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Abstract: This paper discusses the changes in the phase composition and magnetic properties of
the AISI 1010 and AISI 1085 steels that were nitrided at 570 ◦C in an ammonia atmosphere for 5 h
and that were then annealed at 520 ◦C in a N2/Ar atmosphere for 4 h. The test samples were made
in the form of balls with diameters of less than 5 mm. The thickness of the obtained iron nitride
layers was assessed through metallographic tests, while the phase composition was verified through
X-ray tests. The magnetic properties were determined using ferromagnetic resonance (FMR) and
superconducting quantum interference device (SQUID) techniques. Our research shows that, during
the annealing of iron nitrides with a structure of ε + γ′, the ε phase decomposes first. As a result
of this process, an increase in the content of the γ′ phase of the iron nitride is observed. When the
ε phase is completely decomposed, the γ′ phase begins to decompose. The observed FMR signals
did not come from isolated ions but from more magnetically complex systems, e.g., Fe–Fe pairs or
iron clusters. Studies have shown that nitriding and annealing can be used to modify the magnetic
properties of the tested steels.

Keywords: nitriding of AISI 1010 and 1085 steel balls; annealing in an inert atmosphere; phase
composition; white layer; porous zone; magnetic properties; FMR spectra; FMR and SQUID
susceptibility

1. Introduction

Nitriding has been used in the engineering industry for many years to improve
the wear resistance of machine and tool parts [1,2]. Iron nitrides, in addition to high
hardness and corrosion resistance, are characterized by very good magnetic properties.
Magnetic materials are used in generators and electric motors as well as electronic and
electromechanical devices; they are also used in data carriers. Alloys containing rare earth
elements have excellent magnetic properties, so they are most often used in practice [3,4].
Due to limited rare earth metal resources and the intense increase in the demand for
magnetic materials, research on magnetic materials without rare earth materials is fully
justified. Research on the magnetic properties of iron nitrides meets these needs [5,6].

Iron nitrides belong to an important group of magnetic materials. The iron nitride
γ′-Fe4N meets the requirements for soft magnetic materials very well and, at the same time,
is resistant to corrosion. The magnetization saturation of γ′-Fe4N is slightly lower (by about
4%) than that of α-Fe, and its coercivity is negligibly small [7,8]. On the other hand, the iron
nitride α”-Fe16N2 exhibits 30% higher magnetization saturation than α-Fe [9]. Therefore,
it is a very good material for high-density magnetic storage media [10]. However, the
α”-Fe16N2 nitride decomposes to α-Fe and γ′-Fe4N at 200 ◦C and then completely converts
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to α-Fe at 300 ◦C [11,12]. Its low thermal resistance reduces its attractiveness. On the
other hand, the iron nitride γ′-Fe4N, when heated in an inert atmosphere, is stable up to
650 ◦C [13]. Frączek et al. [14] showed that during the annealing of nitrided layers with the
structure
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position is gas nitriding. The composition of the obtained iron nitrides depends on the 
nitriding temperature and the nitrogen potential [19,20]. Arabczyk et al. [21] annealed a 
nanocrystalline iron catalyst in an NH3/H2 atmosphere at 350 °C with a varying nitrogen 
potential value during both nitriding and iron nitride reduction. During the process, the 
authors recorded a change in the magnetic permeability of the created nitride phases. 
Tests showed that the magnetic permeability of γ′-Fe4N was 1.280 times higher than that 
of an iron catalyst, while that of ε-FexN was more than 3 times lower. 

The thermodynamics and kinetics of the nitriding process are exhaustively described 
in the literature [22,23], which makes controlling the chemical composition of iron nitrides 
relatively simple. 

The aim of our research was to check whether annealing at 520 °C in an inert atmos-
phere would cause phase transformations of iron nitrides and whether, as a result of the 
transformations, a loss of mass in the annealed steels would be observed. We also tried to 
find some changes in the magnetic properties of the studied steel balls which could be 
attributed to the formation of new phases in the nitride layer region. As the subject of our 
research, we chose the AISI 1085 and AISI 1010 steels in the form of spherical balls. The 
balls were first nitrided, and then some of them were annealed. The balls that were thus 
altered were subjected to mechanical [14] and magnetic [24–26] tests. 

