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Abstract: Terahertz absorbers have been extensively investigated by researchers due to their ap-
plications in thermophotovoltaic energy conversion and sensors, but a key factor limiting their
development is the lack of vital and versatile materials. Ferromagnetic shape memory alloys (FSMAs)
offer a novel remedy for tunable metamaterials due to their brilliant recovery of deformation, remote
control, and transient response. In this study, we propose a tunable absorber based on magnetic field
tuning, consisting of Ni–Mn–Sn ferro-magnetic shape memory alloy films in fractal geometry and
optically excited Si plates. Numerical analysis shows that the proposed absorber has an absorbance
bandwidth of 1.129 THz above 90% between 1.950 THz and 3.079 THz. The absorber geometry can
be regulated by an external magnetic field, allowing dynamic switching between broadband and
narrowband absorption modes, the latter showing an ultra-narrow bandwidth and a high-quality
factor Q of ~25.8. The proposed terahertz absorber has several advantages over current state-of-the-
art bifunctional absorbers, including its ultra-thin structure of 10.39 µm and an additional switching
function. The absorption can be continuously tuned from 90% to 5% when the light-excited silicon
plate is transferred from the insulator state to the metal state. This study presents a promising
alternative strategy for developing actively regulated and versatile terahertz-integrated devices.

Keywords: metamaterials; shape memory alloy films; Ni–Mn–Sn alloy films; terahertz absorber;
dynamic tuning

1. Introduction

Based on the distinctive advantages of their photo energy and bandwidth, terahertz
(THz) frequency waves have great potential for broad application in safety inspection,
explosive detection, spectroscopy, medical imaging, wireless communications, etc. [1–5].
Tremendous research has been conducted in designing high-performance THz devices
for the development of miniaturized components. Metamaterials (MMs) have recently
emerged as perfect candidates for manipulating THz waves, attributable to their unique
electromagnetic response mechanism [6–8]. Among them, THz metamaterial absorbers
(TMMAs) are highly desired in a broad range of applications, including high-efficiency
photodetectors, THz imaging, and stealth technology [9–11].

Research on TMMAs can be traced back to the concept of a perfect metamaterial
absorber in the microwave range proposed by Landy et al. [12]. Since then, it has opened
the door to developing TMMAs worldwide. Initially, conventional TMMAs consisted
of a typical sandwich structure with a dielectric spacer, and these TMMAs showed nar-
rowband absorption [13–15]. To enrich the functionalities, TMMAS with dual-, multi-,
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and broadband absorption have been proposed and investigated in recent years [16–18].
Achieving broadband absorption of terahertz waves is still a challenge compared to visible
and infrared light. In order to achieve broadband absorption, researchers have made
many attempts, such as increasing the number of multiple distinct circular metallic patches,
composite multi-layer stacking (vertical arrangement), introducing lumped elements, and
the metal-dielectric nanocomposite systems [19–23], but these methods, although capable
of achieving broadband absorption properties, also lead to a high cost of the proposed
absorber, complex fabrication process, large size, and other drawbacks, which limit their
practical applications. The above problem can be solved by using a fractal structure, which
is a self-similar repetitive geometric structure in a fixed arrangement with a self-similar pat-
tern leading to multiple resonant coupling, thus achieving broadband absorption [24–27].
More recently, the Cayley tree fractal meta-resonator supercells were proposed by Qasim
Mehmood et al. [28]. They integrated different Cayley tree fractal resonators into one super-
cell based on the frequency shifting and multi-resonance bands of different fractal orders,
which realizes broadband, polarization-insensitive ultrathin monolayer terahertz meta-
material absorbers. While broadband absorbers are mostly used in thermo-photovoltaics,
narrowband perfect absorbers can be used in sensing, absorption filtering, and thermal
radiation tailoring [29–32]. Most of the designs in the literature serve as either broadband
or narrowband absorbers, and only a few studies achieve double functionality [33–41].
Combining both functionalities in the same device remains a significant challenge. More-
over, in conventional TMMAs, the resonance performance is determined by the structure
parameters and material properties. Once fabricated, the THz absorber has non-adjustable
absorption performance limiting its application. Although there have been studies on tun-
able materials with improved performance of tunable broadband terahertz metamaterial
absorbers, the dilemma of multifunctional performance versus the complex multilayer
structure of tunable TMMAs remains a problem. Therefore, designing thin and simple THz
absorbers with tunable absorption performance remains highly desirable.

