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Abstract

:

Inverse problems can be challenging and interesting to study in the context of metallurgical processes. This work aims to carry out a method for inverse modeling for simultaneous double-frequency induction hardening process. In this investigation, the experimental measured hardness profiles were considered as input data, while the output data were the process parameters. For this purpose experiments were carried out on C45 steel spur-gear. The method is based on machine learning algorithms and data treatment for dealing with inverse approach issues. In addition to the inverse modeling, a forward problem-based verification completes the study. It was found that according to promising results that this method is suitable and applicable for inverse problem of hardness modeling.
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1. Introduction


Induction hardening (IH) is a heat surface treatment process that is widely employed in various industries, such as aerospace and automotive, to improve the mechanical properties of workpieces [1,2]. The process begins with a powerful induction heating, followed by a rapid quenching step. It has the advantage of providing rapid and localized surface heating of the desired areas without affecting the metallurgy of the bulk material, as well as good reproducibility [3]. As a result, a fine-grained martensite phase [4,5,6] and a compressive residual stress field [7,8,9] are induced in the surface layer, which enhances the fatigue life behavior of engineering components [10,11]. However, high temperatures coupled with longer heat time could lead to grain growth (causing a degradation in fatigue strength), data scatter, and excessive gear distortion [12,13]. Accordingly, the control of the process parameters is highly important to validate the effectiveness of this heat treatment process [14]. This type of investigation is known as the forward approach.



In the inverse approach, the goal is to determine the cause of a given effect, or to reconstruct an unknown quantity from observations or measurements [15]. This approach is often regarded as a critical and challenging issue for physics, science, and engineering. In fact, it requires making assumptions and using mathematical models to estimate the unknown parameters that are responsible for the observed data. Moreover, it often involves non-unique solutions and high computational power demands. Inverse problems can be found in many fields such as computer vision and imaging [16,17,18,19,20], vibration mechanics [21], electromagnetic [22] medicine [23,24], groundwater modeling [25], and machine learning [26,27]. When the solution to such problems is not unique or sensitive to small perturbations in the data, they represent ill-posed problems. These problems are usually more difficult to solve than well-posed problems and require additional assumptions or regularization to obtain a unique and stable solution.



Concerning the forward problem, a significant amount of research works has been conducted to study the IH process [28,29,30,31,32,33,34]. While experimental approaches can provide valuable insights [35], they can be time-consuming and have limitations in terms of the range of validation. A more efficient method for guiding and optimizing processes is the use of numerical techniques, such as finite element modeling (FEM), which has proven to be relevant in dealing with multiphysics-based parametrized problems [36]. As a result, many studies have focused on using FEM to analyze hardness with relevant accuracy [37,38,39,40,41,42,43]. However, this approach is restricted by the computational cost. Hence, machine learning algorithms have been recently employed. They tend to reduce computational time while maintaining accuracy in the modeling of parameters of interest such as hardness and residual stress [38,44,45,46].



In the context of an inverse problem, fewer studies have been conducted for IH. They are related to the estimation of the power levels using the temperature as input in steel cylinders [47] and the heat transfer coefficient using the surface temperature in a steel billet [48]. In industry, solving the inverse problem for IH can have a number of benefits. Some of the main goals include improving efficiency by determining the optimal input parameters to meet the technical specifications for a given workpiece, reducing the amount of time and resources required to produce a desired output, and improving efficiency and precision. Moreover, it allows more flexibility in the hardening process, making it possible to treat different workpieces or geometries.



This work proposes to study the induction hardening process with inverse problem approach. The inverse problem can be defined as follows: Let A and B be two spaces and   f : A → B   an operator. Consider the equation


  f ( p ) = h  



(1)




where   h ∈ B   is the exact datum. Finding the function f satisfying the above equation, given f and h, is the inverse problem associated to Equation (1). In the present case, A and B should be the space of the induction process parameters and the space of hardness, respectively. Inverse problems can be solved using a variety of mathematical techniques such as optimization [49,50], regularization [51,52,53], Bayesian inference [54,55,56] and machine learning algorithms [57,58]. In this work, a simple method based on machine learning is presented to solve the problem expressed by Equation (1). Section 2 presents the experiments from which the data are collected. Section 3 is dedicated to the definition of the inverse problem in the context of induction hardening. Section 4 shows the results and the validation through the forward problem.