2. Materials and Methods 
2.1. Materials and Parameters of Nitriding and Annealing 

AISI 1010 and AISI 1085 nonalloy steels were used in the tests. The chemical compo-
sition of these steels and the dimensions of the samples (SS—initial samples, “non modi-
fied”) are listed in Table 1. 

Table 1. Characteristics of the steels used. Dk—ball diameter. 

Grade Steel Sample No. 
DK 

(mm) 
Element Contents in wt.% 

C Mn Si P S 
AISI 1010 1A; 11 3.97 0.10 0.5 01 0,04 0.05 
AISI 1085 5A; 15 5.0 0.85 0.9 0.3 0.04 0.05 

The steels were subjected to gas nitriding at 570 °C for 5 h; then, half of the samples 
were annealed at 520 °C for 4 h in N2/Ar atmosphere at 200 Pa. The samples were weighed 
before and after the annealing process. The accuracy of weight measurement was as much 
as 10−5 g. The parameters of the nitriding and annealing processes are shown in Table 2. 

+ γ′, which is present in AISI 1085 steel,
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concentration, the nitride εmay have ferromagnetic (ε-FexN (2 < x < 3)) or paramagnetic
(Fe2N) properties [16]. Compared to the α”-Fe16N2 nitride, the ε-Fe3N nitride has a much
better thermal stability and slightly worse magnetic properties [17].

Since magnetic properties, such as coercivity, remanence, magnetic permeability, the
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phase allows its magnetic properties
to be modified over a wide range [18].

The most effective method of producing iron nitrides with an assumed phase com-
position is gas nitriding. The composition of the obtained iron nitrides depends on the
nitriding temperature and the nitrogen potential [19,20]. Arabczyk et al. [21] annealed
a nanocrystalline iron catalyst in an NH3/H2 atmosphere at 350 ◦C with a varying nitrogen
potential value during both nitriding and iron nitride reduction. During the process, the
authors recorded a change in the magnetic permeability of the created nitride phases. Tests
showed that the magnetic permeability of γ′-Fe4N was 1.280 times higher than that of an
iron catalyst, while that of ε-FexN was more than 3 times lower.

The thermodynamics and kinetics of the nitriding process are exhaustively described
in the literature [22,23], which makes controlling the chemical composition of iron nitrides
relatively simple.

The aim of our research was to check whether annealing at 520 ◦C in an inert atmo-
sphere would cause phase transformations of iron nitrides and whether, as a result of the
transformations, a loss of mass in the annealed steels would be observed. We also tried
to find some changes in the magnetic properties of the studied steel balls which could be
attributed to the formation of new phases in the nitride layer region. As the subject of our
research, we chose the AISI 1085 and AISI 1010 steels in the form of spherical balls. The
balls were first nitrided, and then some of them were annealed. The balls that were thus
altered were subjected to mechanical [14] and magnetic [24–26] tests.

2. Materials and Methods
2.1. Materials and Parameters of Nitriding and Annealing

AISI 1010 and AISI 1085 nonalloy steels were used in the tests. The chemical composi-
tion of these steels and the dimensions of the samples (SS—initial samples, “non modified”)
are listed in Table 1.

Table 1. Characteristics of the steels used. Dk—ball diameter.

Grade Steel Sample No. DK
(mm)

Element Contents in wt.%

C Mn Si P S

AISI 1010 1A; 11 3.97 0.10 0.5 0.1 0.04 0.05

AISI 1085 5A; 15 5.0 0.85 0.9 0.3 0.04 0.05

The steels were subjected to gas nitriding at 570 ◦C for 5 h; then, half of the samples
were annealed at 520 ◦C for 4 h in N2/Ar atmosphere at 200 Pa. The samples were weighed
before and after the annealing process. The accuracy of weight measurement was as much
as 10−5 g. The parameters of the nitriding and annealing processes are shown in Table 2.
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Table 2. Parameters of nitriding and annealing processes.

Sample
No.