Different from the traditional metallic arrays of TMMAs, shape memory alloys (SMAs)
exhibit distinctive functional characteristics, including superelastic behavior, shape memory
effect, and work output with a high power/weight ratio [42,43]. Designing artificial
metamaterial composed of shape memory alloys provides an active modulation by utilizing
recoverable deformation and phase transformation in the subwavelength structures. This
active adjustment has a bigger regulation region and reduces the complexity of the structure.
In our previous works, Ni–Ti SMAs were innovatively introduced into the development of
THz metamaterial devices [44,45]. Nevertheless, the slow martensitic transition response
of Ni–Ti SMA is due to temperature-driven, magnetic-field-induced SMAs, which have
attracted extensive research as a magnetoactuator material [46–48]. The controlling mode
by a magnetic field is more flexible and quicker. Based on the FSMAs, it can be expected
to achieve the dynamic tunability of terahertz metamaterial absorbers, which show the
advantages of fast response and non-contact control.

In this paper, we propose a multifunctional, ultrathin, and high-performance TMMA
by combining the horizontally aligned Caley tree fractal meta-resonator supercells and
the cross-shape resonator derived from Ni–Mn–Sn alloy films. The Caley tree fractal
meta-resonator supercells’ host exhibits the desired broadband response, and the cross-
shaped resonator exhibits the narrow-band response, while the aligned photoexcited Si
layer modulates the resonance amplitude of the broadband absorber. Numerical results
reveal that the absorption rate above 90% has a bandwidth of 1.129 THz from 1.950 THz
to 3.079 THz. Notably, the function of broadband and narrowband absorption can be
switched flexibly by applying a magnetic field. The narrowband mode shows an ultra-
narrow bandwidth and a high-quality factor Q of ~25.8. The terahertz absorber proposed
in this work has many advantages over the present advanced absorbers, including a thin
10.39-micron structure. Moreover, the absorption rate can be continuously tuned from
90% to 5% when the photoexcited Si transits from the insulator state to the metal state. In
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addition, the TMMA shows excellent performance in terms of polarization insensitivity
and wide angle.

2. Structural Design and Method Simulation

The unit cell of the tunable TMMA that we designed is illustrated in Figure 1. It consists
of Cayley tree metal resonators, a cross-shaped resonator, a photoexcited Si layer, a dielectric
film, and a ground metal from top to bottom. The top layer of the unit cell consists of one,
two, and three orders of fractal branches. To ensure polarization insensitivity, each branch
is spaced apart with a 120◦ rotation angle, and the threefold rotational symmetry remains.
The proposed structure uses the Cayley tree metal resonators to broaden the bandwidth.
Simultaneously, the cross-shape resonator is added to the design for a narrowband. The
metal of the Cayley tree metal resonators is Ni–Mn–Sn shape memory alloy films whose
branches can be curved by applying an additional magnetic field, resulting in a switchable
terahertz absorber from broadband to narrowband absorption. Ni–Mn–Sn is modeled
as the lossy metal with a conductivity of 3.3 × 105 S/m [49]. The continuous silicon has
simulated a dielectric with constant permittivity εSi = 11.9 [50] and pump-power-dependent
conductivity σSi. The dielectric permittivity of sapphire is 9.4 without a loss for the dielectric
film [51]. The ground metal is selected as copper with a conductivity of 5.96 × 107 S/m [52].
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external magnetic field is applied, the magnetic Ni–Mn–Sn shape memory alloy under-
goes an anti-martensitic phase transformation from antiferromagnetic martensite to fer-
romagnetic austenite, where the direction of the austenitic magnetic induction axis even-
tually coincides with the direction of the external magnetic field, resulting in a large mag-
netic strain. When the external magnetic field is released, the alloy undergoes a marten-
sitic phase transformation and returns from austenite to martensite. This process provides 
cyclically reversible large-output strains. 

