Effect of Cu-Rich Phase Growth on Creep Deformation of Fe-Cr-Ni-Cu Medium-Entropy Alloy: A Phase Field Study
Abstract
:1. Introduction
2. Phase Field Model
2.1. Free Energy Formulation of Fe-Cr-Ni-Cu Alloy System
2.2. Kinetic Equation
3. Simulation Data
4. Simulation Results
5. Discussion
5.1. Influence of Cu-Rich Phase Growth on Creep Strain
5.2. Influence of the Distance between Two Cu-Rich Particles on Creep Strain
6. Conclusions
- (1)
- Creep strain of the simulated grain was intensified with the coarsening of Cu-rich particles. When the Cu-rich precipitates were relatively fine (~<11 nm), the plastic strain tended to shear the Cu-rich phase, and the size of the Cu-rich particle has a slight influence on the creep strain at this stage. However, for coarse Cu-rich precipitates (~>11 nm), the plastic strain will bypass them due to the enhancing stress concentration around the interface, and the creep strain is increased rapidly with the growth of Cu-rich particles.
- (2)
- The coarsening of Cu-rich particles will be retarded by the adjacent particles due to the overlapping of the diffusion zone, and hence the creep strain was reduced when creep occurred for the same time. The retard effect will vanish when the distance is sufficiently long (~>60 nm).
- (3)
- When the size of the Cu-rich particles is identical, the creep strain will be mitigated with elongation of the distance between the two Cu-rich particles, because a more homogeneous stress distribution is generated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Jiang, F.Q.; Wróbel, J.S.; Liu, B.; Kabra, S.; Duan, R.X.; Luan, J.H.; Jiao, Z.B.; Attallah, M.M.; Nguyen-Manh, D.; et al. In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy. J. Mater. Sci. Technol. 2022, 116, 103. [Google Scholar] [CrossRef]
- Du, X.; Ma, X.; Ding, X.; Zhang, W.; He, Y. Enhanced high-temperature oxidation resistance of low-cost Fe–Cr–Ni medium entropy alloy by Ce-adulterated. J. Mater. Res. Technol. 2022, 16, 1466–1477. [Google Scholar] [CrossRef]
- Gao, J.; Xu, Z.; Fang, X.; He, J.; Li, W.; Du, X.; He, Y.; Jia, X.; Zhou, S. Enhancing creep resistance of aged Fe–Cr–Ni medium-entropy alloy via nano-sized Cu-rich and NbC precipitates investigated by nanoindentation. J. Mater. Res. Technol. 2022, 20, 1860–1872. [Google Scholar] [CrossRef]
- Fu, A.; Liu, B.; Li, Z.; Wang, B.; Cao, Y.; Liu, Y. Dynamic deformation behavior of a FeCrNi medium entropy alloy. J. Mater. Sci. Technol. 2022, 100, 120–128. [Google Scholar] [CrossRef]
- Kan, L.; Ye, Q.; Shen, Y.; Wang, Z.; Zhao, T. Co-precipitation of nanosized Cu and carbides improving mechanical properties of 1 GPa grade HSLA steel. Mater. Sci. Eng. A 2022, 859, 144211. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, L.; Cayron, C.; Xue, J.; Sha, G.; Logé, R. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel. Acta Mater. 2020, 195, 199–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Han, J.; Yang, J.; Luan, J.; Jiao, Z.; Liu, C.T.; Zhang, Z. Irradiation-induced solute trapping by preexisting nanoprecipitates in high-strength low-alloy steel. Mater. Sci. Eng. A 2022, 849, 143510. [Google Scholar] [CrossRef]
- Liu, S.; Rong, X.; Guo, H.; Misra, R.; Jin, X.; Shang, C. Reinforced Cu precipitation strengthening by matrix transformation from martensite to austenite in high-strength low-alloy steel. Mater. Sci. Eng. A 2021, 825, 141783. [Google Scholar] [CrossRef]
- Wang, J.; Enomoto, M.; Guo, H.; Shang, C. First-principles study on the equilibrium shape of nanometer-sized body-centered cubic Cu precipitates in ferritic steels. Comput. Mater. Sci. 2020, 172, 109351. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, D.; Sun, J. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness. Mater. Sci. Eng. A 2019, 754, 238–245. [Google Scholar] [CrossRef]