Parameters of Nitriding Parameters of Annealing

T (◦C) t (h) Np (atm−05) Inlet Atmosphere T (◦C) t (h) Inlet Atmosphere

1A; 5A 570 5 2.5 NH3 - - -

11; 15 570 5 2.5 - 520 4 N2/Ar/P = 150 Pa

2.2. Metallographic Research

Metallographic tests were carried out on the above-mentioned balls. Grinding the
balls to their diameter, a layer of nitrides of actual thickness was observed and measured
on metallographic microsection. In addition to the iron nitride layer, called the white
layer (WL; its thickness is labeled gmp; see Figure 1a), we also observed and measured
the thickness of the porous zone (gpor; see Table 3 and comments in 3.1). Figure 1 shows
a method for measuring the thickness of the iron nitride layer [14].
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Figure 1. Diagram of measurement of the thickness of the iron nitride layer (WL) of the ball. (a) Gray
(above) and white (below) surfaces represent the iron nitride layer, gmp represents the actual thickness
of the iron nitride layer (WL), and DK represents ball diameter. (b) Metallographic section and
appearance of the ball.

The ball diameters and thicknesses of the iron nitride layer and porous zone, observed
after nitriding and annealing, are shown in Table 3.

Table 3. Sample geometry after nitriding and annealing.

Grade Steel Sample
No.

DK
(mm)

gmp
(µm)

gpor
(µm)

AISI 1010 1A 3969 29 ± 1 10 ± 1

AISI 1010 11 3969 30 ± 1 12 ± 1

AISI 1085 5A 5.0 25 ± 1 10 ± 1

AISI 1085 15 5.0 25 ± 1 10 ± 1
gmp—nitride layer thickness, gpor—thickness of the porous zone, and DK—ball diameter.

The results of the structural X-ray examination, including the phase composition of the
WL as well as the network parameters of the identified iron nitrides and their percentages
in WL after nitriding and annealing, are presented in Table 4.
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Table 4. The phase composition of the WL and network parameters of iron nitrides.

Grade
Steel

Sample
No.

PC WL
LP Fe4N (Å) LP Fe2–3N (Å) PC WL (%)

a = b = c a = b c Fe4N Fe2–3N

AISI 1010 1A Fe4N-γ′;
Fe2–3N-
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3.7978 4.6842 4.3750 13 ± 2 87 ± 2

AISI 1085 15 Fe4N-γ′;
Fe2–3N-
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3.7963 4.6998 4.3817 39 ± 2 61 ± 2

gmp—WL thickness, gpor—thickness of the porous zone, LP—lattice parameter, and PC WL—white-layer
phase composition.

2.3. Magnetic Resonance Experiment

FMR absorption spectra were recorded in the temperature range of 82–300 K using the
conventional X-band spectrometer ELEXSYS E500 (BRUKER, Billerica, MA, USA) operating
at f = 9.46 GHz and p = 0.62 mW of microwave power. The first derivative of the absorption
spectrum was recorded as a function of the applied magnetic induction, B, which ranged
from 0 to 1.4 T. The FMR susceptibility, χFMR, was calculated as a double integral of the
FMR absorption spectrum depending on the temperature. The square of magnetic moment,
proportional to the χFMR × T product, and the effective position of the FMR resonant line,
geff, were also analyzed. geff values were calculated from the Bres resonant field and the fres
resonant frequency using the resonance condition (geff = 71.44773 fres(GHz)/Bres(mT)).

Static magnetic susceptibility measurements were made with the MPMS-XL7 SQUID
(superconducting quantum interference device) magnetometer. Measurements were recorded
in the temperature range of ~50 K to room temperature at a magnetic field of 100 Oe. Hys-
teresis loops were also measured to find other magnetic properties, such as Hc, coercive
field, and Br, remnant parameters.

3. Results
3.1. Phase Transformations of Iron Nitrides

On the AISI 1010 steel (sample 1A), a layer of iron nitrides with a thickness of
gmp = 29 ± 1 µm was formed in the nitriding process (see Table 3). In this layer, one
can distinguish a lighter zone with poor etching on the substrate and a porous etching zone
on the surface with a thickness of gpor = 10 ± 1 µm (Figure 2a).

On the diffractogram of the surface of the nitrided sample (1A), the dominant phase
in the layer was the
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phase were recorded in
the range of the 2Θ angles studied (Figure 2b). The low intensity and the absence of the
characteristic lines of the γ′ {200} and γ′ {111} planes indicate that the amount of the γ′

phase in the layer did not exceed 5% of the mass (see Table 4).
After the annealing process, the steel structure (sample 11) did not change significantly.