2. Experimental Details


The series of induction hardening experiments under simultaneous double-frequency is performed on C45 steel spur-gears. The gear data was summarized in Table 1, while the process parameters were listed in Table 2. During these experiments, gears were mounted on a rotating chuck. The heating phase was performed by using a rectangular shape inductor of 12.25 × 20 mm having an air-gap of 2 mm, while the subsequent cooling shower of a polymer–water mixture was applied by another coaxial ring as shown in Figure 1. The temperature on the surface at the tooth root was measured using an Optris pyrometer. Micro-hardness Vickers (HV0.3) profiles were conducted in the normal direction to the surface of the gear at the tooth tip and root and on a transversal section, according to ISO 6507 norm [59], to determine the penetration hardening at these two locations.




3. Inverse Problem


An inverse problem is the process of calculating from a set of observations the input parameters that produced them. Hence, in the present case, the measured hardness profiles should be set as input in a machine learning algorithm to predict the process parameters.



3.1. Hardness Profile Treatment


Based on the collected experimental data, the space X of available variables can be defined as:


  X = { M F , H F ,  P  M F   ,  P  H F   , T , d , t , H }  



(2)




where   M F   and   H F   are the medium and high frequency, respectively,   P  M F    and   P  H F    are their respective generator powers, T is the temperature measured at the surface close to the tooth root, d is the depth at which the hardness was measured, t is the heating duration, and H is the measured hardness. Frequencies being almost constant, they can be excluded. Hence, the studied space of variables reduces to:


  X = {  P  M F   ,  P  H F   , T , d , t , H }  



(3)







The process parameters are the time and generator powers   P  M F    and   P  H F   . Hence, the problem can be described as finding a model f such as:


  f  ( H )  =  ( t ,  P  M F   ,  P  M F   )   



(4)







There are 31 runs as listed in Table 2 composed of 60 hardness measurement point each. Hence, the hardness set as input, there are as many input variables such as:


  f  (  H 1  ,  H 2  , . . . ,  H 60  )  =  ( t ,  P  M F   ,  P  H F   )   



(5)







However, it is preferable to have fewer variables than data points [60,61] to allow the use of linear algorithms for modeling. It was previously shown that it is efficient to encode a profile as a few variables [38]. This procedure has the advantage of standardizing the profile to a fixed number so that any new profile would be treated equally and avoid data shape problems. Hence, in this work, each hardness profile is encoded as 5 characteristic points. The first point   H 0   is at a depth of 3  μ m. The second and third ones   H 1   and   H 2   correspond to the hardness measurements localized at   1 / 3   and   2 / 3   of the total depth, respectively. Then,   H 08   is the hardness at the conventional depth such that    H 08  = 0.8 ×  H 0   . The last one   H 3   is the last measured point of the profile which corresponds to the bulk hardness. Some profiles with their selected hardness points are illustrated in Figure 2.



Then, H can be decomposed as:


  H = {  H 0  ,  H 1  ,  H 08  ,  H 2  ,  H 3  }  



(6)







The inverse problem can be now written as:


  f  (  H 0  ,  H 1  ,  H 08  ,  H 2  ,  H 3  )  =  ( t ,  P  M F   ,  P  H F   )   



(7)








3.2. Experiencing the Ill-Posed Problem


The inverse problem encounters a major issue. A combination of the output parameters into one should be a solution. Indeed, hardness depends on temperature history, it is the product of the power of generators   P  H F    and   P  M F    and the time t. To prove the non-uniqueness of a solution, considering an artificial neural network (ANN) as f in Equation (7), known as a universal function approximator, which means that, theoretically, it can learn any mathematical function, regardless of its complexity [62]. Moreover, as a global estimator, if a solution exists, a sufficient number of iterations (epochs) during the training should let the ANN converge to it. An ANN with three hidden layers all composed of 120 neurons was built, and a dropout layer to ensure avoiding overfitting [63] was added to the neural architecture. The ANN was trained on several different hyperparameters and number epochs to reach convergence.



