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Abstract: Cataphoresis varnishing enables an organic coating to form on an aluminum substrate, thus
increasing its corrosion resistance and durability. Cataphoresis varnishing is known to ensure a high
adhesion of the created cataphoresis layer and a good homogeneity of this layer, even on surfaces
with complex geometry. This paper aimed to optimize the deposition process and to analyze and
evaluate the thickness of a cataphoresis layer formed on an aluminum substrate from AW 1050—H24
material. In total, 30 separate samples were created in accordance with the Design of Experiments
methodology, using a central composite plan. The independent input factors in the study were:
the electrical voltage (U) and deposition time in the cataphoresis varnishing process (tKTL) at the
polymerization times of 15 min, 20 min, and 25 min, respectively. The results of the statistical analysis
showed that the voltage accounted for 33.82% of the change in the thickness of the created layer
and the deposition time contributed 28.67% to thi change. At the same time, the interaction of
the voltage and deposition time (p < 0.0001) accounted for 20.25% of the change in the thickness
of the layer under formation. The regression model that was constructed showed a high degree
of prediction accuracy (85.8775%) and its use as a function for nonlinear optimization provided a
maximum layer thickness th of max = 26.114 µm, at U = 240 V and tKTL = 6.0 min, as was proven under
experimental conditions.

Keywords: cataphoresis; electrophoresis; coating layer thickness; analysis; planning conditions

1. Introduction

Electrophoretic paints, commonly known as electrocoats or paints, are organic coatings
dispersed in water that carry an electric charge. This enables the paint to be used for
deposition onto a metal that is carrying an opposite charge. Special needs for formulating
this coating result from this special way of application [1–3].

Automotive coatings and the processes used to paint automotive surfaces exemplify
avant-garde technologies capable of producing durable surfaces that exceed customer
expectations for appearance, maximizing efficiency, and meeting environmental regulations.
These achievements are rooted in 100 years of experience, trial and error techniques,
technological advances, and theoretical evaluation [4].

The overall critical performance factors that drive the development and use of ad-
vanced automotive coatings and coatings technology are aesthetic properties, corrosion
protection, mass production, cost, environmental requirements, appearance, and durabil-
ity [5].

The adhesion of the coating to the material is also a very important factor for the
appearance and durability of the surface of the material. Based on research, a torsional
delamination test was developed, which consisted of applying an increasing torque on a
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hexagonal base directly glued to the coating. The test was quantitative and made it possible
to calculate the shear stress that arose during delamination. Based on this test, it was found
that polymerization temperature is an important factor in the adhesion of the material [6].

Anti-corrosion protection is also provided to ensure the durability of the coating. One
of the technologies used to ensure this anti-corrosion protection is cataphoresis, which is
used to apply paint to the paint surface. It is known for ensuring a high coating adhesion
and good homogeneity, even for surfaces with complex geometry [7–9].

The researchers Mr. Rossi, Calovi, and Fedel conducted research for the implemen-
tation and optimization of the deposition process and the evaluation of the properties
of a cataphoretic coating applied to an aluminum foam. They found a large effect for
the corrosion behavior of the painted foam, which was evaluated using acetic acid salt
chamber exposure and electrochemical impedance spectroscopy. By inserting the dye into
the resin, it was possible to observe three types of cells, namely, black-colored cells that
represented the coating; light-colored cells without traces of the coating resin; and cells
with a purple color, which represented traces of resin. It was found that it is very difficult to
obtain a uniform coating on the entire surface of aluminum according to the foam sample;
another important factor is the deposition voltage, which achieves coatings with a greater
thickness [10].

In further research, it was also confirmed that the higher the coating voltage, the
greater the thickness of the layer. However, the cataphoresis process appears to be a
promising technique for coating a material surface. If we set a relatively smaller coating
voltage, it is possible to obtain a relatively thin coating, while it is necessary to avoid
exceeding the coating voltage to values that are too high, which can lead to the formation
of bubbles [11–13].

Other methods of applying organic coatings include adding graphene oxide to a
cataphoresis bath. Research has found that graphene oxide leads to the formation of
defective layers, with the consequence of reducing the durability of the coating. However,
when applied in two steps with two different baths, it is possible to maintain the integrity
of the coating and ensure the protection of the substrate. In the first bath, an epoxy-based
method has been used, where an epoxy resin was used, which ensured an excellent level
of material adhesion and good mechanical properties of the coating. The second bath
contained graphene oxide, also called the black bath. From this research, we can determine
only one thing: that the black bath guarantees a much greater thickness of the layer, thereby
guaranteeing excellent protection [14–17].

In further research, the authors looked at the compatibility between the cataphoretic
electrocoating and a silane surface layer. The research was carried out on a sheet of steel
that had previously been treated with a silane sol-gel. In the case of thin samples coated
with 120 nm silane sol-gels, the electrodeposition conditions were slightly affected. On
the contrary, at a greater thickness, degradation occurred due to hydrogen production and
bubbling [18–20].

