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Abstract: This paper aims to improve the mechanical properties and fatigue life of AISI/SAE 4140
alloy steel connecting rods (CRs). Conventional CRs are typically manufactured through open die
forging/hammering, blocking, and hot forging processes. In the present work, a modification to the
process route has been proposed such that the open die forging/hammering was completely replaced
with a multistep asymmetrical reducer rolling technique. Four rolling passes were introduced to
achieve the desired preform shape and size. The effect of each rolling pass on grain size, mechanical
properties, and fatigue life was investigated. Samples from each multistep rolling, blocking, and
forging stage were subjected to impact, hardness, tensile, and fatigue testing. Metallography using
optical and scanning electron microscopes was also conducted to reveal metallurgical changes.
Fatigue testing and fractography were performed using the R.R. Moore Rotating-Beam Fatigue
testing machine and scanning electron microscope, respectively, to evaluate the fatigue life and the
fracture behavior of both the conventional and multistep rolled forged CRs. It was observed that,
unlike the conventional forging process, multistep asymmetrical rolling gradually reduces grain size
as the rolling progresses and improves yield, tensile, and impact strengths, hardness, and ductility.
In comparison to conventional forging, multistep rolling led to an almost 33% and 29% increase in
yield and tensile strengths, respectively. Moreover, the fatigue life of multistep rolled CR increased
by more than five times compared to conventional CR.

Keywords: multistep rolling; forging; grain size; mechanical properties; fatigue life; connecting rod

1. Introduction

The existence of intense competition among automotive parts manufacturing indus-
tries and OEMs necessitates individual manufacturing units to reduce their production costs
through advancements in the manufacturing setup. Forging produces uniform equiaxed
grains and eliminates the defects present in casting and rolling, such as pin holes, blow
holes, cavities, and pipes, thereby producing a very high strength and sound product [1–4].
Owing to this very reason, various high strength and precision parts of the automotive
engine that are used in transmission and differential systems such as gears, pinions, drive
shafts, crankshafts, connecting rods (CR), etc. are essentially manufactured by the hot
forging technique. Thus, forged parts have a big market and demand all over the world,
especially in the automotive, locomotive, aerospace, and defense industries [5,6].

Hot forging requires heating the stock to forging temperatures, which are typically
in the range of 1100–1200 ◦C for plain carbon steels and 1150–1250 ◦C for low alloy and
high strength steels. Although hot forging yields good strength and eliminates the rolling
and casting defects due to the application of high temperature and compressive forces, it
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introduces its own defects such as overheating, folds, unfilling, excessive flash, mismatch,
and cut marks [7–9]. Here, the mismatch and cut marks are considered to be the post
forging defects due to die alignment and can, therefore, be avoided with relative ease [10,11].
However, the pre-forging defects, including overheating, folds, etc., need much attention at
the stage of forging ‘preform’ manufacturing [12]. If the preform is not made properly, it
will lead to defects and irrecoverable loss. Preform-making is normally done by an open
die forging or hammering process which does not give an accurate preform for proper
forging [13–15].

Simulation software and modeling tools help to analyze and optimize the production
efficiency of automotive parts by comparing conventional manufacturing methods with
newer, more efficient techniques [16–18]. Currently, high efficiency output may also be
achieved by combining two or more bulk metal forming technologies that could yield a
good quality product with better metallurgical and mechanical properties [12,19–21], as
discussed in some recent studies.