The results of the ANN are almost constant for each target variables as illustrated in Figure 3. Moreover, the ANN doesn’t converges to a unique solution, as seen in the evolution of the training phase shown in Figure 4, which confirms the absence of a unique solution.




3.3. Physics-Informed Inverse Problem


In this inverse problem, the output parameters are the powers   P  H F   ,   P  M F   , and time t. As mentioned above, the major issue is the difficulty in predicting a unique vector solution of these 3 parameters. Therefore, it is essential to define a combination of the output parameters based on physical principles. The physic-based proposed combination leading to the energy reads:


  E = t × (  P  H F   +  P  M F   )  



(8)







However, it is known that the tooth tip and the tooth root are influenced by the high and medium frequencies of the process, respectively [64,65,66]. The generators work simultaneously under the same heating time; hence, it is possible to consider the problem based on the specific location in the gear in order to obtain more information about the different process parameters such as:


      E  H F   = t ×  P  H F          E  M F   = t ×  P  M F       



(9)







Hence, the inverse problem defined in Equation (7) can be expressed as:


     f  (  H  t , 0   ,  H  t , 08   ,  H  t , 1   ,  H  t , 2   ,  H  t , 3   )  =  E  H F         f  (  H  r , 0   ,  H  r , 08   ,  H  r , 1   ,  H  r , 2   ,  H  r , 3   )  =  E  M F       



(10)




where   H t   and   H r   are the hardness measured at the tooth tip and tooth root, respectively.



Finally, the initial inverse modeling is reduced to a simple regression problem. The tested algorithms and results are presented in the next section.





4. Inverse Modeling and Results


The modeling was divided into two stages. First, data were used in several machine learning techniques and tested to evaluate the best algorithm. These algorithms vary from complex such as XGBoost to multi-linear regression. It is important to use quite simple algorithms when it is possible to save computational time. Second, the results of the inverse model were used in the forward problem for validation purpose.



4.1. Inverse Modeling


The dataset was composed of 60 runs (30 runs in both, the tooth root and tooth tip). It is worth mentioning that 70% of the dataset was considered for training, and 30% for test. As mentioned above, different models were selected to predict the energy such as XGBoost regressor [67], Random Forest (RF) [68,69], Multi-linear regression [70], and Support Vector Regressor (SVR) [71,72].



The obtained results listed in Table 3 show a satisfying performance for each model as the error is relatively low (<10%). It suggests that the inverse problem is now properly defined.



The characteristic hardness measurements chosen for variables are meaningful according to the promising obtained results. As the error differs depending on the data that are randomly put in training and testing during the split, the selection of the data was optimized with respect to test results. However, cross-validation technique [73] was used to ensure the robustness of the model but is unstable because of the small number of samples [74,75]. With this amount of data, the presented models cannot be generalized. Results from multi-linear regression model were illustrated in Figure 5.



It is worth noticing that the data are well predicted within the fixed ranges of energy. Moreover, these results show that a simple algorithm such as multi-linear regression can handle the simplified problem.




4.2. Forward Problem Consistency


In order to ensure that it is possible to turn back to the forward problem with the available variables presented in the previous section, the next step of this work is to predict the hardness with the previous output parameters i.e., the energy. The problem could be expressed as:


     f  (  E  M F   )  =  (  H 0  ,  H 08  ,  H 1  ,  H 2  ,  H 3  )        f  (  E  H F   )  =  (  H 0  ,  H 08  ,  H 1  ,  H 2  ,  H 3  )      



(11)







Predicting multiple outputs with one variable as input is fairly complex in regression especially when the variables are dependent on each other. Since the hardness points   (  H 0  ,  H 08  ,  H 1  ,  H 2  ,  H 3  )   were selected from fixed depth to keep the data homogeneity, it is possible to divide the hardness and depth into 2 variables. The depth being known, it can be considered as an input variable.