Figure 1. (a) 3D schematic of the designed switchable terahertz metamaterial unit cell. The unit cell
is shown and includes the top metal (Ni–Mn–Sn) pattern over a bottom copper film separated by two
dielectric spacers (Si and sapphire) with thicknesses h1 = 0.2 µm, h2 = 0.1 µm, h3 = 10 µm, and
h4 = 0.1 µm, respectively. (b) The top view with detailed parameters. The arm length
of the cross-shape is l = 40 µm, level 1 of the Caley tree fractal is l1 = 8 µm, level 2
is l2 = 4.4 µm, and level 3 is l3 = 5.8 µm, whereas the outer arm length of level 3 is
l3/2. The arm widths are w1 = 2 µm and w = 1 µm, respectively. The period of the unit cell is
a = 59 µm.

The principle of Ni–Mn–Sn resonant film deformation is shown in Figure 2. When an
external magnetic field is applied, the magnetic Ni–Mn–Sn shape memory alloy undergoes
an anti-martensitic phase transformation from antiferromagnetic martensite to ferromag-
netic austenite, where the direction of the austenitic magnetic induction axis eventually
coincides with the direction of the external magnetic field, resulting in a large magnetic
strain. When the external magnetic field is released, the alloy undergoes a martensitic phase
transformation and returns from austenite to martensite. This process provides cyclically
reversible large-output strains.
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Figure 2. Schematic diagram of magnetic field induced Ni–Mn–Sn martensite phase transformation.

The materials present in nature are composed of atoms, and the electromagnetic
response is determined with the dielectric constant and the magnetic permeability. Its
response frequency and dielectric constant follow the Drude–Lorentz relationship:

εe f f (ω) = 1 −
ω2

p

ω2 − ω2
0 − iγω

(1)

The plasma frequency is determined with the following equation:

ωp =
4πne2

m∗ (2)

where ω0 is the resonant frequency, n is the carrier density, e is the charge of the electron,
γ is the damping coefficient, and m∗ is the carrier effective mass.

The absorber proposed in this paper is based on this principle, the designed sub-
wavelength structure is atom-like, and the periodic macroscopic repetitive unit structure
constitutes the whole metamaterial; therefore, its electromagnetic response is related to the
subwavelength unit structure [49].

In this paper, Ni–Mn–Sn films are used as resonant structures because, in addition to
their unique shape memory effect, they have a high virtual refractive index (R.I.) that can
be sufficient to provide excellent absorption. The refractive index n, effective permittivity
εeff, and magnetic permeability µeff of the metamaterial satisfy the following relationship:

n =
√

εe f f µe f f (3)

The martensitic phase transformation of Ni–Mn–Sn SMAs is accompanied by a change
in shape as well as a change in material properties, both of which are actively modulated,
affecting the electromagnetic response in terms of terahertz wave transmission characteris-
tics and reflection properties. Among them, the dielectric constant is the direct evidence
to characterize the change in material properties. Therefore, the mechanism of dynamic
modulation of the electromagnetic response of metamaterials by shape memory alloys
can be fully explained by using the variation of the dielectric constant. According to
the Drude model, the permittivity in the terahertz band can be characterized with the
following equation:

εm ≈ −σdc/(ε0Γ) + iσdc/(ε0ω) (4)

where σdc is the direct current conductivity, Γ is the damping rate, and ε0 is the vacuum
dielectric. The outcome of THz–TDS is excellent, consistent with the simplified Drude
model. In summary, both the real and imaginary parts of the permittivity contain direct
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current conductivity, so that the change in permittivity can be described by the change
in conductivity. Accordingly, it is possible to directly characterize the reform in material
properties throughout the martensitic phase transformation of SMAs in terms of electrical
conductivity. In this simulation, we chose the Ni–Mn–Sn SMAs’ conductivity before and
after the phase change within the bounds of 3.3 × 105 S/m to 7.6 × 105 S/m.