Fuertes et al., 2016 used a severe plastic deformation (SPD) process in an isothermal
forging process to refine the grain size up to 500 nm in aluminum alloys (AA1050 and AA5083)
to achieve a 20% increase in hardness in connecting rods [16]. Kondaiah et al. (2018) studied
effect of upsetting the forging and preform geometry process for the flashless P/M forging
process of sintered AISI 4135 steel [22]. Edmond Ilia et al. (2019) used a power metallurgy
(P/M) Fe–Cu–C alloy for hot forging connecting rods and found an increase in strength at
120 ◦C and 150 ◦C due to the formation of second phase precipitates due to the presence of Cu
and the interaction of dislocations and copper-based precipitates [23]. Fengxian et al. (2020)
investigated a flashless forging (P/M) route for manufacturing connecting rods, and focused
on factors such as powder densification, isothermal compression, metal flow, and concluded
using experiments and finite element modelling (FEM) simulations that preform geometry
has a significant effect on the cracking and fracture behavior of P/M forged connecting
rods [24]. Ning Zhao et al. (2022) showed that combining solution heat treatment (SHT) and a
hot forging process as one operation supports improved mechanical properties by avoiding
abnormal grain growth (AGG) along with a reduction in the production cost for hot forging of
connecting rods using 6082 aluminum alloy [25]. The importance of ‘preform’ geometry and
fine microstructure are main attributes towards producing quality within forging process for
manufacturing connecting rods. However, processes such as severe plastic deformation (SPD)
and power metallurgy (P/M) to achieve grain refinement and preform geometry mainly pose
a challenge in high volume forging needs for automotive applications, especially in cases of
high strength steel grades such 42CrMo4, AISI 4140, and AISI 4340, which are extensively
used for forging engine and transmission parts.

Although various new techniques have been introduced in forging over the last few
decades, such as incremental forging, flashless forging, precision forging, and roll forming,
the idea of combining asymmetrical rolling with forging production lines still requires at-
tention from engineers and researchers, as it offers great potential for improved production
efficiency, waste minimization and green manufacturing. Thus, the hot rolling process
to manufacture the semi-finished products can be exploited to replace the preforming,
upsetting, and blocking processes, which are generally the prerequisites of forging.

2. Applications and Novelty

AISI/SAE 4140 steel is frequently used in many industrial applications due to its high
strength, toughness, fatigue resistance, and wear resistance. It is used to manufacture
automotive and railway parts, such as CRs, gears, shafts, piston rods, axles, etc. In the
aerospace industry, it is used to make landing gear and engine components. In addition, it
has found applications in the tool and die making and oil and gas industries, where it is
used to manufacture the dies, molds, drill pipes, drill collars, and several other components.

In this study, a novel approach to manufacture an AISI/SAE 4140 steel CR is being
presented to obtain customized improved mechanical properties using 4 pass multistep
rolling (MSR), also called reducer rolling, followed by hot forging. Material properties
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were evaluated after each manufacturing step to identify their corresponding effect. A
comparative analysis of the properties of a multistep rolled connecting rod (MSR-CR) with
the conventional connecting rod (CCR) suggested that during preform manufacturing, the
conventional hammering imparts poor metallurgical and mechanical properties relative to
the asymmetrical reducer rolling.

3. Materials and Methods

AISI/SAE 4140 alloy steel, obtained from Peoples Steel Mills Limited, Karachi, Pak-
istan, was the material of choice to manufacture the CRs through conventional and MSR
forging techniques. While the final forging step for each CR remained the same, the
preforms for the blocking operation were prepared differently. The term ‘conventional’
implies that the preform was produced by traditional hammering, whereas the MSR refers
to a 4-pass asymmetrically rolled preform. The chemical composition of the alloy in the
hot rolled conditions was analyzed using spark emission spectroscopy (Foundry Master
Smart-Hitachi), and is reported in Table 1 along with the standard composition.

Table 1. Standard composition according to the Society of Automotive Engineers & Spectroscopy
analysis of AISI/SAE 4140 and as-received raw material.

