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Abstract: In the process of material production, the mismatch between raw material parameters and
manufacturing processing parameters may lead to fluctuations in product properties and ultimately
to unstable or unqualified product quality. In this paper, we propose the concept of the Quality Filter
model for process optimization. The Quality Filter model uses the property prediction model as a
surrogate model and integrates expert experience and process window constraints to construct a
loss function. When raw material parameters are supplied, the suitable processing parameters can
be automatically matched, and the processing fluctuation can be used to hedge the fluctuations in
raw material, thus stabilizing the product quality and improving overall product properties. A trial
production data set of 128 samples of wind power steel from a steel plant was used to test the model.
We selected the ellipsoid discriminant analysis model with a classification accuracy rate of 82.81% as
the surrogate model, which gives a highly interpretable visualization result. Finally, the results show
that the properties of the samples that underwent the optimized process are improved.

Keywords: quality control; big data; discriminant analysis; dynamic control; steel production

1. Introduction

In the process of material production, the parameters that determine product proper-
ties divide into two categories: raw material parameters (such as chemical composition,
dimensional tolerance, metallurgical quality, etc.) and processing parameters (such as de-
formation, heat treatment, welding, etc.). One of the main components of material science
research is the study of the correlation between these parameters to discover new materials
and optimize existing materials [1].

With material science’s continuous development and progress, material composition
and manufacturing processes are becoming increasingly complex. Quality control for
traditional manufacturing relies on process specifications and inspections: setting quali-
fication thresholds for raw materials, setting process windows for the manufacturing [2],
and conducting quality inspections on products [3,4]. Nevertheless, there is a phenomenon
that has always plagued the manufacturing industry’s quality control: “qualified” raw
materials and “qualified” processes still have a certain probability of producing an un-
qualified product. The so-called “narrow window” control is often applied to solve the
problem of product quality fluctuation [5,6], but it is bound to increase production costs.
Currently, selection and optimization of processing parameters in production are usually
conducted by experts and skilled workers, but with staff turnover and retirement, their
expert experience might be lost [7–9]. Therefore, a solution is needed to digitize expert
knowledge and experience.

Material data analysis methods based on Machine Learning (ML) have been an impor-
tant focus of research in recent years and are now receiving more attention [10]. Thanks to
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their powerful nonlinear mathematical fitting capability, ML algorithms can build connec-
tions between composition, processing parameters, and properties of materials [11–13].

Liu et al., constructed a three-layer artificial neural network (ANN) model to pre-
dict the mechanical properties of hot-rolled C–Mn steel [14]. Reddy et al., predicted the
mechanical properties of low-alloy steel using an ANN model based on alloy chemical com-
position and heat-treatment parameters [15]. Xie et al., constructed a deep neural network
(DNN) and used chemical composition and rolling processing parameters as the DNN
input to predict the mechanical properties of hot-rolled steel sheets. The interpretability of
the DNN model was then explored [16]. Jung et al., used a Gaussian process regression
method to predict the mechanical properties of dual-phase steels based on microstructural
feature parameters [17]. Boto et al., used a variety of machine learning regression algo-
rithms to predict metallurgical quality and product performance based on metallurgical
process parameters [18]. The ML algorithms represented by ANN only fit the mathematical
relationship between input and output parameters, but the physical meanings of these
parameters are not considered. At the same time, although most of the prediction models
in reported works achieve good mean absolute/square errors, individual samples still have
significant prediction errors [16,19], which may be caused by measurement errors and noise
in industrial data. More recently, it has been reported that some deep physical parameters
are added to ML models as feature parameters to enhance their predictive capability [20].
Xue et al., added the physical feature parameters representing structure chemistry and
bonding to the regression model and obtained an excellent prediction result [21]. Lu et al.,
added the austenitization temperature (Tγ) as a thermodynamic parameter to feature space,
and the model shows better generalization performance than traditional ML methods [22].
Wang et al., developed a theory-guided neural network [23]. Compared to the ordinary
DNN, the ML model integrated with expert knowledge and experience has better prediction
accuracy and is more tolerant of data noise [24].