Intending to analyze the performance of the designed absorber, simulations were
performed using CST MICROWAVE STUDIO® (CST Computer Simulation Technology
GmbH, Darmstadt, Germany). The unit cell condition should be defined at the x direction
and y direction for the boundary condition, and the open (add space) was defined at
the z direction for the boundary condition [53]. We defined the transverse electric (TE)
polarization mode as the electric field parallel along the y-axis and the magnetic field
parallel along the x-axis when the THz wave is normal incidence to the introduced absorber.
Transverse magnetic (TM) polarization mode is the opposite. The unit cell’s geometrical
parameters of the absorber were optimized at h1 = 0.1 um, h2 = 0.1 um, h3 = 10 um,
h4 = 0.1 um, l1 = 8 um, l2 = 4.4 um, l3 = 5.8 um, w = 1 um, and w1 = 2 um. However, in
level 3 of the Caley tree fractal meta-resonator supercells, the outermost arm lengths were
set to l3/2 = 2.9 to prevent overlapping of neighboring structures. The metallic copper
substrate leads to a transmittance of 0 (i.e., S21 = 0). The absorbance was calculated as
A(ω) = 1 − R(ω) − T(ω) = 1 − |S11|2 − |S21|2 = 1 − |S11|2.

In addition, the method of sample fabrication is important to the terahertz components.
Recently, MEMS processing technology, such as the etching of silicon substrates, has made
great progress [54] with thin-film deposition prior to gluing or by choosing a substrate with
a thin film, such as silicon. Sapphire (epitaxial silicon on sapphire) and the desired structure
are obtained by etching after hardening. During the etching process, the photoresist acts
as protection, and the resulting structure has the same shape as the photoresist to ensure
that the Caley tree structure in the proposed metamaterial is fixed to the silicon surface and
remains stable without falling off. It is necessary to deposit a metal copper thin film on the
Si layer with a method similar to the Refs. [55,56] thin-film structure, and then deposit the
SMA layer on the copper thin film.

3. Results and Discussion
3.1. Broadband THz Absorber

The simulated absorption spectra of the Ni–Mn–Sn-based absorber are shown in
Figure 3. Figure 3a–d shows the simulated absorption spectra of the first, second, and third
iteration of the proposed Cayley tree resonating structures and the cross structure. For each
structure, they cannot achieve broadband absorption independently. However, broadband
absorption can be achieved by combing these four structures into one supercell, as shown
in Figure 3e. It is observed that the absorption magnitude of the introduced metamaterial
is more than 90% in the frequency range from 1.950 THz to 3.079 THz, suggesting that the
proposed absorber has an excellent absorption performance. It is worth mentioning that the
peak absorption magnitude is observed at multiple frequencies, i.e., 2.101, 2.524, and 2.692
to 3.019 THz. The near-unity absorption broadband spectrum caused by the mechanism
of multiple resonance peaks originates from the different orders of the Caley tree fractal
resonators [27]. Therefore, self-similar fractals are proposed as an ideal candidate for ultra-
broadband absorbing devices due to the multiscale geometric features involved, which
provide a degree of freedom for varying the resonance frequency.
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In addition, the relative bandwidth of the introduced absorber is also calculated
through fc = 2( fH − fL)/( fH + fL), where fH is the upper frequency, fL is the lower fre-
quency, and the relative bandwidth fc is 45%. In order to reveal the working mechanism of
the introduced single-layer Ni–Mn–Sn broadband absorber, we retrieved the correspond-
ing effective impedance using the S-parameter extraction method [57,58]. The effective
impedance can provide insight into understanding the optical response of the proposed
metamaterial absorber. The relative impedance can be given by

Ze f f (ω) = ±

√√√√ (1 + S11)
2 − S2

21

(1 − S11)
2 − S2

21

, (5)

where S11 and S21 are the complex reflection and transmission coefficients, respectively.
Figure 3f shows the real and imaginary sections of the effectual impedance for the intro-
duced metamaterial broadband absorber. The most significant finding to emerge from
the following graph is that the real section is a short distance from 1, and the imaginary
section is in the neighborhood of 0 from 1.950 THz to 3.079 THz. This phenomenon is
consistent with the effectual impedances of the introduced metamaterial absorber matching
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better to the impedance of the free space, resulting in high absorption intensity. The large
bandwidths are thought to be owed to the coupling of the adjacent resonances. Gottheim
et al. proposed a detailed qualitative analysis to describe the mode degeneracies and
origin of distinct absorption peaks in Cayley tree fractal geometry metamaterials [27]. In
conclusion, the strong resonance frequency is mainly due to the first, second, and third
fractal orders or the interaction between two levels.