Sample (wt. %) C Si S P Mn Cr Cu Ni Mo

Standard 0.38 ~0.43 0.15 ~0.35 0.05 max 0.03 max 0.75~1.00 0.80~1.1 0.30 max 0.25 max 0.15 ~0.25

Actual 0.41 0.30 0.008 0.0025 0.78 0.91 0.24 0.11 0.20

Figure 1 schematically illustrates the key steps involved in the manufacture of MSR-CR.
The AISI 4140 steel had an initial yield strength and a tensile strength of 415 MPa and
655 MPa, respectively, in the as-received annealed state. From an initial cylindrical block, a
four-step reducer rolling technique was used to reduce the cross-section asymmetrically
from the middle of the block such that the material is distributed unevenly along the
longitudinal axis. This was followed by blocking and hot forging at a temperature of
1200 ◦C. Trimming was done to remove the flash material. Given that a total of six steps
(four rolling + one blocking + one forging) were involved in the manufacture of MSR-CR,
while standard samples for impact, hardness, tensile, and fatigue tests and metallography
were prepared simultaneously using the same treatment as that experienced by the CR.
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3.1. Metallography

As-received material was cut into the samples of size 10 × 10 × 30 mm3 using a
precision diamond cutter of 0.3 µm to minimize mechanical damage. A cooling agent was
utilized during cutting to avoid overheating and any significant metallurgical changes
in the microstructure. An Olympus microscope (CK40 inverted) was used to view the
microstructure at 100×magnification. The microscope was also equipped with DP21 and
Olympus Stream Image analysis software for the grain size measurement. The intercept
method was used from the image analyzer to determine the ASTM grain size number (n) as
per standard ASTM E112 [26]. Note that the ASTM grain size number (n) can be calculated
by counting the number of grains (N) using the equation N = 2(n−1) at a magnification of
100×. Samples from each stage, i.e., MSR, blocking and forging, were ground on 320 to
2500 grit size SiC abrasive papers with 50–100 N downward applied force, 150 rpm disc
rotating speed, and water as the lubricating medium. Polishing was done with 9 µm, 6 µm
and 1 µm diamond solution with 100 N applied force for 1 min. During the final polishing
stage, OPS colloidal silica was used with 40 N force for 30 s. Samples were etched in 4%
Nital solution (96% ethanol + 4% nitric acid) for microstructural examination.

3.2. Hardness Test

The Brinell hardness test was carried out according to the ASTM E10 standard [27].
Flat specimens of 100 mm thickness were taken from each manufacturing stage, including
MSR, blocking and forging. A tungsten carbide ball with a diameter of 10 mm and a test
force of 3000 kgf was applied on the flat surface of the samples after cleaning. The Brinell
hardness number was calculated on an HBW 10/3000 scale by measuring the indent size
diameters under the microscope using Equation (1):

HBW =
2F

πD
(

D−
√

D2 − d2
) (1)

where, F is the test force in kgf, D is the diameter of the indenter ball in mm, and d is the
measured mean indentation diameter in mm.

3.3. Tensile Test

The ASTM A370 standard was used to perform tensile tests on a 1000 kN Shimadzu
Universal Testing Machine [28,29]. Dumbbell-shaped samples were taken from the product
of each rolling, blocking and forging stage. The samples were accurately machined to the
required dimensions on a CNC turning machine. An external extensometer was mounted
within the gauge length to measure the percentage elongation during the test. The tests
were conducted in the displacement-controlled mode at a fixed strain rate of 0.001 s–1.

3.4. Impact Test

The impact test was realized on a ZwickRoell Pendulum Impact Tester in accor-
dance with the ASTM A370 standard. Square-shaped samples with a cross-section of
10 mm × 10 mm were obtained from each manufacturing stage and prepared on a CNC
milling machine [28]. A 45º V-notch with a depth of 2 mm was machined at the mid-length
across the specimen on one of the faces. The samples were then mounted in the impact
tester and subjected to impact loading through a swinging hammer at a temperature of
25 ◦C and a humidity level of 46%.