Hence the input space of the variables could be written as:


  X = { E , l o c , d }  



(12)




where E is the energy of the location of the point,   l o c   is the location, either the root or tip of the tooth, and d is the depth of the measured hardness. Therefore, the problem is such as:


  f ( E , d , l o c ) = H  



(13)







There are some differences between the inverse and forward approaches. The location in the gear is now considered as the input variable   l o c  . Contrary to the inverse approach using one model per location, in the forward problem the locations are encoded and only one model is needed. In addition, in the inverse problem, one instance represents a hardness profile, while in the forward problem, an instance is now a single hardness measurement linked to its depth. Because of this difference and to ensure consistency of the profiles while splitting for training and testing sets, the data are split according to their respective profile. Therefore, 24 profiles were considered for training, leaving seven profiles for the testing phase. The results of the four models for the forward approach show fairly different errors from misprediction to promising results. They are listed in Table 4.



It is clear that the XGBoost and Random Forest algorithms comparatively give a much better prediction of the hardness. The best models are illustrated in Figure 6. Bulk and surface hardness (≈300 HV and 700 HV) are well predicted, while both models showed difficulties when predicting hardness in the transition phase (between surface and core hardness). This difficulty can be explained by several factors.



Indeed, the problem is already complex, and the number of samples used is fairly low. Moreover, the variables are limited to those that have already been used in the inverse problem. However, it is known that the surface and in-depth temperatures [44] or the austenite ratio [38] can highly increase the accuracy of the hardness prediction in the the transition zone. Beyond this method, such variables could be used to enhance the efficiency of the model.





5. Conclusions


This work proposed an inverse approach of the hardness. Data were collected from induction hardening experiments carried out on C45 spur-gear. In this work, an inverse modeling based on machine learning was presented. This method consists of predicting process parameters of induction hardening treatment based on the hardness profiles. The method proceeded by discretizating the profiles, the combination of the process parameters, and the forward problem-based verification. The main conclusions were as follows:




	
The discretization of hardness profile and the physics-based combination of the output variables of the data were essential to conduct the inverse modeling.



	
It was shown that simple algorithms were efficient to predict the energy.



	
The number of available samples was too small to prove the generalization of the model.



	
The results of the forward problem verification proved the efficiency of the proposed approach.








It is worth outlining that the inverse approach model has the advantage to be simple and easy to conduct with no data shape issues. In addition, the developed method have the advantages of a shorter time response than complex inverse methods which is highly suitable for process optimization. In the light of the results, the proposed inverse approach can be used in induction hardening optimization.
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Figure 1. Experimental double-frequency induction hardening setup. 
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Figure 2. Selected hardness points from the measured hardness profiles. (a) Run #2;   T = 1080   °C; (b) Run #12;   T = 1028   °C; (c) Run #22;   T = 920   °C; (d) Run #30;   T = 905   °C. 
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Figure 3. ANN process parameters predictions. (a) time (s); (b) and (c) power generator in medium and high frequency, respectively. 
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Figure 4. Training (train) and validation (val) error with respect to the epoch (iteration of training). 
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Figure 5. Predicted versus real energy at the tooth tip and the tooth root. (a) Tooth tip; (b) Tooth root. 
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Figure 6. Predicted versus real hardness for forward problem in both tooth tip and root of the gear. (a) Random Forest; (b) XGBoost. 
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Table 1. Main characteristics of the treated gear.
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	Module
	No. of Teeth
	Width
	Addendum Circle
	Pitch Circle
	Root Circle





	2.5
	22
	10 mm
	60 mm
	55 mm
	48.75 mm
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Table 2. Induction heat treatment conditions.
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Run #

	
Medium Frequency

	
High Frequency

	
Power of   HF  

	
Power of   MF  

	
Time

	
Temperature




	

	
 MF  (kHz)

	
 HF  (kHz)

	
  P HF   (kW)

	
  P MF   (kW)

	
 t  (s)

	
 T  (°C)