3.2. Switchability between Broadband and Narrowband Absorption under the Magnetic Field

A significant bandwidth decline in the absorber can be driven by the structure change
in the metamaterial Ni–Mn–Sn while applying an extraneous magnetic field. To understand
the structural conversion of metamaterial in the shape of a Caley tree fractal based on Ni–
Mn–Sn, we characterized the absorption at different curved angles (θ) of the Caley tree
fractal resonators as schematically shown in Figure 4a. The simulated absorption spectrum
was taken for the initial pristine structure of the absorber introduced, and the bendable part
of the Caley tree fractal resonators was curved to 20◦, 30◦, 40◦, and 50◦ (Figure 4b). The
absorption patterns of the introduced device showed absorption peaks associated with the
Caley tree fractal resonators. The narrowband forms at the interface between the Ni–Mn–Sn
in a cross shape and the copper ground plane during the Ni–Mn–Sn Caley tree fractal
metamaterials’ deformation process. After the Ni–Mn–Sn Caley tree fractal metamaterials
were curved to 50◦, the broadband peaks disappeared. Only the narrow peak was still
visible, and its absorption intensity was still maintained above 90%. This is consistent with
the disappearance of the initial Ni–Mn–Sn Caley tree fractal metamaterial in a plane and
the formation of Ni–Mn–Sn cross-shape metamaterial independent. It should be mentioned
that, although the Caley tree part and the cross-shape part are both made of Ni–Mn–Sn
FSMAs, their magnetic-induced martensitic transformation behavior can be controlled
independently due to the slight difference in their alloy compositions and martensitic
transformation temperatures [59,60]. When the Ni–Mn–Sn SMAS film in the proposed
absorber is in the austenitic state, the absorber has the function of a broadband absorber,
which is indispensable in thermophotovoltaic, photodetection, calorimetric, and mechanical
resonance operations [25]. As the applied magnetic field increases, the martensitic phase
transformation is gradually complete, and the Ni–Mn–Sn FSMAs undergo a shape change
so that the absorber gradually changes from a broadband absorber to a narrowband
absorber. Narrowband absorbers are widely used in food quality monitoring, disease
diagnosis, biosensing, and other fields [40].
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3.3. Multifunction under the Optical Pump

Further research will explore the influence of electromagnetic corresponding under the
pump-power optical control on silicon film [61], as schematically shown in Figure 5a. When
light shines on silicon, the light intensity increases, and the light carrier in extremely resis-
tive silicon increases, leading to an increase in its electrical conductivity. A dynamic tunable
intensity of absorption can be observed by changing the conductivity of photoexcited Si,
as indicated in Figure 5b. The simulated absorption spectrum shows switching regimes
from 1.950 THz to 3.079 THz frequencies with reasonably high contrast. From 1.950 THz to
3.079 THz, the metamaterial switches from a high-absorption state at small conductivity
of Si to a low-absorption state at high conductivity of Si as the photoexcited Si changes
its state from an insulating state to a metallic state. We observe that the absorption of the
metamaterial structure decreases from 95% to 5% when the conductivity of Si increases
from 1 S/m to 1 × 106 S/m [62,63]. Based on the Drude model, the photoexcited carrier
mass results in an increase in the imaginary section of the dielectric constant, which leads to
a bigger decrease when terahertz waves after the silicon wafer [64]. This phenomenon can
be attributed to photoexcited Si due to the generated free carriers screening the confined
resonant fields, which cannot store electromagnetic energy in the introduced device [65].
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Figure 5. (a) Schematic of the terahertz metamaterial absorber side view under optical stimulus focus
on the Si film. (b) The calculated absorptances with different conductivities of photoexcited Si. At a
given resonance frequency, when 400 nm is incident on ion-irradiated Si, the photoconductivity of
Si (σ) increases, thereby leading to the modulation of resonance strength.

