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Abstract: The objective of this study was to investigate the effect of varying bias parameters (−50 V,
−100 V, and −150 V) on the properties of TiN/CrN multilayer films deposited on Ti-6Al-4V alloy
using the cathodic arc deposition (CAD) technique. The deposited films were characterized for their
composition, structure, morphology, thickness, adhesion, and hardness. Wear and polarization tests
were also conducted to determine the optimal bias condition for wear and corrosion resistance. The
results showed that the TiN/CrN films possessed a nano-multilayered structure comprising TiN
and CrN phases. The hard coating significantly increased the surface hardness of Ti-6Al-4V alloy
up to three–five times. The coated specimens demonstrated superior wear resistance compared to
the uncoated, with the −150 V specimen exhibiting the least wear rate. Furthermore, the −150 V
specimen had the highest polarization impedance value, indicating the best corrosion resistance
compared to the other bias conditions. In short, the use of CAD-coated TiN/CrN multilayer film
enhanced the surface properties of Ti-6Al-4V alloy, with the best wear and corrosion resistance
achieved at −150 V bias. These novel findings have significant implications for improving the
performance and durability of Ti-6Al-4V alloy components in various industrial applications.

Keywords: Ti-6Al-4V; cathodic arc deposition; TiN/CrN nano-multilayer film; wear resistance;
corrosion resistance

1. Introduction

Titanium is a popular metal due to its excellent properties, such as good corrosion
resistance, lightweight, ease of processing, good biocompatibility, and higher specific
strength than steel. It can be further improved by the addition of other elements to form
titanium alloys, making them suitable for various engineering applications [1,2]. For
example, Ti-6Al-4V alloy is one of the most widely used titanium alloys in the aerospace,
biomedical, and chemical industries [3,4]. However, it is important to note that Ti-6Al-
4V alloy has a drawback of weak wear resistance, making it unsuitable for high-stress
friction applications.

Surface modification is a widely adopted technology to enhance the wear and corrosion
resistance of metals. To meet the need for surface modification, several researchers [5–13]
have investigated the effect of various coatings on the properties of Ti-6Al-4V alloy. For
instance, B. Rahmati et al. [5] employed sputtering to deposit TaO2 films on the Ti-6Al-4V
substrate, resulting in improved corrosion resistance and durability owing to the excellent
coating adhesion. Cheng et al. [6] employed plasma electrolytic oxidation (PEO) to create
a coating on the Ti-6Al-4V alloy, consisting of rutile and anatase materials, along with
the silicon and phosphorus species. The increased wear resistance in dry sliding wear
tests is presumed to be due to the diversity in the coating’s composition and morphology.
Kaseem et al. [12] applied a micro-arc oxide (MAO) coating on the Ti-6Al-4V alloy, leading
to improved corrosion resistance through the enhanced electrochemical stability of the
coating. Vella et al. [13] investigated the impact of dual treatment with the shot peening (SP)
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and physical vapor deposition (PVD) coatings on the tribocorrosion behavior of Ti-6Al-4V
alloy. The results showed that the dual-treated samples displayed excellent corrosion-
wear resistance while unobtrusively enhancing the corrosion performance of the Ti-6Al-4V
substrate. In summary, the various surface treatments mentioned above had diverse effects
on enhancing the properties of the Ti-6Al-4V alloy.

Cathodic arc deposition (CAD) is a PVD technique that has been used to deposit
ceramic hard films onto metallic surfaces, with most of these coatings exhibiting excellent
wear and corrosion resistance properties. For example, the application of nitride films (such
as TiN, CrN, ZrN, CrYN, and TiAlN) on various metallic materials using CAD has been
demonstrated to significantly strengthen their wear and corrosion resistance [14–20]. In
previous studies [21–24], a dual-coating design comprising an electroless nickel plating
interlayer and a ceramic hard coating on ductile iron showed good corrosion resistance.
This is because the electroless nickel interlayer effectively fills the graphite holes on the
surface of ductile iron, resulting in increased adhesion of the ceramic hard film to the
substrate and improved surface properties. Additionally, several studies have also explored
the performance of various multilayer coatings, showing the positive effects of surface
modification [25–29].

In this study, CAD technology was used to deposit a multilayered TiN/CrN film
onto the Ti-6Al-4V alloy. The negative bias processing parameter was varied during the
coating process, and subsequently, thin film analysis, wear tests, and polarization tests were
conducted to investigate the effect of negative bias on coating properties, wear resistance,
and corrosion resistance. This research aimed to identify the optimal process parameters
and evaluate the potential of TiN/CrN nano-multilayer coatings in improving the surface
properties of Ti-6Al-4V alloy.