The property prediction model was established to assist reverse material design
and process optimization. Many works use ML models as surrogate models for predict-
ing properties and apply genetic algorithms (GA) to search the feature parameter space
and select composition-process parameter combinations with the most potential [20,25].
Mohanty et al., constructed an ANN model to predict the mechanical properties of cold-
rolled IF steel sheets and obtained the parameter optimization range through the GA [26].
Sun et al., established an optimization model combining GA and ANN and obtained the
chemical composition of a TC11 titanium alloy with excellent properties [27]. Diao et al.,
combined the two mutually-exclusive properties of carbon steel to achieve comprehensive
performance and used the traversal method to search for sample space to find components
and process parameters with the most potential [28]. Yan et al., developed a multi-objective
optimization algorithm that can formulate appropriate components and process parameters
according to the requirements of customized orders [29]. Liu et al., designed a surrogate
model based on convolutional neural networks to predict the mechanical properties of
HSLA steel and optimized the process parameters using the firefly algorithm [30]. However,
the details of the database and optimization results are not given.

At present, most of the reverse design work is trying to obtain products with better
properties, but the quality fluctuation problem in the production process is rarely noticed.
Moreover, the optimization process is either manually or purely data-driven, and the
property prediction model only determines the optimization results. The valuable expert
experience accumulated during production has yet to be effectively utilized. At the same
time, due to noise in industrial data and uncertainty in DNNs [31,32], design results may
violate physical rules or be unfavorable for production control.

The production of materials is a sequential process, and the raw material parameters
appear before the process parameters [33]. However, the current optimization work does
not distinguish the two types of parameters. Taking steel production as an example, steel
is first cast into ingots and then transported to the rolling mill for rolling. Although its
composition is set to a fixed value during design, the composition of the ingot produced
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still fluctuates around the set value [29]. In order to ensure product quality, the process
parameters should be adjusted according to the fluctuation in the raw material parameters
to achieve dynamic control.

Based on the above background, this work proposes a Quality Filter model to solve
the quality fluctuation problem caused by the mismatch between raw material parameters
and processing parameters in industrial production. The Quality Filter model uses the
machine learning algorithm as a surrogate model and integrates expert experience and
process range constraints to construct a loss function. When the raw material parameters
are supplied, the suitable processing parameters can be automatically matched, and the
process fluctuation can be used to hedge the fluctuation in raw material, thus stabilizing
the product quality and improving overall product properties.

2. Methods

For all material manufacturing processes, the final properties of the product are
determined by the raw material and processing techniques. Taking the production of steel
materials as an example, the mechanical properties of steel products are determined by their
raw material parameters (including chemical composition and metallurgical quality), as
well as rolling, heat treatment, and other processing techniques. The relationship between
raw materials (C), process (T), and product property (P) can be described as:

P = f (C, T) (1)

where f represents the mathematical function relationship between these parameters.
Figure 1a shows a traditional manufacturing process in which the mismatch between raw
material and processing parameters causes product quality fluctuations, ultimately leading
to the unstable and unqualified phenomenon. In this work, a Quality Filter (QF) model
was proposed, as shown in Figure 1b. Given a set of raw material parameters, suitable
processing parameters for this set can be matched, and process fluctuation can be used to
hedge raw material fluctuation to stabilize the final product quality and improve overall
product quality.

Figure 1. Schematic diagram of the QF model. (a) fluctuations in traditional manufacturing process,
(b) dynamic control through QF model.
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2.1. Quality Filter Model

When designing processing parameters in production, material experts usually refer
to previous experimental data and make adjustments based on the physical principles
of the material. The QF model is also based on this design route, and three factors are
considered: the raw-material–process–property prediction model, expert experience, and
the process window. The expressions are as follows:

Pi = Fi(C, T) i = 1, 2, . . . , L
gj(C, T) = gj

0 j = 1, 2, . . . , m
Tk

mid = (Tk
min + Tk

max)/2 k = 1, 2, . . . , q
(2)

The first term is the C–T–P prediction model, where F represents its mathematical
function and L is the number of concerned product properties. This function can use a
variety of machine learning models, including linear regression, neural networks, or other
quantitative/semi-quantitative models.