The authors see the present paper as a contribution to the procedural approach to
the complex process of creating anti-corrosion layers, such as the process of cataphoresis
varnishing. Since the technological processes of surface treatment represent multifactor
systems with interacting physical, chemical, and technological effects and, at the same
time, since their influences may be considered random variables, the authors subjected
the experimentally obtained data to proper methods of statistical analysis to gain a deeper
understanding of these interrelationships. Another undisputed benefit of the present paper
is the nonlinear optimization (maximization) of the basic technological parameter, the
thickness of the created layer, and the analysis of the rate of deposition in the process of
cataphoresis varnishing. However, the limitations are those of the experiment constraints
and the use of only two basic process factors.
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2. Materials and Methods

With the need to minimize costs and time and, at the same time, to maximize the
reliability and objectivity of the information obtained about the process of anodic aluminum
oxidation, it was necessary to conduct the experiment with as few trials as possible. The
experimental planning methodology—DoE (Design of Experiments)—was used for the
experimental verification of the influence of the basic process factors on the thickness of
the layer created by the cataphoresis. This methodology represented the only scientifically
justifiable methodology of experimentation and allowed for an obtainment of the maximum
amount of information with a high statistical and numerical correctness, i.e., with a high
reliability of the implemented conclusions and an optimal (minimum) number of individual
trials. For the purpose of the experimental verification of the influence of the selected
process factors (deposition time, varnishing voltage, and polymerization time), a Central
Composite Plan was chosen, which facilitated the creation of a non-linear model, which
we assume, in view of our practical experience, to be the case. The total number of trials,
in terms of the type of the plan used, was 10. Since the marginal intention was also to
examine the influence of the polymerization time (tpol = 15 min, 20 min, and 25 min) at a
constant polymerization temperature (Tpol = 200 ◦C) on the thickness and adhesion of the
cataphoresis varnish, the experiment was carried out in three separate blocks. Each block
represented one polymerization time [21,22].

The basic knowledge of the technological process and the method of its management
could be obtained through the method of a factor experiment. The result of the factor
experiment was an interpolation model that had the form of a first- or higher-degree
polynomial (linear or non-linear model). In the analysis, we obtained results that allowed
us to discover stages of the technological process. The planning of the technological process
for the linear model can be written with the mathematical equation:

ŷ = b0 + ∑k
j=1 bj · xj (1)

Surface areas with higher-order models can be described more accurately if it is
not possible to create an adequate linear model. We can write the technological process
planning for the non-linear model using the mathematical equation:

ŷ = b0 + ∑k
j=1 bj · xj + ∑k

j 6=g=1 bjg · xj · xg + ∑k
j=1 bjj · x2

jj (2)

Within relations (1) and (2), ŷ represents the estimate of the investigated parameter
(the thickness of the created layer), xi represents the independent variables (UKTL, tKTL, and
tpol), and b0, bi, bj, bjg, and bjj represent the estimates of the regression coefficients, which
were calculated based on the method of least squares.

To reduce the number of experiments and utilize the results of the linear model
experiment, we used composition plans. According to the location of the points, we
divided composition plans into central and non-central [23].

2.1. Material Selection

In the elaboration of the work, namely, the analysis of the effect of the cataphoresis
coating process conditions on the layer quality of the aluminum parts, aluminum specimens
of the AW–1050 H24 type were used. Today, aluminum is used to produce various types of
components for the automotive industry. EN AW–1050 A is a non-alloy aluminum with
a maximum impurity content of 0.5%. The material is thermally uncurable. Increasing
its strength is possible only under cold conditions (by rolling and pulling, etc.), when the
increase in this strength is related to a reduction in elasticity and, thus, formability. In
the soft annealed state (0), the material has an excellent formability (by bending and deep
drawing, etc.). In the hardened states of H14 and H24, this formability is substantially
lower. It should be taken into account that the H24 state exhibits a slightly better formability
than that of the H14 state. It is used, among others, in the production of storage tanks, heat
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exchangers, spotlights, and packaging materials, etc. Its corrosion resistance is excellent
under normal atmospheric conditions. This can be improved by the products’ technical
anodic oxidation. Non-alloy aluminum is very weldable using all common aluminum
welding procedures (especially the MIG and TIG gas arc welding procedures). Under
certain conditions, it may be necessary to soft anneal the material. This soft annealing
temperature is from 320 to 350 ◦C [24–26].

2.2. Technological Process of Production

The experiment was carried out as part of a production operation on an automated
cataphoresis line. The preparation of each sample, before the actual cataphoresis coating,
was as follows:

(a) Chemical degreasing of the samples—chemical degreasing was carried out in a high
alkaline medium emulsifying agent containing low-foaming tensides. Each sample
was subjected to a degreasing time of 8 min under a constant temperature of 65 ◦C
with a constant chemical composition of the solution (40 g·L−1). The degreasing was
followed by a two-stage rinse in demineralized water.

(b) Pre-phosphating activation—this was carried out in a commercial preparation from
Pragochema CZ, trade name Pragofos 1927, under the following constant conditions:
pH = 9.5, Tact = 40 ◦C, and tact = 2 min.

