reducing
the influence of boundary conditions. The final shape, after spring back, will be compared
to experimental data coming from [2] where the shape of the experimental 2000 mm long
U-channel has been digitized outside the mill by a 3D high-precision measurement device.
Moreover, the vertical displacement of the middle point (red dot in Figure 14) throughout
the simulation will also be studied and compared to experimental measurements collected
with a portable arm equipped with a contact-sensing rigid probe. Note that measurements
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are only available on the upper surface of the sheet, but numerical results will be given for
both upper and lower surfaces. Lastly, longitudinal Green–Lagrange strains are computed
at the middle point and on the left edge of the measurement section (red and purple dots
in Figure 14).
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Figure 14. Example of conformal mesh for the forming of a U-channel. Initial state.

Figure 14 shows a typical conformal mesh where a more refined discretization is
chosen along the transversal direction within each bending zone while the flange and web
are more coarsely meshed. The size of the bending regions is chosen with the help of the
final geometry of the flower diagram coming from the roll-design software COPRA RF [37].
A value of 15.8 mm was taken for each bending region in this example. One can note that
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the process is such that the bending zones stay at a similar transverse location throughout
the full process length, allowing an easy definition of efficient non-conformal meshes.

Three different conformal meshes and three different non-conformal meshes with
a varying number of elements through the sheet thickness are first created (Figure 15).
Enhanced Assumed Strain (EAS) elements, where additional internal deformation modes
are introduced in the strain field of elements [38–40], are chosen. Previous study [39]
suggests that EAS elements allow for a reliable modeling of the spring back of metal sheets
with a coarser mesh than standard locking-free finite elements. Moreover, this choice of
elements demonstrates that the hanging node implementation is not limited to a particular
type of element. The number of elements and the computation time for each mesh are
available in Table 2. The final state of the simulation can be observed in Figure 16 for two
of the proposed meshes.
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Figure 15. Forming of a U-Channel. Three conformal meshes and three non-conformal meshes with
a varying number of elements through the sheet thickness (see Table 2 for number of elements).

Results for the three reference conformal meshes (C1-1, C2-2, C4-4) are available in
Figure 17a–f. The influence of the mesh on the final shape of the U-channel after spring
back is illustrated in Figure 17a, where mesh C1-1 reveals that having too few elements
through the thickness of the sheet can lead to inaccuracies of the final U shape. Mesh
C2-2 and C4-4 both agree well with the experimental shape of the measurement section
(Figure 17a) as well as to the vertical displacement of the middle point of the measurement
section (Figure 17b). Minor differences are noticeable between the results of mesh C2-2
and C4-4. These differences are more visible when looking at the forming angle during the
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course of the process where a difference of about 0.4◦ can be observed for the final forming
angle after spring back (Figure 17c,d). The evolution of the longitudinal Green–Lagrange
strain on two different points of the measurement section can be visualized in Figure 17e,f.
All three meshes give relatively similar results, although mesh C1-1 is again noticeably
apart from the other two.

Table 2. Forming of a U-Channel. Number of elements and computation time (on two 6-core Intel
Xeon X5650 2.67 GHz processors, giving 12 cores in total) for the 6 different finite element meshes.
Nr

y and Nc
y respectively represents the number of elements through the thickness in the refined zone

(bending zone) and in the coarse zone (flange + web).

Mesh Name Nr
y Nc

y
Number of
Elements

Number of
Hanging Nodes

CPU Time
(12 Cores)

C1-1 1 1 7200 0 5 h 00 m
C2-2 2 2 14,400 0 10 h 8 m
C4-4 4 4 28,800 0 24 h 21 m

NC2-1 2 1 10,800 808 6 h 27 m
NC4-1 4 1 18,000 2424 10 h 58 m
NC4-2 4 2 21,600 1616 13 h 58 m
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The main conclusion of the results obtained with conformal meshes is that using
only one element in the thickness (mesh C1-1) is not sufficient to accurately capture the
bending of the sheet during the process which leads to overall inaccurate results. Using
four elements instead of two elements through the thickness is, however, debatable since
the difference in the results is minimal. The increase in computational time going from
mesh C2-2 to mesh C4-4 is extremely high (+140% CPU). The best compromise between
accuracy and computational time appears to be mesh C2-2 if only conformal meshes are
used. The use of EAS elements might explain the very accurate results obtained with as
few as two elements in the sheet thickness.