	
1

	
13

	
256

	
143

	
88

	
0.17

	
780




	
2

	
12

	
258

	
225

	
138

	
0.17

	
1080




	
3

	
12

	
258

	
225

	
138

	
0.2

	
1200




	
4

	
12

	
257

	
143

	
113

	
0.17

	
835




	
5

	
12

	
258

	
184

	
113

	
0.17

	
935




	
6

	
12

	
258

	
225

	
113

	
0.17

	
1005




	
7

	
13

	
257

	
143

	
113

	
0.2

	
×




	
8

	
13

	
257

	
184

	
88

	
0.2

	
917




	
9

	
13

	
257

	
184

	
138

	
0.24

	
1189




	
10

	
13

	
257

	
143

	
138

	
0.2

	
1059




	
11

	
12

	
257

	
184

	
113

	
0.2

	
1025




	
12

	
13

	
257

	
184

	
88

	
0.24

	
1028




	
13

	
12

	
258

	
225

	
88

	
0.2

	
999




	
14

	
13

	
257

	
143

	
88

	
0.24

	
925




	
15

	
12

	
258

	
225

	
113

	
0.24

	
1167




	
16

	
12

	
258

	
225

	
88

	
0.17

	
900




	
17

	
12

	
257

	
184

	
138

	
0.17

	
1005




	
18

	
13

	
257

	
143

	
113

	
0.24

	
1039




	
19

	
13

	
257

	
143

	
138

	
0.24

	
1145




	
20

	
12

	
258

	
225

	
138

	
0.24

	
1217




	
21

	
12

	
258

	
225

	
88

	
0.18

	
884




	
22

	
12

	
258

	
198

	
134

	
0.17

	
920




	
23

	
×

	
×

	
238.5

	
94

	
0.17

	
890




	
24

	
×

	
×

	
247.5

	
98

	
0.19

	
958




	
25

	
12

	
257

	
202

	
110

	
0.17

	
884




	
26

	
×

	
×

	
175.5

	
102

	
0.19

	
889




	
27

	
12

	
257

	
202.5

	
118

	
0.17

	
887




	
28

	
×

	
×

	
193.5

	
102

	
0,19

	
876




	
29

	
×

	
×

	
238.5

	
88

	
0.19

	
906




	
30

	
×

	
×

	
247.5

	
88

	
0.19

	
905




	
31

	
×

	
×

	
247.5

	
94

	
0.17

	
858








×: missing values.
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Table 3. Test results for inverse modeling.
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Position

	
Error

	
XGBoost

	
Random Forest

	
Multi-Linear Regression

	
SVR






	
Tooth tip

	
RMSE

	
1.07

	
1.42

	
0.74

	
1.34




	
RMSPE

	
5.78%

	
7.23%

	
3.71%

	
7.99%




	
Tooth root

	
RMSE

	
0.84

	
2.58

	
0.78

	
2.27




	
RMSPE

	
4.53%

	
6.78%

	
3.93%

	
5.65%
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Table 4. Test results of the hardness prediction.






Table 4. Test results of the hardness prediction.





	Error
	XGBoost
	Multi-Linear Regression
	Random Forest
	SVR





	RMSE
	45.55
	134.25
	47.15
	137.59



	RMSPE
	8.5%
	28.75%
	9.2%
	37.26%
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file4.png
8004+ == Experimental 800y Experimental
'n'\‘ ! e Discrete Profile ' n e Discrete Profile
_ 7001 SN 7007 VS
o o~ \ 30 TN
= \\ A o !
> 600 > 600- \
E “.'I “\ E “ /'.\
g \.\ Ucn) \‘"/ \\\
v 2001 £ 5001 <N
% \ % \‘
3 400 3 400 “
300 300-
M- =2 e O ol T -°
200+— - - ' ' ' - 200— - - ' ' ' -
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Distance from the surface (mm) Distance from the surface (mm)
(a) (b)
8001 R Experimental 800y = Experimental
[ X . . ' . .
‘,:"\,"‘;"‘. A " e Discrete Profile o\ . e Discrete Profile
AV L’\\ P / \ v “v"\ 1'\\ A
— 700 v W \ —_ 700 - "‘&,' \\‘II \
S ' o RN .
E 600 T ‘\“‘ /o“ E 600 Y \.\\/,,’ \\“‘
2 - 2 "~y
D) 500 T \ D) 500 T \
= ‘. =
3 400 ! 3 400
T \ m ‘\\
3001 300+
\\\\v/' ———————————— T ) \\\ emmemTTTTS \\,,
200+— ' ' ' ' ' ' 200— ' ' ' '
0 1 2 3 4 5 6 0 1 2 3 4
Distance from the surface (mm)
()

5
Distance from the surface (mm)

(d)





nav.xhtml


  metals-13-00997


  
    		
      metals-13-00997
    


  




  





media/file2.png
Gear

Quencher

Pyrometer

—
e o ——"

[
-
.