2. Materials and Methods

The materials and methods utilized in the study are presented in the following subsec-
tions to provide a clear understanding of the various work details.

2.1. Material Preparation and CAD Treatment

In this study, the experimental material was the commercial Ti-6Al-4V alloy bars. The
chemical composition of the alloy was analyzed using glow discharge optical spectroscopy
(GDOS), and the result is shown in Table 1. These bars were machined into disc-shaped
substrates with a diameter of 25 mm and a thickness of 6 mm. Prior to the CAD coating
process, the specimens underwent mechanical grinding and polishing to achieve a surface
roughness of 0.06 µm (Ra value), ultrasonic cleaning with alcohol, and then drying with
warm air.

Table 1. Chemical composition of the Ti-6Al-4V alloy in the study (wt.%).

Al V Fe O C N Ti

6.20 4.11 0.23 0.15 0.07 0.05 Bal.

The CAD treatment involved the use of two targets, Ti pure-metal (99.99%) and Cr
pure-metal (99.99%), and the specimens were placed face-to-face in a vacuum chamber
and passed into N2 reactive gas for the deposition of TiN/CrN multilayer films. The bias
voltage of the substrate was varied, which was mainly set at −50 V, −100 V, and −150 V. To
monitor the substrate temperature during the CAD coating process, a thermocouple was
placed near the specimen’s holder. Table 2 provides more information on the processing
parameters used in the study.
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Table 2. The processing parameters of the CAD in the study.

Parameter Value

Ti cathode current (A) 60

Cr cathode current (A) 60

Working pressure (Pa) 2.67

Ar+ bombardment (V/min) −700/10

Substrate bias (V) −50, −100, −150

Substrate temperature (◦C) 240

Rotation rate (rpm) 4

Deposition time (min.) 50

2.2. Analysis of Coating Characterization

Several analytical techniques were adopted in the study to evaluate the characteriza-
tion of coated specimens. The cross-sectional morphology and film layer thickness were
observed using a field emission scanning electron microscope (FESEM, Hitachi SU-8000,
Tokyo, Japan). The coating structure was identified using an X-ray diffractometer (XRD,
MAC Science-M21X, Tokyo, Japan) by scanning the angular range of 20◦ to 100◦ with
Cu-Kα radiation. The chemical composition of the films was determined by electron probe
microanalysis (EPMA, JEOL JXA-8530F Pus, Tokyo, Japan) for the Cr, Ti, and N elements.

The surface roughness of the specimens was assessed using a surface roughness
analyzer (Mitutoyo SV-400, Kanagawa, Japan). The adhesion strength quality (ASQ) [30] of
the films was determined by Rockwell C indentation testing with a 150 kg load to evaluate
the adhesion between film and substrate. Nanoindentation measurements were conducted
using a nanoindenter (MTS XP system, Cary, NC, USA) with a diamond Berkovich tip to
determine the hardness and Young’s modulus values of the films. The load-displacement
curves were analyzed using the Oliver and Pharr method [31] with a load of 4 mN, and the
values obtained for each coating condition were averaged from 20 indentations. In addition,
the surface hardness (HV) of the specimens was measured before and after coating using a
micro-hardness tester to understand the coating effect on the surface hardness of Ti-6Al-4V
alloys. Each specimen was tested five times with a testing load of 100 g to obtain the
average value.

2.3. Wear Testing

The study utilized a ball-on-disc tribometer (CSM Instruments, Needham, MA, USA)
to perform wear tests under the following conditions: (1) no lubricant; (2) circular track with
a 30 mm diameter against a 6.0 mm diameter WC-6%Co ball; (3) wear speed of 0.17 m/s;
(4) a normal load of 3 N; and (5) at room temperature and 65% relative humidity. The
friction coefficient and total travel distance of 600 m were recorded during the tests. The
specimen’s weight was measured before and after the test using a precision electronic scale
(×10−4 g) to calculate the wear rate. The worn surface of the specimens after the wear
testing was examined using FESEM.