(c) Phosphating—the phosphating itself was carried out in a multi-cation phosphatizing
solution without nitrite accelerators. The samples were phosphated under constant
operating conditions: Tph = 50 ◦C and tph = 5 min and a constant chemical composition:
a total Fisher spot content of 16 points, a free acid content of 0.8 g·L−1, an acceler-
ator content of 2.3 g·L−1, a zinc content of 0.95 g·L−1, and a phosphate content of
12.5 g·L−1, with a pH of 3.40. The surface weight of the deposited phosphate coating
ranged from 1.97 to 2.09 g·m−2. The surface homogeneity after phosphating can
be seen in the image of the checking sample shown in Figure 1. The SEM images
were captured using a Scanning Electron Microscope Tescan Mira 3 FE equipped
with an integrated EDX analyzer from Oxford Instruments, which allowed for an
observation of the microstructure of the material and the performance of an elemental
analysis (spot and surface distribution). For the SEM images, the secondary electron
mode (SE) and an accelerating voltage of 15 kV were used. The distance between the
sample and detector was 15 mm and the view field was 185 µm. A three-stage rinse
in demineralized water followed the phosphating process.

(d) Cataphoresis varnishing—this was carried out according to the matrix of the experi-
ment plan using a central composite plan. The basic variable factors are presented
in Table 1. In the cataphoresis varnishing of the individual samples, the constant
temperature of the cataphoresis paint was TKTL = 32.5 ◦C and the value of the cur-
rent flowing through the electrochemical system, namely IKTL = 200 A, was kept
constant. The chemical parameters of the cataphoresis paint during the experiment
were also maintained at a constant level: dry matter (1 h at 110 ◦C) at 15.300, P/B
ratio (binder/paint) at 0.151, pH (at 25 ◦C) at 5.82, and conductivity (at 25 ◦C) at
1660 µS·cm−1.

Table 1. Values of variable input factors.

Factor Code Factor Unit
Factor Level

−2 −1 0 +1 +2

x1 UKTL V 200 220 240 260 280
x2 tKTL min 3.0 4.5 6.0 7.5 9.0
x3 tpol min 15 20 25
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In the actual implementation of the experiment, the Design of Experiments method-
ology was used, including the selection of the central composite plan. Table 1 shows the
basic levels of the experiment plan for the individual input factors where, through their
combination, individual experiments were carried out. The particular levels of the input
factors were selected based on the practical experience of the authors.

2.3. Thickness Measurement

The layer thicknesses on the individual aluminum specimens were measured with the
Elcometer 456 digital thickness gauge. This apparatus autonomously evaluated the average
value of the coating when measured at specified points. The coating thickness ranged from
15 µm to 70 µm on the individual specimens. The measurement itself produced three types
of measurement errors, i.e., systematic measurement errors, which were detected from the
statistics, random errors (could not be influenced, they occurred during the measurement
and were caused either by a failure to clean the surface of the components or by the
influence of the temperature fluctuations, etc.), and gross errors (caused by observer fatigue
and inattention) [27].

3. Results and Discussion

The process of cataphoresis varnishing can be viewed from two angles. The first is the
electro-osmotic theory of cataphoresis. It is assumed that an electric bi-layer emerges at the
interface between the solid and liquid phase. A part of this double layer is deposited as a
liquid coating on top of the solid phase and the other part is scattered in the adherent liquid
layer. As long as the solid phase can move freely in the liquid, the tangential component of
the electrical force sets the suspended particles into motion. Cataphoresis varnishing uses
the principle of cathodic organic coating creation based on epoxy or acrylic cataphoresis
materials. Water-soluble cationic coatings with very low organic solvent content contain
particles of varnish in the form of polymer cations. Thus, if an electric field is created in
this system, with the solid phase particles scattered in the liquid phase, the particles begin
to move in the direction of the electric field under the influence of the electric force. A
direct current between the coated part, which is the cathode in the cataphoresis varnishing
process, and an anodic counter electrode (anode) creates an electric field that becomes the
carrier of the polymer cations that travel towards the cathode. In the course of the reactions
with hydroxyl ions resulting from the breakdown of water, the solubility is suppressed
on the cathode, and the organic coating deposition process is activated on the surface of
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the cathode. The second view of the cataphoresis varnishing process is the ionic theory
of cataphoresis. In this theory, suspended particles are considered to be high-molecular-
weight electrolyte molecules. These molecules then disassociate into high-power ions
and associated electrolytic ions, which carry the same amount of electrical charge, but of
the opposite polarity. The moving particles of the solid phase, which are suspended in
the liquid phase under the influence of the electric field, are seen as electrolytic ions in
electrolyte solutions. The electric charges of the ions are affected by an electric force in the
electric field, the magnitude of which is determined by the product of the magnitude of
the electric charge and the magnitude of the electric field. This force accelerates the ion,
which is, at the same time, hampered by the movement of the frictional force emerging in
the liquid environment. The ion is, at this time, considered to be a sphere with a radius
corresponding to its resistance in the given environment, defined by the Stokes equation of
resistance of a sphere in a liquid. The friction force is proportional to the velocity of the ion.
Upon the introduction of the electrical charge, a steady state occurs. The mobility of the
ions is directly proportional to the power and inversely proportional to the radius of the
ion [28,29].