In the microstructure, a layer of iron nitrides with a thickness of gmp = 30 ± 1 µm was
visible. The thickness of the light, poorly digestible zone decreased slightly; the thickness
of the porous zone (gpor) increased to 10 ± 1 µm, and its porosity also increased (Figure 2c).
The process significantly changed the phase composition of the iron nitride layer. After
the nitriding process, the iron nitride layer was a mixture of
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The thermodynamics and kinetics of the nitriding process are exhaustively described 
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The aim of our research was to check whether annealing at 520 °C in an inert atmos-
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2. Materials and Methods 
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fied”) are listed in Table 1. 
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Grade Steel Sample No. 
DK 

(mm) 
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AISI 1010 1A; 11 3.97 0.10 0.5 01 0,04 0.05 
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The steels were subjected to gas nitriding at 570 °C for 5 h; then, half of the samples 
were annealed at 520 °C for 4 h in N2/Ar atmosphere at 200 Pa. The samples were weighed 
before and after the annealing process. The accuracy of weight measurement was as much 
as 10−5 g. The parameters of the nitriding and annealing processes are shown in Table 2. 

and γ′ phases; after the
annealing process, as a result of denitrification, the iron nitride layer was transformed
into a single-phase γ′ layer. On the diffractogram of the surface of sample 11, only two
characteristic lines of γ′ {111} and γ′ {200} and characteristic lines of the substrate, α-Fe
{110}, were identified (Figure 2d). As a result of the transformation, the lattice parameters of
the formed γ′-Fe4N nitride also increased (Table 4). The appearance of a characteristic line
of the α-Fe substrate may be associated with the disappearance of part of the nonporous
zone of the iron nitrides.
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On the AISI 1085 steel (sample 5A), a layer of iron nitrides with a thickness of
gmp = 25 ± 1 µm was formed in the nitriding process (Table 3); in this layer, a lighter
zone with poor etching on the substrate and a more etched porous zone with a thickness of
gmp = 10 ± 1 µm on the surface can be distinguished (Figure 3a). On the diffractogram of
the surface of the nitride sample (5A), the predominant phase in the nitride layer was the
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phase (Figure 3b); the content of the ε phase in the iron nitride layer was 87% (Table 4).
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characteristic line of the γ′ {200} plane indicate that the amount of the γ′ phase in the layer
did not exceed 15% by weight.
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Figure 4. Change in sample weight, Δm/m2 (samples 11 and 15), after annealing. 

  

Figure 3. Microstructure of the nitrided layer on AISI 1085 steel (sample 5A) (a) and nitrided and
annealed steel (sample 15) (c). Diffractograms of the surface of nitrided sample (sample 5A) (b) and
nitrided and annealed sample (sample 15) (d).

After the annealing process, the steel structure (sample 15) did not change significantly.
In the microstructure, there was a layer of iron nitrides with a thickness of gmp = 25 ± 1 µm
(Table 3). The thickness of the light, poorly etched zone decreased slightly, while the
thickness of the porous zone (gpor) increased to 12 ± 1 µm (Figure 3c). The degree of
porosity of the zone increased. The process significantly changed the phase composition
of the iron nitride layer. After the nitriding process, the iron nitride layer was a mixture
of
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phases. In the iron nitride layer, next to the γ′ phase formed by the nitriding process, there
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phase transformation (Figure 3d). X-ray
studies of sample 15 found that the characteristic line of the
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DK 

(mm) 
Element Contents in wt.% 

C Mn Si P S 
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The steels were subjected to gas nitriding at 570 °C for 5 h; then, half of the samples 
were annealed at 520 °C for 4 h in N2/Ar atmosphere at 200 Pa. The samples were weighed 
before and after the annealing process. The accuracy of weight measurement was as much 
as 10−5 g. The parameters of the nitriding and annealing processes are shown in Table 2. 
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before and after the annealing process. The accuracy of weight measurement was as much 
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{002} planes increased. In the doublet of these
phases, the number of γ′ phases increased. As a result of the ε-Fe2–3N phase transformation,
the content of the γ′-Fe4N phase in the white layer increased. The lattice parameters of γ′

phase increased slightly; the lattice parameters of the ε phase decreased (Table 4).
Figure 4 shows the change in the mass of the annealed samples after the nitriding

process. The disappearance of the ε phase and the partial dissociation of the γ′ phase
(γ′→α-Fe(N)) explain the large weight loss in sample 11 (Figure 2d). The incomplete phase
transformation of ε to γ′ explains, in turn, the small loss of mass in sample 15 (Figure 3).
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3.2. FMR Spectra