The second term in the formula is the mathematical expression of expert experience,
where g represents its mathematical formula and m represents the number of concerned
expert experiences. Expert experience refers to empirical rules or conventions that avail
production, which implies practical material knowledge. It includes, but is not limited to,
the following:

• Known material composition correlation. For example, the sum of all components is
100%, and the sum of several components has the highest limit;

• Known correlation between process parameters, such as the correlation between the
processing temperature and the critical temperature of the material’s phase transition;

• Other existing theoretical or empirical formulas and expressions.

The digitization of expert experience is represented by mathematical formulas of
the above contents and integrated with machine learning models as constraints. The
optimization results are required to meet these constraints. For example, in the steel rolling
process, the finish rolling temperature TFR is generally about 75 ◦C above the austenite–
ferrite transformation critical temperature TAr3 [34] to ensure the material is in the austenite
phase region during the rolling process. This expert experience formula g can be written as
TFR − TAr3 = 75.

The third term in Equation (2) represents the constraint of the process window, where
Tk

min, Tk
max, and Tk

mid are the upper limit, lower limit, and median of the process win-
dow, respectively. In practical production, processing parameters use the median to avail
manufacture control.

In order to solve for the appropriate process values, an optimization algorithm is
needed. Unlike other optimization problems, this work aims not to find the samples with
the highest prediction property in the feature space, but to select the sample which can
achieve the target property while meeting the expert experience constraints and is closest
to the process median. Figure 2 shows the schematic diagram of the optimization process.

According to the C–T–P prediction model, when a target property is chosen, there
are usually multiple sets of sample points in the sample space whose prediction property
can reach the target. These sample points constitute a potential area. Expert knowledge
can be expressed as the mathematical relationship constraints between feature parameters,
represented by a hyperplane in the feature space. The part where the potential region
intersects with this hyperplane is the sample point set that satisfies both the target property
and the expert experience constraint. The sample point closest to the process median in
this set is the target optimization point with suitable process parameters.

In order to achieve this optimization process and solve for the suitable process param-
eters, a loss function can be constructed as follows:

δ =
L

∑
i = 1

ai( fi(C, T)− Pi)

2

+
m

∑
j = 1

bj(gj(C, T)− gj
0)

2

+
q

∑
k = 1

ck(Tk − Tk
mid)

2

→ 0 (3)



Metals 2023, 13, 898 5 of 13Metals 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. Schematic diagram of the optimization process. 

According to the C–T–P prediction model, when a target property is chosen, there 

are usually multiple sets of sample points in the sample space whose prediction property 

can reach the target. These sample points constitute a potential area. Expert knowledge 

can be expressed as the mathematical relationship constraints between feature parame-

ters, represented by a hyperplane in the feature space. The part where the potential region 

intersects with this hyperplane is the sample point set that satisfies both the target prop-

erty and the expert experience constraint. The sample point closest to the process median 

in this set is the target optimization point with suitable process parameters. 

In order to achieve this optimization process and solve for the suitable process pa-

rameters, a loss function can be constructed as follows: 

     0)())(()),((

2

1

2

1

0
2L

1i

 


q

k

mid

kkk

m

j
jjjiii TTcgC,TgbPTCfa  (3)

The three items represent the fit degree to the three factors mentioned above, while 

ai, bj, and ck are the weight value of each factor and default to ai = 1, bj = 0.1, ck = 0.01. The 

difference in the magnitude of weight values is what allows the C–T–P model to account 

for the primary influence, and the expert experience constraint accounts for the secondary 

influence, which ensures that the optimization target point is in the intersection area of 

these two factors in the sample space. The third weight value usually takes a small value 

to guarantee a negligible impact on the optimization result, but this simultaneously guar-

antees that the equation has a unique solution. When the raw material parameters (C) and 

target properties (P) are set, the processing parameters (T) with the smallest δ value are 

the optimal result. 