Figure 18 compares the results obtained with non-conformal mesh NC2-1 with the
results obtained with conformal mesh C2-2. The final U-shape, the vertical displacement
and longitudinal Green–Lagrange strain over the process (Figure 18a,b,e,f) are almost
indistinguishable between mesh C2-2 and NC2-1. The final forming angle after spring
back is illustrated in Figure 18c,d and only differs by about 0.1◦ between the two meshes.
Overall, the impact of using this non-conformal mesh on the final accuracy of the results is
quite negligible. Moreover, a 37% decrease in computational time was observed between
the simulations using mesh C2-2 and mesh NC2-1.
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The main conclusion of the results obtained with conformal meshes is that using only 

one element in the thickness (mesh C1-1) is not sufficient to accurately capture the bending 

Figure 17. Forming of a U-Channel. Simulation results for the three conformal meshes C1-1, C2-2, C4-
4 (see Table 2 for mesh details). (a) Final shape; (b) Vertical displacement at middle point location (red
dot in Figure 14), upper and lower surfaces; (c) Forming angle; (d) Zoom on the forming angle (visible
spring back); (e) Longitudinal Green–Lagrange strain (edge point); (f) Longitudinal Green–Lagrange
strain (middle point).
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Figure 18. Forming of a U-Channel. Simulation results for meshes C2-2, NC2-1 (see Table 2 for mesh
details). (a) Final shape; (b) Vertical displacement at middle point location (red dot in Figure 14),
upper and lower surfaces; (c) Forming angle; (d) Zoom on the forming angle (visible spring back);
(e) Longitudinal Green–Lagrange strain (edge point); (f) Longitudinal Green–Lagrange strain (mid-
dle point).

Other non-conformal meshes containing more elements in the refined region were also
investigated (mesh NC4-1 and NC4-2 in Figure 15). The forming angles using those meshes
are compared to mesh C2-2 and C4-4 in Figure 19a. Both non-conformal meshes perform
extremely well with a final difference in forming angle of only about 0.1◦ with respect to
mesh C4-4. Looking at the computational time (Table 2), it is obvious that if four elements
are to be used in the refined region, the non-conformal meshes can lead to significantly
reduced CPU time (going from 24 h 21 m for mesh C4-4 down to 10 h 58 m for mesh NC4-1).
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Furthermore, the impact on the accuracy compared to the full conformal mesh C4-4 is
minimal. Non-conformal mesh NC4-1 is still noticeably more costly than mesh C2-2, and is
only computationally interesting with respect to the full mesh C4-4. However, mesh NC2-1
is much cheaper than mesh C2-2.
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Figure 19. Forming of a U-Channel. Simulation results for meshes C2-2, C4-4, NC4-1, and NC4-2
(see Table 2 for mesh details). (a) Zoom on the forming angle (visible spring back); (b) Vertical
displacement at middle point location (red dot in Figure 14), upper and lower surfaces.

So far, only the number of elements through the thickness was considered for the
coarsening. Figure 20 highlights the flexibility in mesh creation allowed by the proposed
method by creating a new NC2-1 mesh where the web has also been coarsened in the
longitudinal direction. Figure 21a shows that a good agreement for the forming angle is
obtained compared to mesh C2-2 (less than 0.1◦ difference). It can be noted that in this
particular example, coarsening the mesh in the thickness tends to underestimate the final
angle while coarsening the web in the longitudinal direction tends to overestimate the
final angle, this leads to the result obtained here where mesh “NC2-1 + coarse web“ is
closer to the results of mesh C2-2 than mesh NC2-1. However, the vertical displacement
of the middle measurement point shows inaccuracies for the coarser mesh (Figure 21b).
Such discretization may thus be used as a first step to quickly assess the final shape of the
cross-section but if detailed results are required along the longitudinal direction this type
of mesh coarsening might need to be avoided. Nevertheless, the creation of this mesh was
possible thanks to the proposed method and a computational time of 4 h 51 m could be
obtained. This allowed for an even faster computational time compared to mesh NC2-1
(6 h 27 m) with a slight degradation of the accuracy of some results (Figure 21b), while the
accuracy on the final forming angle remained acceptable (Figure 21a).

3.2.2. Forming of a Tubular Rocker Panel

A similar analysis has been carried out for the forming of a tubular rocker panel;
this section will present the most relevant results without going into as much detail as in
Section 3.2.1. This application was studied in depth using the ALE formalism in previous
work [2–4]. The test consists of the forming of a non-symmetric tubular rocker panel (initial
dimensions: width = 167 mm, thickness = 1.5 mm). The forming mill is a real industrial
continuous roll-forming line consisting of 16 stands with an inter-stand distance of 350 mm.
The total sheet length is 5600 mm. Figure 22 shows the full forming line as well as its
related flower diagram. In contrast with [4], no welding operation is conducted in this
work, this will create a more noticeable spring back. Contrary to the U-channel, frictionless
contact is assumed. The sheet has a zero prescribed longitudinal displacement on its rear
and front section, and it is the tools that are moved along the sheet. This procedure is a
simplification of the traditional simulations shown in Section 3.2.1. The rolling tools are
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considered rigid, the contact between the rolls and the sheet is modeled by the penalty
method. The same material model as for the U-channel is used. The final shape of the
cross-section as well as the vertical displacement and longitudinal Green–Lagrange strain
will be compared between different finite element meshes. Similarly, as for the U-channel,
all results are computed at a measurement section situated on the middle of the sheet in
the longitudinal direction.
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direction”.
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Figure 21. Forming of a U-Channel. Simulation results for meshes C2-2, NC2-1, and NC2-1 with
coarse web (see Figure 20). (a) Zoom on the forming angle (visible spring back); (b) Vertical displace-
ment at middle point location (red dot in Figure 14), upper and lower surfaces.
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the reference mesh and the optimized mesh. 

