Analyzing the Sintering Kinetics of Ti12.5Ta12.5Nb Alloy Produced by Powder Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Dilatometry Data Analysis
2.3. Microstructure Characterization
3. Results and Discussion
3.1. Sintering Analysis
3.2. Microstructure Analysis
3.2.1. XRD Analysis
3.2.2. SEM Microstructure Observation
3.2.3. EDS Microstructure Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhuo, S.; Xu, W.; Leary, M.; Choong, P.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Liu, Q.; Liu, L. Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (I). Perp. Biochem. Biotechnol. 2018, 39, 81–91. [Google Scholar] [CrossRef]
- Han, M.K.; Kim, J.Y.; Hwang, M.J.; Song, H.J.; Park, Y.J. Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys. Perp. Biochem. Biotechnol. 2015, 8, 5986–6003. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Mater. Sci. Eng. A 2008, 483, 153–156. [Google Scholar] [CrossRef]
- Liu, J.; Chang, L.; Liu, H.; Li, Y.; Yang, H.; Ruan, J. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material. Mater. Sci. Eng. C 2017, 71, 512–519. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M. Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. C 2009, 29, 1061–1065. [Google Scholar] [CrossRef]
- Filip, R.; Kubiak, K.; Ziaja, W.; Sieniawski, J. The effect of microstructure on the mechanical properties of two-phase titanium alloys. J. Mater. Process. Technol. 2003, 133, 84–89. [Google Scholar] [CrossRef]
- Macias, R.; Garnica-Gonzalez, P.; Olmos, L.; Jimenez, O.; Chavez, J.; Vazquez, O.; Arteaga, D. Sintering Analysis of Porous Ti/xTa Alloys Fabricated from Elemental Powders. Materials 2022, 15, 6548. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Kuroda, P.A.B.; Lourenco, M.L.; Fernandes, C.J.C.; Buzalaf, M.A.R.; Zambuzzi, W.F.; Grandini, C.R. Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices. J. Alloys Compd. 2018, 749, 163–171. [Google Scholar] [CrossRef]
- Kuroda, P.A.B.; Quadros, F.D.F.; Araújo, R.O.D.; Afonso, C.R.M.; Grandini, C.R. Effect of thermomechanical treatments on the phases, microstructure, microhardness and young’s modulus of ti-25ta-zr alloys. Materials 2019, 12, 3210. [Google Scholar] [CrossRef]
- Li, P.; Ma, X.; Wang, D.; Zhang, H. Microstructural and mechanical properties of β-type Ti–Nb–Sn biomedical alloys with low elastic modulus. Metals 2019, 9, 712. [Google Scholar] [CrossRef]
- Olmos, L.; Cabezas-Villa, J.L.; Bouvard, D.; Lemus-Ruiz, J.; Jiménez, O.; Falcón-Franco, L.A. Synthesis and characterisation of Ti6Al4V/xTa alloy processed by solid state sintering. Powder Metall. 2020, 63, 64–74. [Google Scholar] [CrossRef]
- Mediaswanti, K.; Wen, C.; Ivanova, E.P.; Berndt, C.C.; Wang, J. Sputtered hydroxyapatite nanocoatings on novel titanium alloys for biomedical applications. In Titanium Alloys—Advances in Properties Control, 1st ed.; Sieniawski, J., Ziaja, W., Eds.; Intech open: Vienna, Austria, 2013; pp. 21–44. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M. Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications. J. Alloys Compd. 2008, 466, 535–542. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A 2004, 371, 283–290. [Google Scholar] [CrossRef]