2.2. Machine Learning Algorithms 

As mentioned above, the C–T–P prediction model accounts for the primary influence 

on optimization. Therefore, selecting a suitable machine learning model with high preci-

sion is very important. Here, we introduce two standard quantitative and semi-quantita-

tive models. 

2.2.1. Artificial Neural Network Model 

The regression algorithm can establish a mathematical connection between the char-

acteristic parameters and the target value. The trained regression model can predict the 

target value based on the characteristic parameters. The artificial neural network is a typ-

ical regression model inspired by the multi-layered structure and functioning of biological 

Figure 2. Schematic diagram of the optimization process.

The three items represent the fit degree to the three factors mentioned above, while
ai, bj, and ck are the weight value of each factor and default to ai = 1, bj = 0.1, ck = 0.01.
The difference in the magnitude of weight values is what allows the C–T–P model to
account for the primary influence, and the expert experience constraint accounts for the
secondary influence, which ensures that the optimization target point is in the intersection
area of these two factors in the sample space. The third weight value usually takes a small
value to guarantee a negligible impact on the optimization result, but this simultaneously
guarantees that the equation has a unique solution. When the raw material parameters (C)
and target properties (P) are set, the processing parameters (T) with the smallest δ value
are the optimal result.

2.2. Machine Learning Algorithms

As mentioned above, the C–T–P prediction model accounts for the primary influence on
optimization. Therefore, selecting a suitable machine learning model with high precision is
very important. Here, we introduce two standard quantitative and semi-quantitative models.

2.2.1. Artificial Neural Network Model

The regression algorithm can establish a mathematical connection between the charac-
teristic parameters and the target value. The trained regression model can predict the target
value based on the characteristic parameters. The artificial neural network is a typical
regression model inspired by the multi-layered structure and functioning of biological
neural systems [35]. Thanks to its strong nonlinear fitting ability, it has been applied to
fitting and prediction tasks in material research.

The ANN model has a multi-layer structure. There are one or more hidden layers
between the input and output layers, each containing some nodes. Each node has a separate
weight, bias, and activation function. For example, the sigmoid function is a commonly
used activation function that takes the form:

S(x) = 1/
(
1 + e−x) (4)

The model’s training process involves adjusting each node’s weights and biases via
error back-propagation. However, ANN has a low tolerance for noise in the data and is
prone to overfitting.
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2.2.2. Discriminant Analysis Model

In order to improve the robustness of the C–T–P model, we also proposed a semi-
quantitative Discriminant Analysis (DA) method. By setting the property threshold, the
samples were divided into two categories: qualified and unqualified. Then a discrimi-
nant function was constructed to separate the two types of samples in high-dimensional
sample space.

Usually, discriminant analysis adopts the linear discriminant function. However, in
the study of steel and metal, the qualified product can only be obtained when composition
and process are well matched within a specific range. Property deterioration may result if
these parameters are too high or too low [36,37]. Therefore, the qualified sample region is
usually wrapped in the unqualified sample region. In order to describe this characteristic
accurately, an “ellipsoid” discriminant function, referring to the literature [38], was adopted,
and its form is similar to the standard ellipsoid equation, as follows:

F(X1, X2, . . . XN) =
N

∑
i = 1

(Xi − Xi)
2/bi

2 − 1 = 0 (5)

where Xi represents the median of each feature, and bi is the semiaxis of the “ellipsoid.”
The purpose of the function is to include the concentratively distributed qualified samples
inside the ellipsoid while separating the unqualified samples outside.

Figure 3 shows the training process of the ellipsoid discriminant model. After setting
the property thresholds, the data were normalized to eliminate the influence of different
orders of magnitude on each parameter. Since the distribution direction of the qualified
samples in the hyperspace is usually not parallel to the coordinate axis, principal compo-
nent analysis (PCA) was performed on the qualified data, and all data were transformed
according to the PCA result, as follows:

X = matrixPCA × x (6)
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In this paper, x represents the original value of the raw material and processing
parameters after normalization. X represents the transformed features used in the model,
and matrixPCA is the coordinate transformation matrix based on the PCA result of qualified
samples. In this way, the concentrated distribution directions of the qualified samples are
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parallel to the new coordinate axes, and the “ellipsoid” discriminant function of Equation (5)
has the best classification ability.