3.5. Fatigue Test

An R.R. Moore Rotating-Beam Fatigue testing machine was employed to determine
the total number of cycles to failure under fatigue loading and given stress level. The
fatigue test was performed on the samples obtained from the end-product, i.e., CCR and
MSR-CR. Straight shank type specimens with a total length of 110 mm including a tapered
length of 30 mm and a minimum diameter of 6 mm at the middle of the specimen were used
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and held in the machine with the help of precision specimen collets. Each test was repeated
three times, and the average values were reported. Deadweights of predetermined loads
were applied to achieve the desired level of stress. Although the rotating-beam fatigue test
can be exploited to obtain the so-called ‘S-N curves’ at various stress levels, only a single
stress level of 300 MPa at a rotation speed of 2800 rpm was investigated in this work, since
the objective was to draw a comparison between the fatigue lives of the CRs and reveal the
fracture morphology of each specimen.

3.6. Scanning Electron Microscopy

The fractured surfaces of conventional and MSR forged CRs were analyzed using a Nova
NanoSEM 450 scanning electron microscope (SEM). The surface morphology was revealed
under high vacuum conditions at an acceleration voltage of 25 kV with a secondary electron
detector. A comparison of the fracture behaviors is presented in the subsequent section.

4. Results and Discussion
4.1. Grain Size Evolution

Grain size is known to have a profound effect on the mechanical properties of poly-
crystalline metals and alloys. Thus, the grain refinement is usually performed to improve
several properties, including tensile strength, yield strength, and hardness [30–32]. In this
study, the raw material in the as-received state had an initial ASTM grain size number (n) of
approximately 2, which corresponds to an average grain diameter (d) of ~180 µm according
to the relation, d = 254/

√
2(n−1).

Figure 2 illustrates the gradual refinement of grain size at the end of each rolling,
blocking and forging step. A change in ASTM grain size number from 3 to 7 was observed
at the end of MSR, while blocking and forging further refined it to 9. Note that the ASTM
grain size in the CCR was found to be approximately 4.5, i.e., d = 75.5 µm. It was also
noticed that instead of showing elongated grains, the microstructures after each rolling
step (Figure 2a–d) illustrated finer yet equiaxed grains because they were all taken in the
direction transverse to the rolling direction. This was important for two reasons. First, the
blocking and the forging produce equiaxed grains and, hence, the comparison of the grain
refinement with the elongated grains along the rolling direction would be meaningless.
Second, the change in strength as a function of the grain refinement could be established.

Table 2 presents the average grain diameter (d) corresponding to each ASTM grain
size number (n) for the MSR forged CR. Since the average grain diameter (d) decreases by a
factor of more than 10, a considerable increase in strength values is expected. It may also
be observed that the final grain size of the MSR-CR (d = 15.9 µm) is almost five times finer
than that of the CCR. This clearly indicates that the mechanical properties of the former
would be significantly improved as compared to the latter.

Furthermore, MSR offers repeatability and control over the preform manufacturing
process and maintains the forging temperature, which provides metallurgical benefits,
such as grain refinement and improvement in mechanical properties in CR manufacturing.
The hammering process has no control over the geometry and results in a decrease in
temperature during forging operations. This leads to die wear and poor mechanical
properties of the CR.
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Table 2. ASTM grain size number (n) and corresponding average grain diameter (d) for an MSR
forged connecting rod.

Stage Initial
(as-Received)

Asymmetric Rolling Pass
Blocking Forging

1 2 3 4

n 2 3 4 5 6.5 7 9

d (µm) 179.6 127.0 89.8 63.5 37.8 31.8 15.9
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4.2. Effect on Hardness and Impact Strength

It is evident that the mechanical properties such as hardness and strength will increase
as a result of repeated work hardening in the MSR-CR; however, the aim here is to quantify
the effect relative to the CCR.