- Gordin, D.M.; Delvat, E.; Chelariu, R.; Ungureanu, G.; Besse, M.; Laile, D.; Gloriant, T. Characterization of Ti-Ta Alloys Synthesized by Cold Crucible Levitation Melting. Adv. Eng. Mater. 2008, 10, 714–719. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Gepreel, M.A.H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Hussein, A.H.; Gepreel, M.A.H.; Gouda, M.K.; Hefnawy, A.M.; Kandil, S.H. Biocompatibility of new Ti–Nb–Ta base alloys. Mater. Sci. Eng. C 2016, 61, 574–578. [Google Scholar] [CrossRef]
- Cabezas-Villa, J.; Lemus-Ruiz, J.; Bouvard, D.; Jiménez, O.; Vergara-Hernández, H.J.; Olmos, L. Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties. Int. J. Miner. Metall. Mater. 2018, 25, 1389–1401. [Google Scholar] [CrossRef]
- Garnica, P.; Macías, R.; Chávez, J.; Bouvard, D.; Jiménez, O.; Arteaga, D. Fabrication and characterization of highly porous Ti6Al4V/xTa composites for orthopedic applications. J. Mater. Sci. 2020, 55, 16419–16431. [Google Scholar] [CrossRef]
- Karre, R.; Niranjan, M.K.; Dey, S.R. First principles theoretical investigations of low Young’s modulus beta Ti–Nb and Ti–Nb–Zr alloys compositions for biomedical applications. Mater. Sci. Eng. C 2015, 50, 52–58. [Google Scholar] [CrossRef]
- Zhuravleva, K.; Bönisch, M.; Scudino, S.; Calin, M.; Schultz, L.; Eckert, J.; Gebert, A. Phase transformations in ball-milled Ti–40Nb and Ti–45Nb powders upon quenching from the ß-phase region. Powder Technol. 2014, 253, 166–171. [Google Scholar] [CrossRef]
- Murray, J.L. The Ta− Ti (Tantalum-Titanium) system. Bull. Alloy. Phase Diagr. 1981, 2, 62–66. [Google Scholar] [CrossRef]
- German, R.M. Titanium sintering science: A review of atomic events during densification. Int. J. Refract. Hard. Met. 2020, 89, 105214. [Google Scholar] [CrossRef]
- Chen, T.; Yang, C.; Liu, Z.; Ma, H.W.; Kang, L.M.; Wang, Z.; Li, Y.Y. Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder. J. Alloys Compd. 2021, 873, 159792. [Google Scholar] [CrossRef]
- Panigrahi, B.B.; Godkhindi, M.M.; Das, K.; Mukunda, P.G.; Ramakrishnan, P. Sintering kinetics of micrometric titanium powder. Mater. Sci. Eng. A 2005, 396, 255–262. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Loh, N.H.; Khor, K.A.; Tor, S.B. Sintering activation energy of powder injection molded 316L stainless steel. Scr. Mater. 2001, 44, 1131–1137. [Google Scholar] [CrossRef]
- Herzig, C.; Wilger, T.; Przeorski, T.; Hisker, F.; Divinski, S. Titanium tracer diffusion in grain boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ interphase boundaries. Intermetallics 2001, 9, 431–442. [Google Scholar] [CrossRef]
- Xu, X.; Nash, P. Sintering mechanisms of Armstrong prealloyed Ti–6Al–4V powders. Mater. Sci. Eng. A 2014, 607, 409–416. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Liu, T.; He, C.; Liu, J. Investigation on Diffusion Kinetics of Ti-X Binary Systems at 1300–1500 °C. Available SSRN 4440837. [CrossRef]
- Huang, S.; Sing, S.L.; de Looze, G.; Wilson, R.; Yeong, W.Y. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications. J. Mech. Behav. Mater. 2020, 108, 103775. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Jin, W.J.; Yang, S.Y.; Zhang, J.B.; Huang, Y.X.; Liu, X.J. Microstructure and shape memory properties of biomedical Ti-(40-65) Ta (wt.%) alloys. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2009; Volume 610, pp. 1382–1386. [Google Scholar] [CrossRef]