3. Results and Discussion

The trial production data of 128 samples of wind power steel from a steel plant were
studied. The concerned properties of the steel are standard mechanical properties, namely
the lower yield strength (ReL) [39] and the impact energy (AKv−20◦C) [40].

Twelve highly correlative parameters were selected, including seven raw material
parameters (chemical element content of C, Mn, S, Nb, and N; steel plate thickness; and
blank thickness) and five processing parameters (heating temperature, second-stage rolling
temperature, thickness ratio after rough rolling, finish rolling temperature, and after-
cooling temperature). Numbers C1–C7 and T1–T5 are used to represent these parameters.
Table 1 lists each parameter and property’s number, maximum, minimum, mean value,
and standard deviation (SD).

Table 1. Wind power steel data set from a steel plant.

Type No. Parameter Min Max Mean SD

Raw Material

C1 C (wt%) 0.15 0.18 0.169 0.0064
C2 Mn (wt%) 0.93 1.46 1.09 0.1568
C3 S (wt%) 0.002 0.018 0.008 0.0033
C4 Nb (wt%) 0.008 0.023 0.011 0.002
C5 N (ppm) 18 65 37 6.82
C6 Steel Plate Thickness (mm) 10 60 23 8.9
C7 Blank Thickness (mm) 220 260 230 17.45

Process

T1 Heating Temperature (◦C) 1192 1240 1219 8.7
T2 Second-Stage Rolling Temperature (◦C) 850 1020 938 31.74
T3 Thickness Ratio After Rough Rolling 1.50 4.15 2.52 0.42
T4 Finish Rolling Temperature (◦C) 785 848 821 11.7
T5 After-Cooling Temperature (◦C) 614 694 657 12.57

Property P1 ReL (MPa) 358 438 403.1 16.5
P2 AKv−20◦C (J) 112 259 188.6 28.4

It was found that each of the 12 parameters fluctuates within a range and ultimately
leads to large-scale fluctuations in the material’s properties. As mentioned above, the
mathematical relationship between C, T, and P in the QF model can be understood using
various quantitative or semi-quantitative models. The C–T–P model has the maximum
weight when solving for the process value, so choosing the appropriate model has a
significant influence on the filtering result.

3.1. Raw-Material–Process–Property (C–T–P) Model
3.1.1. ANN Model

Firstly, a three-layered back-propagation ANN model with the node number 12–15–1
was used to fit the data. We used the 12 raw materials and processing parameters as input
and the P1 (ReL) value as output and selected the sigmoid function as the activation function.
We randomly selected 103 (80%) samples for the training set and used the remaining 25
(20%) to validate the model’s generalization ability.

Figure 4a shows the training process for the ANN model. It was found that the Mean
Square Error (MSE) of the training set gradually decreased with training, while the MSE
of the validation set remained unchanged. This means that overfitting occurred during
training, and the model failed to learn the relationship between input and output correctly.
Figure 4b,c show the fitting results of the training and validation sets, respectively. The
horizontal and vertical coordinates represent the sample property’s true value and the
model’s predicted value. The R-value above represents the distribution slope of the data
points. It was found that the R–value of the training set was close to 1, and the true
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values of the data points were not much different from the predicted values. However,
there is no such feature for the validation set, indicating bad generalization and prediction
performance, possibly due to the noise in industrial data or the small amount of data. The
network was retrained many times by randomly dividing the data set and changing the
network’s architecture, but no better result was obtained, which means the quantitative
ANN model is unsuitable for this case.
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3.1.2. Discriminant Analysis Model

The property thresholds were set to ReL ≥ 380 MPa and AKv−20◦C ≥ 190 J. The data
set was divided into 74 qualified and 54 unqualified samples. The discriminant function
was constructed according to Equation (5) and trained by the perceptron algorithm. The
result of the model shows that there were 22 misclassified samples, and the classification
accuracy was 82.81%, which demonstrates that the ellipsoid model effectively expressed
the characteristics of the data set. The confusion matrix is shown in Table 2.