Investigations of the magnetic properties of AISI 1010 steel balls were carried out
earlier in this paper [27]. However, these balls were subjected to nitriding processes under
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different thermodynamic conditions and ball diameters. The results of these and current
studies confirm the independence of the conclusions about the magnetic properties of
the balls with respect to their materials and geometric sizes. The magnetic properties of
1085 steel balls were analyzed by us for the first time. By analyzing the general shape
of the resonant lines from Figures 5 and 6, it can be seen that “unmodified” (SS) ball
materials usually have a very complex, wide, and intense FMR signal observed over the
entire available temperature range of 50–300 K, which is far from the standard Lorentzian
function (see Figures 5a–c and 6a,b). The AISI 1085 ball samples (SS—initial sample,
5A—nitrided sample, and 15—nitrided and annealed sample) had a diameter of 5 mm
and were not suitable for measuring the temperature dependencies of the FMR spectra
(diameter was too large in relation to the measuring chamber). Therefore, Figure 6a
shows the FMR spectra of a ball cut from the same material but with a different diameter:
AISI 1085_SS_2.5 mm. Figure 6b shows only the FMR spectra of the AISI_1085_5 mm
samples measured at room temperature. The general characteristics of the spectra shown
in Figure 6a correspond to those shown in Figure 6b.

Let us assume for our samples the correctness of the model of isolated Fe ions. The
asymmetry of the FMR resonant signal can be explained by the very high conductivity of
steel, leading to the formation of skin currents in the FMR experiment. Such a phenomenon
was first described by Dyson [24] and was studied in further FMR experiments [25,26].
According to this theory, the symmetric Lorentz line is distorted due to the uneven dis-
tribution of the microwave field in the sample. The level of asymmetry, among many
factors, depends on the relationship between the size of the sample and the depth of the
skin current. The contribution of the asymmetric Dyson function to the overall FMR line is
expected to be weaker for samples with a smaller diameter. Thermal treatment (nitriding,
annealing) leads to an increase in the homogeneity of the magnetic material, which can be
inferred from the increase in the symmetry of the observed FMR signal compared to the
signal of the unmodified samples.

In the a–c inserts in Figure 5, the temperature dependencies of the FMR spectra of
the AISI 1010 samples are shown for the initial sample (SS), the nitrided sample (1A),
and the nitrided and annealed sample (11), respectively. As you can see, the shape and
intensity of the FMR signal changed significantly when another process was used (compare
Figure 5a–c). Moreover, it changed with increasing temperature.
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The d–f inserts in Figure 5 show the temperature dependencies of the FMR magnetic
susceptibility, χFMR; the magnetic moment square, χFMR × T; and the FMR signal resonant
position, respectively. The FMR magnetic susceptibility of all the samples (d) increased
with temperature, although higher values were observed for the SS sample. This behav-
ior was completely inconsistent with the Curie–Weiss relationship expected for simple
paramagnetic species. The magnetic moments (e) decreased as the temperature decreased,
suggesting antiferromagnetic interactions dominating the magnetic behavior of the sam-
ples. The resonant position of the FMR line (f) moved towards lower values for both of the
nitrided and annealed samples.

The inserts in Figure 6a,c–e show the same relationships as those in Figure 5, but the
magnetic susceptibility, magnetic moment, and resonance position are shown for the AISI
1085_SS_2.5 mm sample and not the AISI 1085_SS_5 mm sample. The FMR spectra of the
second type of samples (SS, 5A, and 15) measured at T = 295 K are shown in Figure 6b.
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Although the above temperature relationships (Figures 5 and 6) were obtained only in
the range of 50–300 K, our previous tests in the range of 3–300 K [27] on the same samples
tested for something different than the thermodynamical conditions confirmed the above
conclusions. The question arises whether and how the nitriding process physically affected
the magnetic properties of the tested steel ball samples. As can be seen in Figures 5 and 6,
the nitriding process introduced a broad component into the FMR spectra. This component
may be the result of the growth of a new phase, e.g., Fe4N-γ′ (see Table 3), which modified
the surface of the ball at a different depth. In addition, the thermal nitriding processes led
to a change in the shape of the FMR signal. This refers to various conditions, including
the relaxation processes between the magnetic centers. On the one hand, the FMR sig-
nals recorded for the samples undergoing nitriding processes were transferred to higher
magnetic fields, but, at the same time, they became more symmetrical and closer to the
shape of the Lorentz line. This clearly suggests that both the temperature and the time of
exposure to the nitrogen atmosphere had an impact on the magnetic properties of the tested
steel materials. The observed shift of the resonant lines (geff) towards higher fields can be
attributed to the decrease in the electron conductivity of the samples after the nitriding
process. The nitriding process generally led to a decrease in the free-electron asymmet-
ric Dysonian component in the FMR spectra. Thus, the general FMR signal consisted of
a free-electron FMR signal (Dysonian-like) and a Lorentzian-like FMR signal assigned to
the magnetic complexes.