Mesh Name 
Number of  

Elements 

Number of  

Hanging Nodes  

CPU Time  

(12 Cores) 

Reference mesh 77,440 0 2 d 15 h 9 m 

Optimized mesh 52,448 8832 1 d 6 h 33 m 

Figure 22. Forming of a tubular rocker panel, final state. 16-stand forming line and flower diagram.

The two meshes are depicted in Figure 23 in their initial configuration and in Figure 24
in the final state of the simulation. The reference mesh is conformal, has four elements
through the sheet thickness and a constant element size of 3 mm along the longitudinal
direction. In the transversal direction, each bending zone contains seven elements, each
other zone has an element size of around 6 mm. The optimized mesh has the same
discretization in the transversal direction. However, following results from Section 3.2.1,
the mesh is made non-conformal by reducing the number of elements through the thickness
to two for the flange and web zones (see Figure 23). Coarsening is also carried out in the
longitudinal direction by dividing the number of elements in the web zones by 2. The
number of elements in the flange zones is, however, maintained since a poor entry into the
second mill was obtained by coarsening the mesh in those regions. This once again shows
the versatility of the approach in creating FE meshes tailored to the specific process and
geometry. Table 3 contains the CPU time as well as the number of elements and number of
hanging nodes used.
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Table 3. Forming of a tubular rocker panel. Number of elements, number of hanging nodes and
computation time (on two 6-core Intel Xeon X5650 2.67 GHz processors, giving 12 cores in total) for
the reference mesh and the optimized mesh.

Mesh Name Number of
Elements

Number of
Hanging Nodes

CPU Time
(12 Cores)

Reference mesh 77,440 0 2 d 15 h 9 m
Optimized mesh 52,448 8832 1 d 6 h 33 m

The longitudinal Green–Lagrange strains as well as the vertical displacement of a
point situated on the left edge of the measurement section and of a point located on the
middle of the measurement section can be observed in Figure 25a–d. All curves show a
very good agreement between the reference mesh and the optimized non-conformal mesh.
A good agreement between the shapes of the two cross-sections is observed. Table 3 shows
that going from the reference mesh to the optimized non-conformal mesh significantly
reduces the computational time (from 2 d 15 h 9 m to 1 d 6 h 33 m). Hence, the proposed
optimized mesh allows a sizable cost decrease (51.6%) with a negligible impact on the
shape of the final cross-section.
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4. Conclusions

This work had the goal of improving the computational efficiency of finite element
simulations of roll-forming processes by introducing non-conformal meshes where hanging
nodes are handled by Lagrange Multipliers. The implementation of the method was first
verified with 2D simulations of a cube submitted to simple shear and of the flanging of
a metal sheet. Valid results were obtained for simulations using non-conformal meshes.
The method was then applied to the forming of a U-channel where the influence of non-
conformal meshes on the accuracy and computational time was discussed. The proposed
method offers the possibility to create coarser FE meshes, resulting in overall smaller
computational cost, with little to no impact on the accuracy of the results. As for any
finite element mesh, it is, however, still important to check for the convergence of the
mesh since excessive or ill-placed coarsening of the mesh could lead to erroneous results.
Finally, as proof of the industrial applicability of the method, it was used on the forming
of a non-symmetric tubular rocker panel. A mesh specifically tailored to this complex
roll forming mill could easily be created using non-conformal meshes. This led to a
substantial gain in computational time (51.6% reduction on a 2 d 15 h 9 m simulation)
with a negligible impact on the results. The method can thus easily be used to create
lighter meshes for roll-forming applications. Nevertheless, the current study presents some
limitations. First, linear elements were used due to the easier implementation of linear
Lagrange Multiplier constraints, the extension to higher order elements should, however,
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lead to similar conclusions and is a possible future prospect. Moreover, no comparison to
other non-conformal mesh methods or software has been conducted; the present study
only planned on highlighting the usefulness of non-conformal meshes applied to roll-
forming simulation in an effective and easy manner. In addition, both shown roll-forming
simulations have deformation zones which remain at a similar location along the sheet
transverse direction throughout the full process; this allowed for an easier definition
of the optimized non-conformal meshes. More complex roll-forming processes where
the deformation zones move over the full sheet throughout the process would require
additional numerical techniques to take advantage of the method. The ALE formalism
or dynamic re-meshing schemes combined with non-conformal meshes could be a good
prospect for future work on this issue. Finally, the reader may note that more optimized
meshes can likely be created for an even better reduction of the computational cost.
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