- Yi, X.; Sun, K.; Liu, J.; Zheng, X.; Meng, X.; Gao, Z.; Cai, W. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content. J. Mater. Sci. Technol. 2021, 83, 123–130. [Google Scholar] [CrossRef]
- Fikeni, L.; Annan, K.A.; Mutombo, K.; Machaka, R. Effect of Nb content on the microstructure and mechanical properties of binary Ti-Nb alloys. Mater. Today Proc. 2021, 38, 913–917. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Kuśnierz, J.; Maziarz, W.; Lejkowska, M.; Garbacz, H.; Lewandowska, M.; Kurzydłowski, K.J. Microstructure and mechanical properties of nanocrystalline titanium and Ti–Ta–Nb alloy manufactured using various deformation methods. Phys. Satus. Solidi. 2005, 202, 2309–2320. [Google Scholar] [CrossRef]
- Silva, K.B.D.; Carobolante, J.P.A.; Rajan, S.S.; Júnior, C.B.; Sabino, R.M.; Seixas, M.R.; Claro, A.P.R.A. Mechanical Properties, Corrosion Behavior, and In Vitro Cell Studies of the New Ti-25Ta-25Nb-5Sn Alloy. Materials 2023, 16, 1970. [Google Scholar] [CrossRef]
- Voňavková, I.; Průša, F.; Kubásek, J.; Michalcová, A.; Vojtěch, D. Microstructure and Mechanical Properties of Ti-25Nb-4Ta-8Sn Alloy Prepared by Spark Plasma Sintering. Materials 2022, 15, 2158. [Google Scholar] [CrossRef]
- Dobromyslov, A.V.; Elkin, V.A. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods. Scripta Mater. 2001, 44, 905–910. [Google Scholar] [CrossRef]
- Paulsen, A.; Frenzel, J.; Langenkämper, D.; Rynko, R.; Kadletz, P.; Grossmann, L.; Eggeler, G. A kinetic study on the evolution of martensitic transformation behavior and microstructures in Ti–Ta high-temperature shape-memory alloys during aging. Shap. Mem. Superelasticity 2019, 5, 16–31. [Google Scholar] [CrossRef]
- Kalita, D.; Rogal, Ł.; Berent, K.; Góral, A.; Dutkiewicz, J. Effect of Mo and Ta on the mechanical and superelastic properties of Ti-Nb alloys prepared by mechanical alloying and spark plasma sintering. Materials 2021, 14, 2619. [Google Scholar] [CrossRef] [PubMed]
Heating Rate (°C/min) | α/α′/α″-Ti (%) | β-Ti(%) | Average Grain Size (µm) |
---|---|---|---|
5 | 51.23 | 46.68 | 64.78 |
15 | 46.29 | 50.88 | 50.24 |
25 | 39.57 | 53.42 | 47.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macias, R.; Garnica, P.; Fernandez-Salvador, C.; Olmos, L.; Jimenez, O.; Arroyo-Albiter, M.; Guevara-Martinez, S.; Cabezas-Villa, J.L. Analyzing the Sintering Kinetics of Ti12.5Ta12.5Nb Alloy Produced by Powder Metallurgy. Metals 2023, 13, 1026. https://doi.org/10.3390/met13061026
Macias R, Garnica P, Fernandez-Salvador C, Olmos L, Jimenez O, Arroyo-Albiter M, Guevara-Martinez S, Cabezas-Villa JL. Analyzing the Sintering Kinetics of Ti12.5Ta12.5Nb Alloy Produced by Powder Metallurgy. Metals. 2023; 13(6):1026. https://doi.org/10.3390/met13061026
Chicago/Turabian StyleMacias, Rogelio, Pedro Garnica, Ceylin Fernandez-Salvador, Luis Olmos, Omar Jimenez, Manuel Arroyo-Albiter, Santiago Guevara-Martinez, and Jose Luis Cabezas-Villa. 2023. "Analyzing the Sintering Kinetics of Ti12.5Ta12.5Nb Alloy Produced by Powder Metallurgy" Metals 13, no. 6: 1026. https://doi.org/10.3390/met13061026
APA StyleMacias, R., Garnica, P., Fernandez-Salvador, C., Olmos, L., Jimenez, O., Arroyo-Albiter, M., Guevara-Martinez, S., & Cabezas-Villa, J. L. (2023). Analyzing the Sintering Kinetics of Ti12.5Ta12.5Nb Alloy Produced by Powder Metallurgy. Metals, 13(6), 1026. https://doi.org/10.3390/met13061026