3.3. Magnetic Susceptibility Measurements

Figure 7a, b shows the magnetization measurements of the initial samples, SS, of the
AISI 1010 and AISI 1085 steels in a magnetic field of 100 Oe. As can be seen, the samples
are characterized by high magnetic anisotropy at lower temperatures and an unusual
dependence on temperature over the entire temperature range of 3–300 K. This confirms
the previous FMR observations (see Figures 5d and 6c). Magnetic anisotropy tended to
disappear at a temperature of about 300 K. Measurements were made in the FC and ZFC
modes. For the tested samples, their magnetization was relatively weaker when the tests
were carried out in a stronger magnetic field. Moreover, the magnetic susceptibility of this
type of steel appears to be dependent on the carbon content.
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Figure 7. (a). Magnetization of the AISI 1010_SS sample over a temperature range of 3–300 K in a
magnetic field of H = 100 Oe. (b) Magnetization of the AISI 1085_SS sample over a temperature range
of 3–300 K in a magnetic field of H = 100 Oe.

Thus, the results obtained from the SQUID measurements, recording changes in mag-
netization, confirm the remarkable increase in magnetization with increasing temperature
previously observed in the FMR measurements.

Figure 8 shows the hysteresis loops measured at 295 K. As you can see, they were
very thin. They had a low coercive field, Hc, and low remnant parameters, Br. They did
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not differ much from each other. Figure 8 indicates that all the tested samples revealed
(anti)ferromagnetic interactions, regardless of the type of process, over the temperatures
of 15–295 K. Only minor differences were observed for different processes. An increase in
magnetization, as well as in FMR magnetic susceptibility, along with temperature can be
observed in the antiferromagnetic structure. According to previous reports on a similar type
of steel [28], we are dealing with a magnetic material, where a minority of ferromagnetic
objects appear as an imperfection of the antiferromagnetic structure. Thus, the increase
in temperature destroyed the antiferromagnetic order, and the overall magnetization
increased. A similar behavior of magnetization with temperature dependence was observed
in other materials containing Fe [29,30], where the increase in magnetization was explained
by the formation of Fe2+ ions in a structure made of Fe3+.
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Figure 8. (a) Hysteresis loops of the AISI 1010 samples and (b) hysteresis loops of AISI 1085 samples;
T = 295 K.

4. Conclusions

Our research shows that the iron nitrides formed during nitriding dissociated during
annealing at 520 ◦C in an N2/Ar atmosphere at 150 Pa. The ε phase was the first to
dissociate according to the reaction ε→γ′ + N2↑. After complete ε phase decomposition,
the γ′ phase was also decomposed according to reaction γ′→αFe(N) + N2↑. The nitrogen
released during the dissociation of the iron nitrides caused a loss of mass in the annealed
samples. The nitrogen released during the decomposition of the iron nitrides did not
change the thickness of the iron nitride layer.

The FMR technique was sensitive enough to record the differences in the physical
properties of the AISI steels subjected to different types of nitriding and annealing processes.
The samples with a higher carbon content had more symmetrical FMR signals. This was
assigned to the share of free electrons in the FMR line shape. Free electrons were observed
as a Dyson line in the FMR spectra. In addition to the above line, the usual Lorentz line
was observed and was attributed to iron complexes.

Our innovative methodology for investigating the changes in the magnetic properties
of steel by observing the mechanical changes in the WL thickness combined with observa-
tions of the temperature dependencies of the FMR spectra of the spherical balls turned out
to be a valid methodology independent of the type of steel tested; the geometric dimensions
of the balls; and the heat treatment processes, including nitriding.
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