- Xi, T.; Zhang, X.; Yin, X.; Yang, C.; Yang, K. Interfacial segregation and precipitation behavior of Cu-rich precipitates in Cu-bearing 316LN stainless steel after aging at different temperatures. Mater. Sci. Eng. A 2021, 805, 140571. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X. Precipitation behavior in boundaries and its influence on impact toughness in 22Cr25Ni3W3CuCoNbN steel during short-term ageing. Mater. Sci. Eng. A 2021, 809, 140924. [Google Scholar] [CrossRef]
- Fu, W.; Li, C.; Di, X.; Fu, K.; Gao, H.; Fang, C.; Lou, S.; Wang, D. Refinement mechanism of nanoscale Cu-rich precipitates by Mo addition and its effect on strength-toughness of Cu-bearing low carbon high strength steel. Mater. Sci. Eng. A 2022, 849, 143469. [Google Scholar] [CrossRef]
- Sun, H.; Li, D.; Diao, Y.; He, Y.; Yan, L.; Pang, X.; Gao, K. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater. Charact. 2022, 188, 111885. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants. Mater. Sci. Eng. A 2020, 775, 138991. [Google Scholar] [CrossRef]
- Isheim, D.; Gagliano, M.S.; Fine, M.E.; Seidman, D.N. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 2006, 54, 841–849. [Google Scholar] [CrossRef]
- Shim, J.-H.; Kozeschnik, E.; Jung, W.-S.; Lee, S.-C.; Kim, D.-I.; Suh, J.-Y.; Lee, Y.-S.; Cho, Y.W. Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels. Calphad 2010, 34, 105–112. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Zhao, Y. From classical thermodynamics to phase-field method. Prog. Mater. Sci. 2022, 124, 100868. [Google Scholar] [CrossRef]
- Levitas, V.I. Phase transformations, fracture, and other structural changes in inelastic materials. Int. J. Plast. 2021, 140, 102914. [Google Scholar] [CrossRef]
- Tourret, D.; Liu, H.; Llorca, J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Prog. Mater. Sci. 2022, 123, 100810. [Google Scholar] [CrossRef]
- Bui, T.Q.; Hu, X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng. Fract. Mech. 2021, 248, 107705. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Liu, C. Phase field study of the copper precipitation in Fe-Cu alloy. Acta Mater. 2019, 166, 560–571. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, Q.; Dong, C.; Liaw, P. Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys. Acta Mater. 2020, 197, 10–19. [Google Scholar] [CrossRef]
- Liu, C.; Garner, A.; Zhao, H.; Prangnell, P.B.; Gault, B.; Raabe, D.; Shanthraj, P. CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Mater. 2021, 214, 116966. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhao, Y.H.; Zhao, B.J.; Wenkui, Y.; Xiaoling, L.; Hua, H. Phase-field modeling of microstructure evolution of Cu-rich phase in Fe-Cu-Mn-Ni-Al quinary system coupled with thermodynamic databases. J. Mater. Sci. 2019, 54, 11263–11278. [Google Scholar]
- Biner, S.B. Programming Phase-Field Modeling; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Li, W.; Chen, X.; Yan, L.; Zhang, J.; Zhang, X.; Liou, F. Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int. J. Adv. Manuf. Technol. 2018, 95, 1013–1023. [Google Scholar] [CrossRef]
- Hillert, M.; Qiu, C. A thermodynamic assessment of the Fe-Cr-Ni-C system. Met. Trans. A 1991, 22, 2187–2198. [Google Scholar] [CrossRef]
- Hillert, M.; Jarl, A. A model for alloying in ferromagnetic metals. Calphad 1978, 2, 227–238. [Google Scholar] [CrossRef]
- Javanbakht, M.; Levitas, V.I. Athermal resistance to phase interface motion due to precipitates: A phase field study. Acta Mater. 2023, 242, 118489. [Google Scholar] [CrossRef]
- Malik, A.; Odqvist, J.; Höglund, L.; Hertzman, S.; Ågren, J. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel. Metall. Mater. Trans. A 2017, 48, 4914–4928. [Google Scholar] [CrossRef]
- Chatterjee, S.; Schwen, D.; Moelans, N. An efficient and quantitative phase-field model for elastically heterogeneous two-phase solids based on a partial rank-one homogenization scheme. Int. J. Solids Struct. 2022, 250, 111709. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Huang, Y.; Chen, L.-Q.; Ganesh, P.; Cao, Y. High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory. npj Comput. Mater. 2020, 6, 198. [Google Scholar] [CrossRef]