Figure 3 demonstrates the effect of each manufacturing step on the ASTM grain
size, Brinell hardness (HBW), and impact energy. Note that the hardness of the MSR-CR
increases from 255 HBW to 331 HBW, i.e., by more than 30%. In the CCR, however, the
hardness reaches a maximum value of 269 HBW, which is 20% less than that of the MSR-CR.
A 20% increase in hardness is already a considerable improvement from the product design
perspective. Similarly, an increase in the impact energy is even more significant for the
MSR-CR as it doubles from 34 J to 80 J during manufacturing. Compared to CCR’s nearly
48 J, the MSR-CR shows 60% more impact energy absorption due to noticeable grain
refinement from n = 4.5 for the former to n = 9 for the latter. In addition to the improvement
in mechanical properties, the appearance of brittle behavior in the metal and alloys is quite
common, which can also be evaluated through impact testing. It is expected that brittle
failure would result in relatively less absorption of impact energy than ductile fracture.
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Figure 4 shows the fractured impact test samples at each stage of the MSR forged CR
and SEM images of fractured surfaces after rolling stage-1 and forging. Note that a given
specimen after the first rolling shows a brittle fracture with sharp facets and a negligible
change in the cross-section, whereas at the end of the MSR, blocking and forging stages,
it depicts a highly ductile fracture with observable necking over the cross-section of the
fractured surface. It is also worthy of note that not only does the transition from brittle to
ductile behavior increase gradually with increasing work hardening, but the impact energy
values also follow the same trend. A possible reason for this behavior is that the dispersion
of the inclusions and refinement of the grain size promote ductility in polycrystalline
materials [33–37].
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4.3. Tensile Test Properties

The variation in grain size affects the mechanical properties which can be explained
on the basis of plasticity theory. Since the ‘flow’ of dislocations is more restricted in a fine-
grained structure, a higher yield and tensile strength should be expected in the MSR-CR.
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The mathematical relation of the grain size with yield strength is given by the Hall-Petch
Equation [38,39]

σy = σ0 +
ky√

d
(2)

where, σy is the yield strength of the polycrystalline material in MPa, d is the average grain
diameter in µm, σ0 is a material constant in MPa also known as friction stress, i.e., the stress
required for dislocation movement in a particular material, and ky is a strain-dependent
Hall-Petch material strengthening coefficient in MPa.µm1/2.

Figure 5 compares the change in tensile and yield strengths and % elongation during
the manufacturing of MSR-CR. A comparison between CCR and MSR-CR is also presented
in the figure. Note that during the initial stages of work hardening, i.e., rolling passes 1
and 2, there is a rapid increase in both the yield and tensile strength values. However, from
rolling pass 2 onwards, the slope of both the curves decreases. This is a typical behavior of
any work hardening metallic material. Although grain size refinement was almost linear
until the final production of MSR-CR, the work hardening saturation was observed quite
early. For instance, the increase in the yield strength from the first to second rolling pass
was almost 300 MPa (~704 MPa–406 MPa), which amounts to approximately two times
(1.73 = 704/406). However, the same is around 20 MPa (~893 MPa–873 MPa) between the
blocking and forging processes. An identical pattern was followed by the tensile strength
values. This points towards a very important finding, as although MSR helps to obtain a
relatively stronger CR, an increase in the number of rolling passes without quantifying the
effect of each upon mechanical property can only be an added production cost with little or
no improvement in the overall properties.
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MSR-CR.

Unlike the 60% increase in the impact energy absorption of MSR-CR compared to CCR,
an increase of only 30% in tensile and yield strengths was observed for the former compared
to the latter. This is interesting, as CRs are almost equally subjected to impact and tensile
loadings. Hence, even if there is not a considerable increase in tensile strength, increasing
the number of manufacturing steps can still be beneficial in improving other properties
of the material, such as impact strength. Ductility, for example, is another property that
showed a linear increase as a function of work hardening (see the % elongation curve in
Figure 5 and the elongated fractured tensile test specimens in Figure 6). All of the specimens
reveal substantial necking, which is evidence of significant plastic deformation, in addition
to percentage elongation. Increased plastic deformation coupled with high strength gives
rise to the high toughness in the material. Note that ductility is the only mechanical
property that, compared to CCR (elongation = 9%), doubled in MSR-CR (elongation = 17%).
This implies that a combination of different properties is achievable using the modified
CR production route. However, this warrants an optimum selection of several parameters,
including the number of rolling passes, the reduction ratio while rolling, rolling and forging
temperatures, etc., which would be dependent upon the type of metallic material and the
final geometry of the end product.
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4.4. Fatigue Life