2.4. Corrosion Testing

To evaluate the corrosion behavior of the specimens with/without coating, anodic po-
tentiodynamic polarization tests were performed. The tests used a potentiostat/galvanostat
apparatus (EG&G model 263A, Baltimore, MD, USA) with a corrosive medium of 3.5 wt.%
NaCl solution to simulate the seawater environment. A standard saturated calomel elec-
trode (SCE) was used as a reference, and platinum was used as a counter- or auxiliary
electrode. The contact area of specimens was 1 cm2, and the tests were carried out at
ambient temperature. The electrode potential range was raised from −0.7 V to 0.3 V at a
scanning rate of 1 mV/s. All polarization curves were plotted after 30 min of free immer-
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sion of the specimens to stabilize the open circuit potential (OCP). The corrosion potential
(Ecorr), corrosion current density (Icorr), and polarization resistance (Rp) were obtained
for each specimen according to both the polarization curve and the Tafel extrapolation
method [32]. The corrosion rate of the corroded specimens was calculated from Faraday’s
law presented in the related literature [33,34]. FESEM examination was also performed to
observe the corroded surface appearances of the specimens. In addition, the EDS analyses
were used to confirm the corrosion products on the specimen’s surface.

3. Results and Discussion
3.1. Coating Composition and Structure

The EPMA analysis revealed the chemical composition of the coatings, and the bias
effect on the elemental content is shown in Figure 1. As compared, an increase in bias
value leads to an increase in Ti content and a decrease in Cr content in the films, while
the N content remains relatively constant. This outcome suggests that TiN is more likely
to produce nitrides compared to CrN. This is because titanium has a higher affinity for
nitrogen compared to chromium. In other words, titanium readily reacts with nitrogen
to form nitrides, while chromium is less reactive with nitrogen. Therefore, TiN coatings
typically have a higher nitrogen content compared to CrN coatings. Moreover, this trend
becomes more pronounced as the bias value increases. These findings have significant
implications for the coating morphology and surface roughness.
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Figure 1. Bias effect on the elemental concentration of the films.

Figure 2 displays the XRD patterns of each coated specimen. The analysis indicates
that the three films (−50 V, −100 V, −150 V) exhibit (111), (200), (220), (311), and (222) peaks,
respectively, at the diffraction angle of 36.8◦, 42.7◦, 62.0◦, 74.4◦, and 78.3◦, which are the
overlapped peaks of TiN and CrN phases. Both TiN and CrN phases preferentially generate
in the (111) plane, which is a specific crystal structure of sodium chloride type [35,36].
Therefore, the film structure mainly comprises TiN and CrN duplexes.
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3.2. Coating Morphology and Thickness

The study utilized FESEM to observe the surface of Ti-6Al-4V substrates before and
after coating, as depicted in Figure 3. The uncoated substrate had a polished state with a
relatively flat surface, as shown in Figure 3a. After the coating treatment, a significant num-
ber of micro-droplets were deposited on the coated specimens, as illustrated in Figure 3b–d,
where the −150 V specimen showed the least amount of micro-droplets. This is because,
with an increase in the bias value, the film deposition rate decreases, resulting in a denser
film layer and reducing the formation of micro-droplets. Therefore, the surface roughness
tends to decrease as the bias value increases, which is confirmed by the comparison of
Ra values among the specimens in Figure 4. The Ra values of the coated specimens in
ascending order are −50 V, −100 V, and −150 V. Similarly, the film thickness tends to
decrease as the bias value increases, as shown in Figure 5a–c. The order of film thickness
is 5.71 µm for −50 V, followed by 4.13 µm for −100 V and 3.93 µm for −150 V. Thus, the
bias value affects the deposition rate of the film; that is, as the bias value increases, the film
thickness decreases, along with the surface roughness.
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Figure 5. SEM cross-sectional view of the coated specimens. (a) −50 V; (b) −100 V; and (c) −150 V.

Figure 6 further provides a high-magnification scanning electron microscope (SEM)
image to reveal a nano-multilayered structure of the film (−150 V). It can be observed that
the duplexes in the multilayer have thicknesses of approximately 14.3 nm and 11.4 nm,
respectively. Based on the relative amounts of titanium and chromium in the film, it
is presumed that the thicker layer is titanium nitride (TiN), while the thinner layer is
chromium nitride (CrN). In Figure 6, we can also see the typical structure of columnar
crystals of CAD coating, as shown with the arrows. However, it is worth noting that the
columnar structure of the film is not evident due to the multilayered formation, which
impedes the growth of columnar crystals. Such a result may affect the corrosion behavior
of Ti-6Al-4V coated with film, as discussed in Section 3.5.