Since the implemented methodology of the experimental verification (Design of Exper-
iments) represented a statistical approach, the subsequent analysis of the experimentally
obtained data was, too, carried out using mathematical–statistical procedures. The initial
analysis of the applied model pointed to the fact that the proportion of the variability of the
measured thickness of the cataphoresis coating was 86.70225% and the adjusted index of
determination, determining the degree of explanation of the data variability by the model,
was 85.8775%. The average thickness of the cataphoresis layer formed, covering all the
individual trial runs, was th = 24.464 ± 3.677 µm.

The table of the variance analysis (Table 2), as a basic requirement for the correctness
of the regression model, enabled us to conclude that the variability caused by random
errors was significantly lower than the variability of the measured values explained by
the model, and the value of the achieved significance level (p) indicated the adequacy of
the model used, based on the Fisher–Snedecor test criterion. Another view of this analysis
is through assessing the adequacy of the model itself and is based on the very essence
of the variance analysis. For testing the null (H0) statistical hypothesis, which followed
from the nature of the test and said that none of the effects (factors) used in the model
effected a significant change on the examined variable, it followed that the achieved level
of significance (p) was less than the selected level of significance α = 0.05, and it could be
concluded that we did not have enough evidence to accept H0 and we could say that the
model was significant [30].

Table 2. The table of variance analysis.

Source df SS MS F p

Model 5 3956.890 791.378 58.5323 <0.0001 *
Error 144 1946.932 13.52

C. Total 149 5903.821
SS—Sum of Squares, MS—Mean squares, F—Fisher’s test statistic, p—achieved level of significance, and
*—significant at the level of significance α = 0.05.

The applied model was further tested in the so-called insufficient model adaptation
error test (Table 3), where we tested the scatter of the residues and scatter of the data
measured within the groups; thus, we tested the premise of whether the regression model
adequately described the observed dependence. Based on the error test of insufficient model
adaptation, due to the achieved significance level of 0.1853, a zero statistical hypothesis
could be accepted at the selected significance level of α = 5% and it could be said that the
scatter of the residues was less than or equal to the scatter within the groups and, therefore,
the model could be considered sufficient.
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Table 3. Model fit error.

Source df SS MS F p

Lack Of Fit 3 283.9322 94.6441 8.0245 0.1853
Pure Error 141 1663.000 11.7943
Total Error 144 1946.932

SS—Sum of squares, MS—Mean square, F—Fisher’s test statistic, and p—achieved level of significance.

Based on the above assumptions and their fulfillment (Tables 2 and 3), the follow-
ing table (Table 4) presents an estimate of the regression model parameters with testing
the significance of the individual effects and their combination at the significance level
α = 0.05.

Table 4. Estimates of regression model coefficients.

Term Estimate Std Error t p −95% CI +95% CI

Intercept 26.114 0.567 46.030 <0.0001 * 24.993 27.236
x1 3.170 0.274 11.560 <0.0001 * 2.628 3.711
x2 2.686 0.274 9.800 <0.0001 * 2.144 3.227

x1·x2 3.286 0.475 6.920 <0.0001 * 2.347 4.224
x1·x1 −0.474 0.233 −2.030 0.0439 * −0.934 −0.013
x2·x2 −0.902 0.233 −3.870 0.0002 * −1.362 −0.441

x1—voltage (V), x2—deposition time (min), t—Student’s test criterion, p—achieved level of significance,
CI—confidence interval, and *—significant at the level of significance α = 0.05.

The results shown in Table 4 thus enabled the building of a predictive mathematical-
statistical model at a coded scale:

y(th) = 26.114 + 3.170 · x1 + 2.686 · x2 + 3.286 · x1 · x2 − 0.474 · x2
1 − 0.902 · x2

2 (3)

Since the DoE methodology worked with a code scale, in order to ensure the numerical
and statistical correctness of the results, it was necessary to convert Equation (3) to the scale
of the original variables, the natural scale. Considering that the code scale represented the
DoE standardization of the variable input factors, it was necessary to use the following
equation to convert to the natural scale:

Xd(i) =
x(i)− xmax+xmin

2
xmax−xmin

2

(4)

where x(i) represents the original basic variable, i = 1, 2, . . . , n is the number of basic factors,
xmax is the maximum value of the original variable x(i), and xmin is the minimum value of
the original variable x(i).