Improvement in fatigue life by the grain refinement in different steels, including S20C,
has been reported in the literature [40–42]. It has been proposed that a direct relation
exists among the average grain diameter, ultimate tensile strength, and the fatigue life of
steels [40]. Figure 7 compares the total number of cycles which both the samples of CCR
and MSR-CR could withstand until failure at a completely reversed fatigue load of 300 MPa,
applied using an R.R Moore type machine. It also presents a relative difference between
the grain size, ductility, and tensile strength of both CRs. Note that the MSR-CR and CCR
fail after 1.1 and 0.19 million cycles, respectively. This implies that under the given loading
conditions, MSR yields an increase in the fatigue life of CR by a factor of more than five,
although there is still a need to evaluate the fatigue life at other loads. Nevertheless, an
improvement in fatigue life may be attributed to a combination of fine grain size, increased
tensile, impact and yield strengths, and ductility.
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between CCR and MSR-CR.

Fatigue failure is typically characterized by three distinct regions, namely, the regions
of crack initiation, propagation, and catastrophic failure. Figure 8 shows SEM images taken
from all three regions of the fractured samples representing both the CCR and MSR-CR.
Here, the term representative fatigue sample implies that the samples were given the same
thermo-mechanical treatment as experienced by their corresponding CRs. Note that both
the samples exhibit significant propagation of the crack before resulting in a catastrophic
failure. Moreover, a reduction in the cross-section area at the fracture location indicates
noticeable necking before failure. It should be pointed out that the regions of catastrophic
failure/brittle fracture are marked in both the images of the broken specimens with a
dashed circle. It may be observed that this region is larger in the CCR sample than in
the MSR-CR sample. This finding is coherent with the grain size observation and the
mechanical test results summarized in Figure 7. The fact that the CCR sample possessed
lesser ductility and less strength due to coarse grain size led to its brittle catastrophic failure
as soon as the surface and/or the sub-surface cracks began. There is hardly any noticeable
region of crack propagation. Figure 8 also shows the presence of a subsurface crack in the
CCR sample, which is highlighted with the help of an arrow.

On the contrary, the MSR-CR sample illustrates not only a smaller region of catas-
trophic failure, but also a sizeable region of crack propagation showing beach marks (see
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the MSR-CR sample at 200 µm in Figure 8). This is typical behavior of a ductile sample,
since the material has a higher tendency to fracture in a cup-cone failure mode after neck
formation. Moreover, there is no evidence of subsurface crack generation or propagation,
and, hence, the sample surface is the only favorable site for crack initiation. These observa-
tions are also supported by the previous findings of the very high ductility and strength of
MSR-CR, as shown in Figure 7.
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5. Conclusions

From the above investigation, the following conclusions can be drawn.

• The MSR compared to hammering /open die forging is a repeatable process, and
allows more control not only over the preform geometry, but also upon the desired
level of grain refinement. By adjusting the rolling parameters such as the reduction
ratio and the number of passes, etc., a desired grain size, and hence, the desired
properties may be achieved in the final product.

• A combined effect of an increase in hardness, tensile strength, impact strength, and
ductility substantially improved the fatigue life of the component. Hence, compared
to CCR, the MSR-CR resulted in a more than five-fold increase in fatigue life for the
given loading conditions, which is of great practical importance.

Although the anisotropy due to the elongation of grains along the rolling direction
may be regarded as a limitation of MSR, which is certainly not the case in hammering,
the recrystallization expected at forging temperatures is likely to minimize the effect by
introducing new strain-free finer grains. The anisotropic aspect, however, requires further
investigation. Similarly, the effect of finer grains on heat treatment and martensite formation
also needs further study.
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