3.3. Coating Adhesion and Hardness

The results of the adhesion test in the study are presented in Figure 7a–c, which shows
the surface pattern of the coated specimens with different bias values after the indentation
test. It is evident that there is no peeling observed around the indentation of the three
coated specimens. Upon comparison with the ASQ standard [30], it can be observed that
the three specimens display an indented appearance that falls close to HF1. This suggests
that the adhesion of the TiN/CrN multilayered coating on Ti-6Al-4V is satisfactory and
meets the required standards.
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Figure 7. Fracture morphology of the coated specimens indented by Rockwell-C hardness tester.
(a) −50 V; (b) −100 V; and (c) −150 V.

The nanoindentation hardness tests were performed to obtain the data containing
film hardness (H), elastic modulus (E), and H/E value, as listed in Table 3. The data are
compared in Figure 8a,b, and the results reveal a slight increase in film hardness with an
increasing bias value. The −150 V specimen exhibits the highest hardness value (26.8 GPa)
due to having the highest Ti content in the multilayer, which leads to the formation of more
of the harder TiN phase. The elastic modulus of the three coatings ranges from 306.3 to
314.7 GPa, with an E value of 311.5 GPa for the −150 V specimen. Additionally, the values
of H/E follow the order of −150 V > −100 V > −50 V. These findings may have an impact
on the wear behavior of the film.

Table 3. Hardness (H); Elastic Modulus (E); and H/E values of the coated specimens.

Specimen Hardness, H (GPa) Elastic Modulus, E
(GPa) H/E

−50 V 24.0 ± 1.6 306.3 ± 12.4 0.078

−100 V 25.8 ± 1.3 314.7 ± 13.3 0.082

−150 V 26.8 ± 1.3 311.5 ± 13.8 0.086
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On the other hand, the HV hardness test can mean to be a surface hardness index with
a substrate effect for coated specimens, as the indentation depth of the HV hardness test is
greater than the thickness of the film. In this study, a comparison of the HV hardness values
among the specimens is shown in Figure 9. The result was similar to the nanoindentation
hardness; it showed that Ti-6Al-4V has a significant increase in surface hardness from
333 HV to 1087–1765 HV after coating. The surface hardness of the coated specimen
was promoted approximately three–five times more than the substrate. Furthermore, the
hardness value of the coated specimen increased with increasing bias value, where the
−150 V specimen had the highest surface hardness value (1765 HV).
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3.4. Analysis of Wear Behavior

Figure 10 compares the friction coefficients obtained for each specimen after the wear
test. The result illustrates that the coated specimens have a higher friction coefficient
compared to the Ti-6Al-4V specimen (0.6–0.8 vs. 0.4). This can be attributed to the fact
that the uncoated specimen with the lowest roughness after grinding and polishing has
a lower friction coefficient. A comparison of the coated specimens also shows that the
friction coefficient tends to be the same as the surface roughness (see Figure 4). That
is, the smaller the surface roughness, the lower the coefficient of friction. The friction
coefficient of the specimen is thus directly dependent upon the surface roughness. In
addition, another important indicator of wear test results is to use the wear rate to evaluate
the wear resistance [37]. In this study, it was observed that the wear rate of the coated
specimens was significantly lower than that of the uncoated ones, as illustrated in Figure 11.
This suggests that TiN/CrN multilayered film-coated Ti-6Al-4V specimens can greatly
enhance wear resistance. The wear rate of the coated specimens also correlates with the
H/E value, which is in agreement with the literature [38]. Specifically, the higher the H/E
value, the lower the wear rate, resulting in better wear resistance. Therefore, among the
three coated specimens, the one with a potential of −150 V exhibited the lowest wear rate
and, thus, displayed the best wear resistance.
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Figure 12 is the surface image of each specimen after the wear testing, which further
supports the results of the above wear tests. Figure 12a shows that the uncoated specimen
had an adhesive wear mechanism with a deeper and wider worn track due to its low
surface hardness. On the other hand, the coated specimens exhibited significantly higher
hardness, leading to a lower wear rate and shallower wear marks as a result of the abrasive
wear mechanism. This is illustrated in Figure 12b–d. It is clearly seen that the −150 V
coated specimen had the highest hardness and, therefore, corresponded to the narrowest
wear trajectory, as shown by the red dashed line in Figure 12d.
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(b) −50 V; (c) −100 V; and (d) −150 V (Red dotted line: the width of the wear track).