F = — —— Sl

Inductor

-






media/file5.jpg
R Time
@
+ Tosting points
ol — yx

o o)
©

- Testing points

e

Predicted Pur (W)
s 8 &

H

Rl P )

©





media/file3.jpg
Experimental
+ Discrote Profile

&
:

800

700

600

500

H 400,

300

Experimental
+ Discrote Profile

i3 3 d 5§
Distance from the surface (mm)

@

-+ Experimental
+ Discrote Profile

X

Hordnoss (HV0.3)

H

200

H

H

T3 3 d 5§
Distance from the surface (mm)

C)

- Experimental
Discrote Profle

i3 3 4 5§
Distanco from the surface (mm)

©

i3 3 4 5§
Distance from the surface (mm)

@





media/file1.jpg





media/file7.jpg
900

800

MSE

600

500

Model MSE

40

Epoch

60

80

100






media/file10.png
N
co

Predicted energy (KJ)

—
()}

N
(@)

N
N

N
N

\®]
()

—
oo

o Testing points
— y=x

20 25
Real energy (kJ)

(a)

&)
o1

o1
)

Predicted energy (kJ)

W
o

S
ul

N
()

W
o1

o« Testing points

| — y=x

30 40
Real energy (kJ)

(b)

50






media/file12.png
600 800

400
Real hardness (HVO0.3)

600 800

400
Real hardness (HVO0.3)

Pey
A CEE
c [
) " ®
® [ ]
°
[ 4
.w o o oo
8 .
) o o °
o
o
g
2 0
= >
[ ]
°
o o o = o o
(@] o o o o o
(e0)] >~ (o} O < o
(£'0AH) SSeUpIRY PajoIPaLd
°
.
.o,
‘ [ ]
oooo ¢ ®
° °
N
.m ¢ (1) N ®
.m . ° °
o °
o °
a
ﬁ
20
. ®
.
.
o o o o o o
o o o o o o
0 O~ © L0 <t a9
(£'0AH) SSeUpIRY PajoIpald

(b)

(a)





media/file9.jpg
Predicted energy (k])
]

L3

2

2

=2

« Testing points
S——

@
&

« Testing points

=50 y=x
£
Bas
H
Z 240
2
%35
- &
Y 30
20 %5 30 0 50
Real energy (k]) Real energy (k])
(a) b)





media/file0.png





media/file8.png
Model MSE

—— {rain
— val
900
800
(]
@p]
2 700
600
5001
0 20 40 60 80 100





media/file11.jpg
8007 . Testing points

g
8

o _ + Testing points
S700{ T VX S700| — y=x .
2 -
g £
g 600 g0 . .
£ ] &
500 £ 500,
£ g .
5 3
£ 400, Za0o .
£300 Eaoo| -
400 600 800 00 600 800
Real hardness (HV0.3) Real hardness (HV0.3)
(a) (b)





media/file6.png
Predicted Pyr (kW)

Predicted Time (s)

Real Pyr (kW)

(c)

0241 Testing points
0.231 y=Xx
0.221
0.21
0.20
[ ]
s ° ° ° °
0.19
0.18-
0.17
0.18 0.20 0.22 0.24
Real Time (s)
(a)
o« Testing points
240+
Ezzo-
.,
fzoo
L VAN B
IS
%180'
)
A
160 - ¢
[ ]
140+ | | | | |
140 160 180 200 220 240
Real Pyr (KW)
(b)
140 : .
e Testing points
— y=x
130+ y
120
11701 ¢ °* , ° 4 T H
100 .
[ ]
90 -
90 100 110 120 130 140