- Yeddu, H.K.; Shaw, B.A.; Somers, M.A. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels—A phase-field study. Mater. Sci. Eng. A 2017, 690, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kitashima, T.; Harada, H. A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys. Acta Mater. 2009, 57, 2020–2028. [Google Scholar] [CrossRef]
- Basak, A.; Levitas, V.I. Matrix-precipitate interface-induced martensitic transformation within nanoscale phase field approach: Effect of energy and dimensionless interface width. Acta Mater. 2020, 189, 255–265. [Google Scholar] [CrossRef]
- Dymáček, P.; Jarý, M.; Dobeš, F.; Kloc, L. Tensile and creep testing of Sanicro 25 using miniature specimens. Materials 2018, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtiani, H.R.R.; Shayanpoor, A.A. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper. Acta Met. Sin. (Engl. Lett.) 2022, 35, 662–678. [Google Scholar] [CrossRef]
- Bai, J.W.; Liu, P.P.; Zhu, Y.M.; Li, X.M.; Chi, C.Y.; Yu, H.Y.; Xie, X.S.; Zhan, Q. Coherent precipitation of copper in Super304H austenite steel. Mater. Sci. Eng. A 2013, 584, 57–62. [Google Scholar] [CrossRef]
- Ping, S.B.; Xie, F.; Wang, R.K.; Zheng, Z.J.; Gao, Y. Diffusion Kinetics of Chromium in a Novel Super304H Stainless Steel. High Temp. Mater. Process. 2017, 36, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Assassa, W.; Guiraldenq, P. Bulk and grain boundary diffusion of 59Fe, 51Cr, and 63Ni in austenitic stainless steel under influence of silicon content. Met. Sci. 1978, 12, 123–128. [Google Scholar] [CrossRef]
- Zhou, R.; Zhu, L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K. Mater. Sci. Eng. A 2020, 796, 139973. [Google Scholar] [CrossRef]
- Koyama, T.; Onodera, H. Modeling of microstructure changes in Fe−Cr−Co magnetic alloy using the phase-field method. J. Phase Equilibria Diffus. 2006, 27, 22–29. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E.; Sherif, M.Y. Phase Transformations in Metals and Alloys; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Case | Number of Nuclei | Distance between Nuclei/nm |
---|---|---|
Case 1 | 1 | / |
Case 2 | 2 | 15 |
Case 3 | 2 | 22.5 |
Case 4 | 2 | 30 |
Parameters | Values |
---|---|
Em | 144.8 GPa [38] |
νm | 0.3 |
σy0m | 220 MPa [38] |
Hm | 2 GPa [38] |
ECu | 95 GPa [39] |
νCu | 0.3 |
σy0Cu | 45 MPa [39] |
HCu | 50 MPa [39] |
DCu | D0Cu = 4.16 × 10−4 m2/s, Q0Cu = 306.2 kJ/mol [40] |
DCr | D0Cr = 2.29 × 10−15 m2/s, Q0Cr = 74.4 kJ/mol [41] |
DFe | D0Fe = 1.0 × 10−5 m2/s, Q0Fe = 260.0 kJ/mol [42] |
DNi | D0Ni = 1.7 × 10−5 m2/s, Q0Ni = 272.0 kJ/mol [42] |
γ | 8.1 mJ/m2 [43] |
Δ | 1 nm |
am | 0.3639 nm [43] |
δCr | 6.1 × 10−3 [44] |
δNi | 4.75 × 10−4 [25] |
δCu | 3.29 × 10−2 [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Hu, L.; Ma, N.; Fang, X.; Xu, Z.; He, Y. Effect of Cu-Rich Phase Growth on Creep Deformation of Fe-Cr-Ni-Cu Medium-Entropy Alloy: A Phase Field Study. Metals 2023, 13, 1219. https://doi.org/10.3390/met13071219
Gao J, Hu L, Ma N, Fang X, Xu Z, He Y. Effect of Cu-Rich Phase Growth on Creep Deformation of Fe-Cr-Ni-Cu Medium-Entropy Alloy: A Phase Field Study. Metals. 2023; 13(7):1219. https://doi.org/10.3390/met13071219
Chicago/Turabian StyleGao, Jianbing, Lei Hu, Ninshu Ma, Xudong Fang, Zhenlin Xu, and Yizhu He. 2023. "Effect of Cu-Rich Phase Growth on Creep Deformation of Fe-Cr-Ni-Cu Medium-Entropy Alloy: A Phase Field Study" Metals 13, no. 7: 1219. https://doi.org/10.3390/met13071219
APA StyleGao, J., Hu, L., Ma, N., Fang, X., Xu, Z., & He, Y. (2023). Effect of Cu-Rich Phase Growth on Creep Deformation of Fe-Cr-Ni-Cu Medium-Entropy Alloy: A Phase Field Study. Metals, 13(7), 1219. https://doi.org/10.3390/met13071219