Thus, when using the regression model (3) in the code scale, taking into account
the conversion Equation (4) for the individual variable input factors and subsequent
adjustment, it was possible to make a notation of a prediction equation for the thickness of
the cataphoresis layer in the form of:

th = 52.370 + 7.01 · 10−2 ·U − 19.687 · tKTL + 0.109 ·U · tKTL − 1.185 · 10−3 ·U2 − 0.409 · t2
KTL (5)

The analysis of Table 4 showed that the largest share in explaining the variability in the
parameter under study, the thickness of the cataphoresis layer per absolute element of the
model (intercept), which was involved in changing the thickness value of the layer, was that
of 57.387%. From a methodological point of view, the absolute element of the model was
characterized by “neglected” influences, which we kept at a constant level in the experiment
(especially the chemical characteristics of the cataphoresis electrolyte, current density, and
anode-to-cathode ratio), or we did not consider them. If we neglected this model element
and subsequently analyzed only the basic variable input factors, we would have come to
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the conclusion (Table 4) that the most significant factor that affected the thickness of the
layer formed was the voltage (U). It accounted for 33.82% of the change in the thickness of
the layer. The second most significant element of the model (5) was the deposition time
in the cataphoresis varnishing process (tKTL), accounting for 28.67% of the change in the
thickness. At the same time, the interaction of the voltage and deposition time accounted
for 20.25% of the change in the thickness of the layer formed. The nonlinear model elements
(5), namely, the voltage squared and the deposition time squared, accounted for 5.94%
and 11.32%, respectively, of the change in the thickness of the created layer. As seen in
Table 4 and model (5), it was clear that the processes of the surface treatment of the metals,
including the cataphoresis varnishing, were best described by non-linear models with a
significant influence and mutual interaction of the individual factors. The model (5) also
needed to be expanded and modified by the influence of the chemical factors acting in the
process of the cataphoresis varnishing. The model (5) represented a steppingstone to a
comprehensive analysis of the cataphoresis varnishing process using a statistical approach.
The statistical approach was chosen because the studied layer parameters were understood
as random variables in the mathematical sense [31].

The plotted thickness of the cataphoresis layer formed during the respective deposition
times in the cataphoresis coating process under various voltages is shown in Figure 2.
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The graph shows that, by increasing the deposition time of the varnishing medium,
the thickness of the layer formed was reduced under different varnishing voltages. A
varnishing voltage of 200 V and a deposition time of the varnishing medium of 3 min
affected the layer thickness the most. The thickness of the layer increased during the 3 min
deposition period, after which, the thickness of the layer decreased. This was due to a low
electric current, which caused the coagulation of the paint on the surface where it stopped;
thus, the coated part became electrically non-conductive. With an increased varnishing
medium deposition time, the value of the electric current decreased due to an increase in
the thickness of the deposited layer th, and the value of the current decreased to zero.

Under a 220 V voltage, the thickness of the coating increased for 5.5 min when the
coating also reached its maximum thickness. After this time, the thickness of the coating
decreased. Increasing the varnishing voltage to 240 V meant increasing the deposition
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time of the varnishing medium up to 8 min, without significantly affecting the thickness
of the layer. A further increase in the varnishing voltage resulted in an accelerated layer
formation and a similar change was observed when the varnishing voltage was increased
to 260 V and 280 V, when the thickness of the layer reached its maximum values throughout
the deposition time of the varnishing medium t in the electrolyte. This phenomenon could
be attributed to the color deposition technology that ran in the following sequence: water
electrolysis, ion migration (electrophoresis), the coagulation of the polymer on the cathode,
and water ejection via osmotic pressure. This phenomenon, as such, could be explained by
Ohm’s law, which says an electric current of a constant voltage is created between a cathode
and anode, which can be described by the equation U = R*I. Cataphoresis varnishing works
on the principle of creating cathodic organic coatings based on epoxy materials. Cationic
coatings soluble in water contain a small number of organic solvents and, at the same time,
particles in the form of polymer cations.

Once the coating was deposited on the cathode in the process of cataphoresis, the
resistance reached its maximum values. The layer ceased to be conductive and became
insoluble in water again. This deposited layer needed to be subsequently cured in a reaction
with another polymer. At this stage, hydroxyl groups along the molecular chain in the
cationic resin were applied, which reacted with isocyanates (they were equally present in
the resin) to form urethane compounds.

The function gradient (5), i.e., the direction of the steepest addition to the layer
thickness under the input parameters examined, namely the voltage (U) and the deposition
time in the course of the cataphoresis varnishing (tKTL), is defined by the vector:

∇th(U, tKTL) = [0.10953 ·U − 0.80176 · tKTL − 19.6867; 0.10953 ·U − 0.0037 · tKTL + 0.0701] (6)

The relationship (6) thus defines the direction, depending on the input variables, in
which the function (5) grew the fastest, that is, the direction where the thickness of the
forming layer reached its maximum in the shortest possible time.