As a result, the switching intensity of 90% is obtained in the switching range of
1.129 THz, and the corresponding switching contrast (SC), defined as SC = (Amax −
Amin)/Amin, is calculated to be at least 1700% and can be improved by further increasing
the conductivity of silicon, which is above six times higher than the previously reported
results [66].

As the simulation results show, by using an applied magnetic field to drive the defor-
mation of the shape memory alloy, we can achieve the conversion between wide/narrow
absorbers and the function of absorber switching. In order to describe more clearly the
advantages of this work, we compared it with some recently proposed tunable absorbers,
as shown in Table 1. In addition, switching the total quality factor Q of the narrow-band ab-
sorber function with a maximum value Q of approximately 25.8 has potential applications
in the sensing field. It is worth mentioning that the deformation of Ni–Mn–Sn SMAs by
magnetic field modulation greatly reduces the complexity of the terahertz metamaterial
design and facilitates device integration.
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Table 1. Comparison of absorption performance between different absorbers.

References Function Working
Bandwidth Absorptance Tunable Range Material Regulating

Method

[30] Switching 1.85–4.3 THz >90% 4–100% Vo2 Temperature
[31] Switching 4.29–5.52 THz >90% 4–100% Vo2 Electric field

[32] Switching 1–2.03 THz >90% 0–99% Graphene, Vo2
Temperature,
Electric field

[34] Wide-narrow 3.57–8.45 THz >50% — Vo2 Temperature
[36] Switching 1.2–2.67 THz >90% 0–95% MoS2 Temperature
[16] Wide-band 500–3000 nm >90% — — —

[20] Dual-band 200–1000 nm >90% —
Au/Cr/3 layers of
grapheme/TMDs

pair
—

This
Work Wide-narrow/Switching 1.950–3.08 THz >90% 5–95% Ni–Mn–Sn Magnetic Fields

3.4. Incident Angle Sensitivity Characteristics

By rotating the direction incident to the terahertz wave placed in front of the terahertz
metamaterial absorber, we further investigate and explore the incident angle sensitiv-
ity particularities of the broadband absorber. When the direction of the incident tera-
hertz is perpendicular to the broadband absorber, the absorption intensities located at
1.950 THz to 3.079 THz are the maximum values, and the direction of the incident terahertz
wave at this moment is set as the starting point (recorded as 0◦). As shown in Figure 6a,
when rotating the direction of the incident terahertz wave to 40◦, the multi-resonance
modes are both interaction modes, resulting in broadband and outstanding absorption.
Analyzing the normalized curves of the absorption intensities of the TM mode shown in
Figure 6b, the curves are approximately the same from 0◦ to 40◦, which illustrates that the
multi-resonance modes have the same interaction state. Therefore, it can be concluded
that a stable broad-wavelength absorber can also be obtained even if the incident angle
of the modes is 40◦, which can be used to generate broadband absorption through the
design introduced.
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3.5. Mechanism of Wide/Narrow Band Absorption Conversion under Magnetic Field

