Fatigue Behavior and Crack Mechanism of Metals and Alloys
Conflicts of Interest
References
- Qian, D.; Ma, C.; Wang, F. The Effect of Flow Lines on the Mechanical Properties in Hot-Rolled Bearing Steel. Metals 2021, 11, 456. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Takahashi, K. Improving Fatigue Limit and Rendering Defects Harmless through Laser Peening in Additive-Manufactured Maraging Steel. Metals 2022, 12, 49. [Google Scholar] [CrossRef]
- Ngeru, T.; Kurtulan, D.; Karkar, A.; Hanke, S. Mechanical Behaviour and Failure Mode of High Interstitially Alloyed Austenite under Combined Compression and Cyclic Torsion. Metals 2022, 12, 157. [Google Scholar] [CrossRef]
- Choi, J.; Choi, J.; Lee, K.; Hur, N.; Kim, N. Fatigue Life Prediction Methodology of Hot Work Tool Steel Dies for High-Pressure Die Casting Based on Thermal Stress Analysis. Metals 2022, 12, 1744. [Google Scholar] [CrossRef]
- Dharmadhikari, S.; Raut, R.; Bhattacharya, C.; Ray, A.; Basak, A. Assessment of Transfer Learning Capabilities for Fatigue Damage Classification and Detection in Aluminum Specimens with Different Notch Geometries. Metals 2022, 12, 1849. [Google Scholar] [CrossRef]
- Salahshouri, F.; Saebnoori, E.; Borghei, S.; Mossahebi-Mohammadi, M.; Bakhsheshi-Rad, H.; Berto, F. Plasma Electrolytic Oxidation (PEO) Coating on γ-TiAl Alloy: Investigation of Bioactivity and Corrosion Behavior in Simulated Body Fluid. Metals 2022, 12, 1866. [Google Scholar] [CrossRef]
- Ronchei, C. Fatigue Strength Estimation of Ductile Cast Irons Containing Solidification Defects. Metals 2023, 13, 83. [Google Scholar] [CrossRef]
- Narkevich, N.; Vlasov, I.; Volochaev, M.; Gomorova, Y.; Mironov, Y.; Panin, S.; Berto, F.; Maksimov, P.; Deryugin, E. Low-Temperature Deformation and Fracture of Cr-Mn-N Stainless Steel: Tensile and Impact Bending Tests. Metals 2023, 13, 95. [Google Scholar] [CrossRef]
- Romanova, V.; Emelianova, E.; Pisarev, M.; Zinovieva, O.; Balokhonov, R. Quantification of Mesoscale Deformation-Induced Surface Roughness in α-Titanium. Metals 2023, 13, 440. [Google Scholar] [CrossRef]
- Gatina, S.; Polyakova, V.; Modina, I.; Semenova, I. Fatigue Behavior and Fracture Features of Ti-15Mo Alloy in β-, (α + β)-, and Ultrafine-Grained Two-Phase States. Metals 2023, 13, 580. [Google Scholar] [CrossRef]
- Scorza, D. Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion. Metals 2023, 13, 636. [Google Scholar] [CrossRef]
- Balokhonov, R.; Zemlianov, A.; Gatiyatullina, D.; Romanova, V. Computational Analysis of the Influence of Residual Stress on the Strength of Composites with Different Aluminum Matrices and Carbide Particles. Metals 2023, 13, 724. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berto, F. Fatigue Behavior and Crack Mechanism of Metals and Alloys. Metals 2023, 13, 899. https://doi.org/10.3390/met13050899
Berto F. Fatigue Behavior and Crack Mechanism of Metals and Alloys. Metals. 2023; 13(5):899. https://doi.org/10.3390/met13050899
Chicago/Turabian StyleBerto, Filippo. 2023. "Fatigue Behavior and Crack Mechanism of Metals and Alloys" Metals 13, no. 5: 899. https://doi.org/10.3390/met13050899
APA StyleBerto, F. (2023). Fatigue Behavior and Crack Mechanism of Metals and Alloys. Metals, 13(5), 899. https://doi.org/10.3390/met13050899