In terms of the cataphoresis layer formation, based on the mathematical–statistical
models (5) and (6), it is possible to define the layer formation rate as the first derivative of
the function (5), according to the deposition time (tKTL):

vth =
∂th

∂tKTL
= 0.10953 ·U − 0.80176 · tKTL − 19.6867 (7)

Thus, Equation (7) represents the direction of the steepest rise in the function (6) in the
direction of the voltage. Thus, from Equation (7), it follows that the rate of formation of
the cataphoresis layer under the given experimental verification conditions (Table 1) was a
function of the voltage and deposition time in the process of the cataphoresis varnishing. In
accordance with theoretical knowledge and on the basis of Equation (7), we can conclude
that, by increasing the voltage, the rate of deposition of the cataphoresis layer also increased,
and, on the other hand, by increasing the deposition time, this rate in the cataphoresis
varnishing process decreased. The decrease in the rate of the formation of the cataphoresis
layer and the influence of the deposition time depended on the electrical properties of
the forming layer. Considering the fact that the layer formed during cataphoresis was
electrically non-conductive, its electrical resistance must have inevitably increased with an
increase in its thickness; therefore, the rate of its formation must have decreased. However,
if we wanted to ensure a constant rate of formation of the layer throughout the entire
deposition period in the cataphoresis varnishing process, we would have to increase the
voltage in proportion, as per Equation (7). The rate of the formation of the layer is a
fairly important indicator of the cataphoresis varnishing process. However, there are two
opposing requirements of the rate of the layer formation. On the one hand, there is a
requirement to achieve the highest possible rate of layer formation, thereby reducing the
time required for the cataphoresis varnishing to run its course, which results in an increased
economic efficiency of the process itself. The counter requirement stems from the process
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of layer formation in relation to its quality. If the rate of the layer formation is too high, the
hydrogen that emerges on the surface of the treated structural part does not have enough
time to "escape" the surface, and the resulting layer “traps” it in the surface of the part.
However, in the process of polymerization, this trapped hydrogen creates defects in the
layer in the form of craters. Further research is needed to determine the optimal value for
the rate of deposition, taking into account the basic requirements above [32].

Equation (7) is a statistical equation and, therefore, within, it holds only the input
variables’ intervals and the factors used (Table 1). Its extrapolation beyond these factor
values intervals may lead to incorrect results and conclusions.

The second partial part of the analysis, shown in Table 1, was devoted to the evaluation
of the thickness of the cataphoresis layer in relation to the polymerization time (tpol), using
three different times as part of the experiment plan, namely 15 min, 20 min, and 25 min,
respectively, for each combination. The basic graphical representation of the influence of
the polymerization time on the thickness of the layer created in individual combinations of
the input factors (U, tKTL) is shown in Figure 3.
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Figure 3. Effect of polymerization time on the thickness of the cataphoretic layer for individ-
ual experiments.

Figure 3 makes it evident that the polymerization time affected the resulting thickness
of the cataphoresis layer in a relatively random manner. However, the polymerization
process itself showed that, depending on the type of cataphoresis paint used, 10% and
20% of it was lost in the polymerization process. This was because the polymerization
process did not directly participate in the formation of the cataphoresis layer, but affected
its resulting properties. The average thickness of the cataphoresis layer formed after the
polymerization at a constant temperature of 200 ◦C and a polymerization time of 15 min
was 23.709 ± 0.192 µm. Here, it is necessary to say that in this analysis, all the values
of the measured thickness were used, including repetitions of individual measurements
(7565 measurements). For a polymerization time of 20 min at a constant temperature of
200 ◦C, the average thickness value of the formed layer was 24.349 ± 0.267 µm, and for a
polymerization time of 25 min, the average thickness of the layer was 24.937 ± 0.289 µm.

Thus, the average difference in the thickness of the cataphoresis layer between the
individual polymerization times was 0.613 ± 0.103 µm between the polymerization times
of 20 min and 15 min, 0.619 ± 0.102 µm between the polymerization times of 25 min and 20
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min, and finally, 1.220 ± 0.102 µm between the polymerization times of 25 min and 15 min
(Figure 4).
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uniform polymerization temperatures.

A graphic representation of the model verification (5) under the practical condi-
tions of the production process is shown in Figure 5. The verification was carried out at
UKTL = 240 V on the same samples, listed in the Material Selection and Technological
process of production section, and under the same conditions as the main experiment.
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As part of the analysis of the modelled thickness values of the cataphoresis layer
created and the values obtained from repeated measurements of the verification experiment,
we came to conclusion that the average deviation in all the measurements carried out was
0.632 µm (2.14%), while the lowest negative deviation in the calculated thickness of the layer
measured and the lowest deviation in the model (5) was at the level of −1.801 µm (8.690%),
and the maximum positive value of the examined difference was at the level of +2.306 µm
(8.407%). At the same time, based on the Shapiro–Wilks test, it can be said that the residues
showed a normal Gaussian distribution (p = 0.233) at the selected level of significance,
which indicated that the model (5) also met the last condition for the regression triplet
analysis and could be considered correct. A graphical representation of the differences
between the measured and modeled values of the thickness of the created layer is shown
in Figure 6.
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Figure 6. Differences between the measured and calculated thickness of the cataphoretic layer
((a) comparison of the results of the verification experiment and the model (5), and (b) percentage
display of the residues for the verification experiment).

The morphology of the surface was also of significant importance from the point of
view of the quality of the created cataphoretic layer. The change in the morphology and
structure of the surface of the created layer depended primarily on the conditions of the
process of creating the layer, that is, on the operation of the cataphoretic painting itself.