To comprehend the mechanism of forming narrowband absorption, the distributions
of surface current and electric field are simulated and analyzed at the specific resonance
frequency, as shown in Figure 7. Color maps and arrows denote the strength of the
field and current, respectively. The electric field accumulates mainly in both ends of the
vertical branches of the Ni–Mn–Sn cross shape when the incident wave is applied as
a TE-polarization wave; for TM-polarized waves, the electric field concentrates mainly
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around the edges of the horizontal branches. The electric field distributions demonstrate
that the incident terahertz wave excites typical electrical dipole resonances at the topside
surface of the Ni–Mn–Sn cross patch along the y and x directions, respectively, for different
polarization terahertz wave incidents (see Figure 7a,d).
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The contour map of the magnetic field distribution in the introduced absorber in
the x-y plane is shown in Figure 7b,e. As revealed, the magnetic fields of the absorption
band are all distributed over the cross shape of the narrowband superabsorber, which
confirms the localized resonance characteristics of the absorption bands. However, the
magnetic field distribution positions of the TE and TM polarizations are different. For
TE-polarized waves, the magnetic field is mainly concentrated at the upright strip. Similar
to the TM polarization wave, the magnetic field is mostly gathered at the horizontal strip.
The arrows in Figure 7c,f represent the intensity and flowing directions of the surface
current distributions on the top cross resonator and bottom ground plane. The surface
current distribution of the TE polarization waves on the Ni–Mn–Sn SMA resonant films is
principally around the x-axis direction, while the surface current on the metallic copper
substrates is parallel to its inverse. Consequently, a magnetic polariton is considered [67],
which can result in a large magnetic resonance and a deep, resonant dip in the reflection
spectrum [68]. Meanwhile, for the TM-polarized waves, the anti-parallel surface currents
give rise to the front resonator and back substrate along the horizontal direction, forming
an equivalent current loop. The existence of excited electromagnetic resonance confines
the incident terahertz waves in the absorber. It utilizes the ohmic loss in the metal, and the
dielectric loss in the dielectric layer dissipates the incident terahertz waves in the absorber.
Eventually, the perfect narrowband absorber was demonstrated with absorption, which is
approximately 100%.

3.6. The Feasibility of Experimental Demonstration

Based on the simulation results above, we have systematically studied and demon-
strated the possibility of our design. Here, the feasibility of the experimental demonstration
is discussed and analyzed. Despite the fact that follow-up experiments are not executed
in the existing research, a significant amount of associated works have proved that the
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fabrication of our proposed absorber can be realized with inexpensive cost and excellent
precision. First, as an advanced actuator and sensor, shape memory alloys are used com-
mercially in many fields, such as the magnetic actuators in automotive applications [69], the
micro-actuators or artificial muscles in robotic applications [70], Boeing’s variable geometry
chevron in aerospace application [71], and so on. Moreover, with the development of SMA
nano/micro-scale properties [72], shape memory alloy films with ultra-small sizes have
been fabricated and used in micro-electro-mechanical systems (MEMS) [73]. The applica-
tion of magnetic field-driven SMAs in terahertz devices has been successfully demonstrated
experimentally [74]. In our work, the design of a terahertz absorber dependent on Ni–Mn–
Sn FSMA films is simply attributable to the distinctive functional behaviors, for instance
superelasticity and shape memory effects, and the magnetic field is easy and fast to apply.
It is reasonable to expect that our proposed terahertz absorber will be successful in practical
applications. However, Ni–Mn–Sn suffers from weak deformation recovery and large
losses. In addition, the applied magnetic field to drive the magnetic Ni–Mn–Sn phase
transition is large. This limits their practical application. These problems can be solved
by adjusting the composition of the shape memory alloy and improving the fabrication
process in our subsequent work.

4. Conclusions

In summary, we present a versatile, ultrathin, superior performance terahertz absorber
with Ni–Mn–Sn FSMAs. The absorber enables the interconversion of broadband absorption
and narrowband absorption. Numerical results show that the absorption rate is maintained
above 90% in the 1.129 THz bandwidth from 1.950 THz to 3.079 THz. The magnetic field
can modulate the absorber to switch between broadband and narrowband absorbers with
the narrowband mode exhibiting an ultra-narrow bandwidth and a high-quality factor Q
of ~25.8. In addition, the device can dynamically adjust the absorption rate from 90% to 5%.
Notably, the absorber is insensitive to incidence angle, which allows for a wider range of
applications. The terahertz absorber proposed in this work has many advantages over the
present advanced absorbers, including the advantages of ultra-wide operating frequency,
excellent absorption efficiency, and transient response. This work supports new ideas for
the development of dynamically adjusted multifunctional terahertz functional components,
and the proposed devices have potential applications in fields such as thermophotovoltaic
energy conversion and sensors. The weak recovery of Ni–Mn–Sn deformation and the large
driving magnetic field limit the practical application of the proposed absorber. However,
these problems can be solved by tuning the composition of shape memory alloys and
improving the fabrication process in our subsequent work.
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