Table 2. Confusion matrix of the ellipsoid discriminant model classification result.

Ground Truth Class
Classification Result

Qualified Unqualified

Qualified 64 10
Unqualified 12 42

3.1.3. Model Visualization

According to the characteristics of the ellipsoid discriminant function, referring to
the literature [38], the N-dimensional sample space was projected to N planes (two-
dimensional) through a mapping method for visualization. The horizontal axis of each of
the planes is Xi, while the vertical-axis expression is as follows:

Yi =
N

∑
j 6=i

(Xj − Xj)
2/bj

2 (7)
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Meanwhile, the ellipsoid discriminant analysis function is projected to:

F(X1, X2, . . . XN) = Yi + (Xi − Xi)
2/bi

2 − 1 = 0 (8)

The two-dimensional projection result of Equation (5) is in parabolic form. Since
12 parameters were selected in this work, 12 visualization results were obtained. Here we
take X10 as an example, and Figure 5a shows the visualization result. The horizontal and
vertical axes can be expressed as:

X10 = −3.91C1 − 0.42C2 − 7.42C3 + 62.13C4 + 0.0023C5 + 0.0037C6 + 0.0014C7
+8.45× 10−4T1 + 7.71× 10−4T2 − 0.031T3 − 8.91× 10−4T4 + 5.10× 10−4T5 − 1.06

(9)

Y10 = (X1 − 0.022)2/4.24 + (X2 − 0.19)2/0.77 + (X3 − 0.31)2/0.67 + (X4 − 1.02)2/0.51 + (X5 − 0.36)2/0.43+

(X6 − 0.46)2/0.26 + (X7 − 0.30)2/0.22 + (X8 − 0.23)2/0.17 + (X9 + 0.11)2/0.07 + (X11 − 0.32)2/0.08 + (X12 − 0.45)2/0.029
(10)
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Figure 5. Visualization result of the discriminant analysis model: (a) classification result for qualified
and unqualified samples, (b) comparison results before and after QF, the number represents the
sample number.

In Figure 5a, the blue “#” points are qualified samples, the red “×” points are unqual-
ified samples, and the orange parabolic curve is the projected discriminant function that
divides the sample space into two regions and correctly separates most of the samples.

3.2. Expert Experience and Process Median

One piece of expert experience was added: the finish rolling temperature T4 is gen-
erally 75 ◦C above the austenite–ferrite transformation temperature TAr3, as shown in
Equation (11). Table 3 shows the process window and the median of the processing param-
eters intended to apply.

T4 − TAr3 = 75 (11)

Table 3. Process window and median of processing parameters.

Processing Parameter Min Max Median

T1 1160 (◦C) 1250 (◦C) 1205 (◦C)
T2 850 (◦C) 1000 (◦C) 925 (◦C)
T3 1.5 4 2.75
T4 760 (◦C) 860 (◦C) 810 (◦C)
T5 580 (◦C) 720 (◦C) 650 (◦C)
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3.3. Quality Filter Result

After obtaining the three factors and the raw material parameters, the QF model was
applied to solve for the suitable processing parameters. The weight factors were ai = 1,
bj = 0.1, and ck = 0.01, and the optimization function is shown in Equation (12). In this case,
partial differential equations were used to solve for the processing parameters with the
smallest δ. In other cases with different C–T–P models, solving for processing parameters
may require GA or Bayesian optimization [41].