Figure 7 shows the surfaces of the layers created at voltages of UKTL = 220 V, 260 V,
and 280 V with deposition times of tKTL = 7.5 min and 6.0 min at a constant polymerization
temperature of 200 ◦C, but with a different polymerization times: 15 min (a), 20 min (b),
and 25 min (c). It is clear from the mentioned morphologies that the tension in the process
of creating the cataphoretic layer had a significant influence. At a voltage of 220 V, in all
cases (a, b, c), a relatively smooth surface without a distinct structure was scanned. At a
voltage of 260 V, morphological changes began to appear in the form of a slightly distinct
structuring of the surface, but in the presence of a significant defect in the form of craters.
These craters could be attributed to the process of cataphoretic painting in the form of
the binding of the hydrogen on the surface of the painted sample with its binding by the
created layer and subsequent “explosion” in the polymerization process. However, this
defect was no longer observed when using a voltage of 280 V, but the surface of the created
layer already had a pronounced wrinkled structure. In general, it can therefore be said that,
by increasing the tension in the process of creating a layer, the morphology of the created
layer deteriorated and the created layer acquired a significantly wrinkled structure.
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Figure 7. Morphological changes in the surface of the created cataphoretic layer depending on
the voltage and the deposition time ((a) tPOL = 15 min, (b) tPOL = 20 min, and (c) tPOL = 25 min;
1—UKTL = 220 V, tKTL = 7.5 min, 2—UKTL = 260 V, tKTL = 7.5 min, and 3—UKTL = 280 V,
tKTL = 6.0 min).

The confirmation of the above conclusions was carried out using additional exper-
iments at a voltage of 400 V and deposition times of 5.0 min and 4.0 min, while the
morphology of the surface of the cataphoretic layer is shown in Figure 8. It is obvious that
the surface morphology of the formed layer at a high voltage was significantly structured
with very pronounced wrinkling; however, with a deposition time of 5.0 min, the surface
was significantly more heterogeneous than that in the case of a deposition time of 4.0 min.
Thus, in addition to the applied voltage, the deposition time of the KTL process also had
an effect on the surface morphology of the created cataphoretic layer and, with an increase
in the deposition time, a more pronounced heterogeneity of the surface occurred.
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An important consequence of the defined predictive dependence (5) was a determina-
tion of the optimal values of the analyzed input variables (U, tKTL). Due to the technological
requirements placed on the thickness of the layer under formation, it was advisable to look
for the maximum regression function (5). The general optimization problem was to select
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n decision variables x1; x2; . . . ; xn from a given implemented area, in such a way as to
optimize (minimize or maximize) the purpose function:

f (x1, x2, ..., xn) (8)

The optimization problem was a non-linear programming problem (NLP) if the pur-
pose function was nonlinear or the implemented area was defined by nonlinear constraints.
Then, the maximization of the general nonlinear programming is defined in the form of:

max f (x1, x2, ..., xn) (9)

for restrictions:
g1(x1, x2, . . . , xn) ≤ b1

g2(x1, x2, . . . , xn) ≤ b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gm(x1, x2, . . . , xn) ≤ bm

(10)

where each of the constraints g1 through gm is defined. A special case is linear programming.
The obvious relation for this case is:

f (x1, . . . ..., xn) = ∑n
j=1 cj · xj (11)

and
gi(x1, . . . , ..., xn) = ∑n

j=1 aij · xji = (1, 2, ..., m) (12)

Non-negative variables constraints can be included simply by attaching additional
constraints:

gm+i(x1, x2, ..., xn) = −xi ≤ 0i = (1, 2, ..., n) (13)

In some cases, these constraints are considered explicit, as is any other issue in the
delimited areas. In other cases, it is appropriate to consider them implicit if the non-negative
constraints are manipulated, as is the case with simplex methods.

To simplify the proposition, let x denote the vector of the control variables x1, x2, . . . , xn,
which represents x = (x1, x2, . . . , xn). The problem is more aptly written in the form:

max f (x) (14)

according to the:
gi(x) ≤ bi(i = 1, 2, .., m) (15)

As in solving the tasks of linear programming, there are no restrictions on these
formulations. When maximizing the f (x) functions and, of course, also when minimizing
its f (x), the conditions of equality h(x) = b can be written as two separate conditions of
inequality, h(x) ≤ b and −h(x) ≤ −b.

To optimize the thickness of the created cataphoresis layer, a regression model (5) was
applied as a functional function and the interior point method was used for the nonlinear
optimization. The ranges of the intervals of the variable input factors used were the basic
constraints (Table 1), which are defined as follows:

200 ≤ U ≤ 2803 ≤ tKTL ≤ 9 (16)
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A MATLAB software product Optimization Toolbox was used to implement the
optimization of the thickness of the cataphoresis layer created. The task of the nonlinear
optimization, in our case, was to find the maximum of the problem, which is defined as:

max f (x)


c(x) ≤ 0

ceq(x) = 0
A · x < b

Aeq · x = beq
lb ≤ x ≤ ub

(17)

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) are vector
functions, and f (x) is a scalar function. The course of the optimization process itself, as an
output from the optimization program, is shown in Figure 9.
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The result of the non-linear optimization process of the cataphoresis varnishing,
considering only two variable technological factors, different voltages and deposition times
in the process of the cataphoresis varnishing, was the determination of the maximum
thickness of the purpose-built regression function (5). The maximum of the purpose-built
function, while respecting the constraints given by Equation (16), was thmax = 26.114 µm
under the following technological conditions: U = 240 V and tKTL = 6.0 min. Therefore, in
order to create the thickest layer possible, it was necessary to set these basic factors at a
defined level [33].