3.5. Analysis of Corrosion Behavior

Figure 13 displays the polarization curves of the specimens obtained from polarization
tests. The data of corrosion potential (Ecorr), corrosion current density (Icorr), and polariza-
tion resistance (Rp) were determined from the curves to evaluate the corrosion resistance of
each specimen, as presented in Table 4. The results revealed that the −150 V specimen had
the highest corrosion potential and polarization resistance, indicating the best corrosion
resistance among all specimens. However, the corrosion resistance of the coatings tends to
decrease as the bias value decreases. This is likely due to the influence of micro-droplets
and film density on the specimen’s surface. The previous study also suggested that film
density could be refined by higher negative bias [39]. In this study, the decrease in negative
bias resulted in an increase in micro-droplets and holes to decay the corrosion resistance.
In Figure 13, it is noted that there are current peaks in the anodic branch of polarization
curves for the coated specimens. The appearance of current peaks in the anodic branch
of polarization curves during a polarization test can be generally attributed to various
phenomena, depending on the specific system being studied. In this study, one possible
cause is the occurrence of localized corrosion, such as pitting corrosion, which can lead
to the formation of preferential anodic sites on the surface. These sites can result in the
formation of local anodic peaks in the polarization curve as the potential is increased. Such
a result can be evidenced by the observation in Figure 14.
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Table 4. Polarization data of the specimens after polarization tests.

Specimen Ecorr. (V) Icorr. (×10−8 A/cm2) Rp (Ohm/cm2)

Ti-6Al-4V −0.21 2.6 337,595

−50 V −0.09 7.1 208,718

−100 V −0.08 6.5 348,665

−150 V −0.06 5.8 412,951
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(a) Ti-6Al-4V; (b) −50 V; (c) −100 V; and (d) −150 V.

Figure 14 presents the surface appearance of each specimen after the corrosion test.
The uncoated Ti-6Al-4V alloy seems to exhibit slight corrosion with only a trace amount of
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chloride (TiCl4) products because of its inherent resistance to saltwater corrosion (Figure 14a.
As is known, this is inherently characterized by the formation of a dense TiO2 layer on the
surface of the Ti-6Al-4V alloy. Regarding the coated specimens shown in Figure 14b–d, the
main corrosion behavior observed was the occurrence of pitting corrosion at the coating
micro-droplets, as stated previously, with the −150 V specimen experiencing the least
amount of pitting, as depicted in Figure 14d. This can be attributed to the fact that the
−150 V specimen has the fewest micro-droplets on its surface, resulting in the best corrosion
resistance. Additionally, it can be inferred that the multilayer structure acts as a barrier
that prevents the corrosive medium from directly penetrating the substrate through the
columnar grain boundaries.

Additionally, some literature suggested that the corrosion rate can be calculated using
the corrosion current density obtained from the polarization curves [33,34]. In this study,
the corrosion rate of the specimens was determined according to the relevant literature,
and the results are presented in Figure 15. Comparing the corrosion rate data indicates
that the coated specimens have a slower corrosion rate (0.46–0.57 × 10−4 mm/yr) than
the uncoated ones (2.51 × 10−4 mm/yr), confirming that Ti-6Al-4V coated with TiN/CrN
nano-multilayers can enhance corrosion resistance. Among all the specimens, the specimen
coated at −150 V exhibits the lowest corrosion rate (0.46 × 10−4 mm/yr) to indicate the
best corrosion resistance.
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4. Conclusions

1. The coating structure studied was primarily a nano-multilayered film, which was
made up of alternating layers of TiN and CrN duplexes. The multilayer film demon-
strated good adhesion to the Ti-6Al-4V substrate. As the bias value increased, the film
thickness was thinner, but the film structure became denser, and the surface roughness
was reduced.

2. The nanoindentation hardness and microhardness of the film increased as the bias
value was raised, indicating a denser film structure. The specimen treated with a
bias value of −150 V displayed the highest film hardness (26.8 GPa) and surface
microhardness (1765 HV) among all the specimens.

3. The coated specimens exhibited a higher friction coefficient in comparison to the
uncoated Ti-6Al-4V, which was due to the coating’s increased surface roughness.
However, despite this, the wear rate of the coated specimens was notably lower than
that of the uncoated ones, indicating an improvement in abrasion resistance.

4. The Ti-6Al-4V alloy is well-known for its inherent ability to resist corrosion in saltwater
environments. However, when coated with a TiN/CrN nano-multilayer film, it was
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found that the specimen treated at bias values of −150 V demonstrated the highest
corrosion potential and polarization resistance values, indicating an enhancement in
corrosion resistance. Nevertheless, the coating effect on the corrosion resistance of
the Ti-6Al-4V alloy is somewhat limited compared to the significant improvement
observed in its wear resistance.
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