δ = 1×
12

∑
i = 1

(Xi − Xi)
2/bi

2 + 0.1× (T3 − TAr3 − 75)2 + 0.01×
5

∑
k = 1

(Tk − Tk
mid)

2 → 0 (12)

Four samples were selected from the original data set to test the QF model: sample No.
1 was originally a qualified sample, and samples No. 2, 3, and 4 were unqualified. We used the
raw material parameters of these samples to solve for new processing parameters via the QF
model and compared them with the original samples. Figure 5b shows the comparison results
before and after QF. The red “4” points and the green “5” points represent the position of the
samples before and after filtering, respectively. The numbers represent each sample’s number,
and the same number represents the same raw material parameter. The arrow indicates the
position change caused by the change in processing parameters.

It was found that, before filtering, sample No. 1 was located in the “qualified region”
and samples No. 2, 3 and 4 were located in the “unqualified region.” After filtering,
the position of sample No. 1 remained nearly unchanged, while samples No. 2, 3, and
4 moved towards the “qualified region.” This indicates that for a certain set of raw material
parameters, if there are processing parameters in the data set that make it qualified, the
processing parameters given by the model are similar to the original parameters. For
unqualified samples, the new processing parameters given by the model will bring the
sample inside or as close as possible to the “qualified region,” meaning it has the best
chance to meet the property threshold. Thus the purpose of filtering is achieved. As for
sample No. 2, applying the optimized process parameters still fails to make the sample
enter the “qualified region.” Table 4 shows the raw material parameters of the four samples.
It was found that the C2, C6, and C7 parameters of sample No. 2 deviate from the average
value of the data set in Table 1, and the raw material parameters fluctuate more than
other samples. Therefore, matching the appropriate process parameters in the set process
window is difficult. In production, it is recommended to first adjust the raw material
parameters or design a new process window.

Table 4. Raw material parameters and expert experience values of samples No. 3 and No. 4.

Raw Material Parameters Expert Experience

Sample No. C1 C2 C3 C4 C5 C6 C7 TAr3

1 0.17 1.02 0.007 0.009 36 24.6 220 \
2 0.17 1.42 0.011 0.010 34 42.5 260 \
3 0.16 1.01 0.007 0.010 30 22.0 220 755 ◦C
4 0.17 1.00 0.009 0.011 31 20.0 220 750 ◦C

According to Figure 5b, samples No. 3 and No. 4 have the best filtering results, so
validation productions were carried out for these two samples. Tables 4 and 5 compare the
product properties with the original processing parameters and new processing parame-
ters given by the model. Expert experience values of samples, represented as TAr3,were
calculated by empirical formula [42].
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Table 5. Processing parameters and property comparison before and after Quality Filtering.

Processing Parameters Property ReL ≥ 380 MPa and
Akv−20◦C ≥ 190 JSample No. T1 (◦C) T2 T3 (◦C) T4 (◦C) T5 (◦C) ReL (MPa) AKv−20◦C (J)

3
Original 980 2.55 803 670 1214 369 161 Unqualified

QF Result 940 2.51 824 664 1220 431 204 Qualified

4
Original 930 2.30 845 660 1231 402 156 Unqualified

QF Result 953 2.40 819 669 1219 417 187 Nearly Qualified

It was found that for the same raw material, only the hedging adjustment of processing
parameters can increase the product’s ReL and Akv−20◦C by 15–60 MPa and 30–40 J, respec-
tively. Both test samples reached or nearly reached the optimization target of ReL ≥ 380 MPa
and AKv−20◦C ≥ 190 J.

4. Conclusions

This paper proposes a Quality Filter model based on machine learning integrated with
expert experience, which can be used to solve the problem of quality fluctuation caused by
the mismatch between raw material and processing parameters in material production.

• The model has broad applicability because it can apply various quantitative or semi-
quantitative machine learning algorithms.

• It can match appropriate processing parameters according to the fluctuation in raw
material parameters to achieve a hedging effect, thereby improving overall product
quality and narrowing its property fluctuation.

• A set of trial production data of wind power steel from a steel plant was used to
test the model. The results show that for the same raw material, only the hedging
adjustment of the processing parameters can increase the product’s ReL and Akv−20◦C
by 15–60 MPa and 30–40 J, respectively. Both test samples reached or nearly reached
the optimization target of ReL ≥ 380MPa and AKv−20◦C ≥ 190J.
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