However, we must also define the limitations of the conducted experimental research.
The conclusions of the submitted study are valid only in the range of the experimental
conditions listed in Table 1, which resulted from the applied statistical approach. A further
limitation is imposed by the other relevant input conditions in the processes of degreasing,
activation, and phosphating. Therefore, it will be necessary to expand the model (5) by
including these impacts, thus defining the complex technological dependence of the process
factors on the layer forming.
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4. Conclusions

Today, cars are more than a means of transport for many, because they also create an
image of the owner. Therefore, it is important what the vehicle looks like, which places
demands not only on its design, but also on its surface treatment. Today’s customers
demand that its bodywork resists not only corrosion, which is achieved by using a good
surface finish and high-quality varnishes, but also weather conditions (hail damage).
Resistance to chemical influences that affect this bodywork, whether this is road salt or
acid rain in winter, is also important. Progress in surface finishes and varnishing systems
is constantly advancing. We can see this if we compare the technologies used 30 years
ago to those used today. The treatment methods we use now are much more effective
and environmentally friendly. This trend can also be observed in the surface treatment
of bodywork, where, for example, the use of hexavalent chromium, which is toxic, is
avoided. Great demands are placed on occupational safety, which is why quality and safe
workplaces are essential. The varnishes and color shades used have also undergone a big
transformation. The aim of the experimental part of this study was to create a planned
experiment, on the basis of which, we analyzed the effects of varnishing voltage, varnishing
current, deposition time, and layer thickness on the material surface. In total, 30 test
samples of AW 1050—H24 were used. All the samples were passed through an automated
cataphoresis varnishing line, from chemical degreasing to curing (polymerization). The
thickness was then measured on the samples using a digital thickness gauge.

The initial analysis of the applied model pointed to the fact that the proportion of
variability in the measured thickness of the cataphoresis coating was 86.70225% and the
adjusted index of determination, determining the degree of explanation of data variability
by the model, was 85.8775%. The average thickness of the layer formed in the process
of cataphoresis, spanning all the individual trial runs, was th = 24.464 ± 3.677µm. Based
on the analysis of variance, it can be said that the variability caused by random errors
was significantly less than the variability in the measured values. Based on the model of
significance achieved, this indicated that this model is suitable for use. Under the voltage
of 220 V, the thickness of the coating increased for 5.5 min, when the coating also reached
its maximum thickness. After this time, the thickness of the coating decreased. Increasing
the varnishing voltage to 240 V meant increasing the deposition time of the varnishing
medium up to 8 min, without significantly affecting the thickness of the layer. A further
increase in the varnishing voltage resulted in an accelerated layer formation, and a similar
change was observed when the varnishing voltage was increased to 260 V and 280 V, when
the thickness of the layer reached its maximum values throughout the deposition time of
the varnishing medium t in the electrolyte.

The authors see the submitted paper as a contribution to the procedural approach to
such complex processes of creating anti-corrosion layers, such as the process of cataphoresis
varnishing. Since the surface treatment technological processes represent multifactor
systems with interacting physical, chemical, and technological effects and, at the same
time, since the influences may be considered as random variables, the authors subjected
the experimentally obtained data to the correct methods of statistical analysis for a deeper
understanding of these interrelationships. Another undisputed benefit of the present
paper is the nonlinear optimization (maximization) of the basic technological parameter,
the thickness of the created layer, and the analysis of the rate of the cataphoresis coating
deposition. However, its limitations are those of the experiment constraints and the use of
only two basic process factors.

However, it should be remembered that the process of creating a cataphoresis layer
is a complex physical and chemical process, where the formation of bonds between the
individual components of the cataphoresis paint, under the influence of an electric current,
plays an essential role. Although mathematical models for the formation and growth of
the cataphoresis layer [2] describe the causes of and, at the same time, the inter-relations
between the factors involved in the growth of the cataphoresis layer, in relatively great
detail, the authors’ effort was to simplify the prediction of the thickness of the layer based on
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the practically used input factors in the KTL process, namely, the change in the deposition
time and stress in the cataphoresis coating. Another fact is that the resulting property, the
quality of the layer formed by cataphoresis, is not determined only by its thickness. The
quality of the cataphoresis layer is also the result of its other properties, such as corrosion
resistance, adhesion, bending, impact resistance, and hardness, as well as its aesthetic
properties expressed by gloss and shade. All of these properties can be influenced within
the complex KTL process, starting with pre-treatment and ending with polymerization.
However, as part of the present paper, we focused only on the analysis of the thickness of
the created cataphoresis layer as a basic parameter, which is prescribed in a customer’s
drawing documentation as a requirement for the painting process, which also affects the
other, above-mentioned properties of the layer to some extent.
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