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Abstract: An Al-Zn-Mg-Cu alloy has high specific strength, good corrosion resistance, fracture
toughness and fatigue resistance. It is one of the most important structural materials in the fields
of aviation, aerospace, weapons and transportation; in particular, it plays a huge role in the field of
aerospace. In order to optimize the strength, toughness and corrosion properties of an Al-Zn-Mg-Cu
alloy, the focus of research on this alloy has always been on the alloying process. The effects of the
main alloying elements, trace alloying elements and rare earth elements on the microstructure and
properties of Al-Zn-Mg-Cu alloys are briefly introduced in this paper, and future research directions
are proposed.

Keywords: Al-Zn-Mg-Cu alloy; main alloy elements; microalloy elements; rare earth element;
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1. Introduction

The main elements of an Al-Zn-Mg-Cu alloy include Al, Zn, Mg and Cu; this alloy also
contains trace amounts of Si and Fe (usually present as impurity elements). The types and
contents of trace elements are different among different brands, which leads to different
aluminum alloys having different mechanical properties. Therefore, the mechanical proper-
ties of the Al-Zn-Mg-Cu alloy could be improved by adjusting its composition, selectively
introducing trace alloying elements, reducing the impurity content and realizing the reason-
able distribution of the precipitate phase. Rare earth elements play a more significant role
in this process due to their special electronic structure and chemical properties. However,
with the increase in types of alloying elements within an alloy, the phase composition and
precipitation behavior of the alloy become more complex. The component differences in
local areas are significant. The corrosion cracking sensitivity increases and the contradic-
tion between strength and corrosion performance becomes more acute. Therefore, the
influence mechanisms of different elements on the properties of the alloy are discussed,
and the range of action and best content of elements are researched in order to solve the
contradiction between the strength, toughness and corrosion resistance of aluminum alloy.
This is an urgent problem to be solved in the development process of ultra-high-strength
aluminum alloy.

2. Main Alloying Elements

The main alloying elements in an Al-Zn-Mg-Cu alloy are Al, Zn, Mg and Cu. The
MgZn2 phase is the main strengthening phase in aluminum alloy. An increase in Zn and
Mg elements can improve the yield strength of the alloy. Cu provides a certain contribution
to the strength of the alloy that improves the corrosion resistance [1,2]. But there is a
threshold for each element, for which the difference is obvious for different components of
the alloy.
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2.1. Cu
2.1.1. Effect of Different Cu Contents on an Al-Zn-Mg-Cu Alloy

Cu has a certain strengthening effect in Al-Zn-Mg-Cu alloys that has a prominent effect
on their corrosion resistance. The addition of Cu can improve the age-hardening potential
of the alloy and increase the density of the precipitated strengthened phase [3]. However,
when excessive copper was added to a 7055 aluminum alloy, the grain size gradually
increased and the alloy performance decreased (Figure 1) [4]. Therefore, reducing the
contents of Cu within a certain range was conducive to the diffusion of more Zn and Mg into
the matrix, which increased the volume fraction of the strengthening phase Mg(Zn,Al,Cu)2,
thus improving the yield strength (YS) and hardness of the alloy.
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Figure 1. Optical micrographs of as-cast 7055 Al alloys showing cored dendritic microstructures:
(a) 1.8 wt.% Mg + 2.0 wt.% Cu; (b) 1.8 wt.% Mg + 2.6 wt.% Cu (Reprinted with permission from
Ref. [4]. 2023 Elsevier).

2.1.2. Effect of Cu on Alloys at Different Zn/Mg Ratios

The effect of Cu on the properties of an Al-Zn-Mg-Cu alloy is related to the alloy’s
composition. In low Zn/Mg ratio alloys (such as type 7050), the addition of Cu increases
the amount of reinforced precipitate phase and improves the yield strength and corrosion
resistance of the alloy. However, in an Al–9.3Zn–2.4Mg–xCu–0.16Zr aluminum alloy
with a high Zn/Mg ratio, when copper content was decreased from 2.2% to 1.8% (mass
fraction), the mechanical properties of the alloy and the resistance to spalling corrosion
also significantly improved. When the Cu content was reduced to 0.8% (mass fraction),
the potential difference between the grain boundary and Al matrix became larger, which
resulted in corrosion of the precipitate phase and significantly deteriorated the corrosion
performance (Figure 2b) [5].
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2.1.3. Effect of Cu in a Highly Alloyed Al-Zn-Mg-Cu Alloy

In a highly alloyed Al-Zn-Mg-Cu alloy, the influence of Cu on the comprehensive
properties includes grain refinement and coupling effect of residual eutectic phase. In
Al–10.0Zn–2.6Mg–xCu–0.15Zr alloys, on one hand, the volume fraction of the second
phase increased significantly with the increase in Cu content. On the other hand, the low
diffusion coefficient of Cu inhibited the dissolution of the second phase, which gradually
increased the volume fraction of the residual eutectic phase after a solid solution treatment.
In the hard and brittle residual eutectic phase, stress concentration easily occurred and
it became a crack source, which seriously damaged the plasticity of the alloy. For an
Al–10.0Zn–2.6Mg–1.0Cu alloy with x = 1.0, the precipitate phase was small and the volume
fraction was large (Figure 3), which exhibited the best mechanical properties [6].
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Figure 3. Bright-fifield TEM images for T6: (a) 0 wt.% Cu, (b) 1.0 wt.% Cu, (c) 2.0 wt.% Cu,
(d) 3.0 wt.% Cu (Reprinted with permission from Ref. [6]. 2023 Elsevier).

2.2. Mg

Mg is the main strengthening element of an Al-Zn-Mg-Cu alloy. η (MgZn2) phase that
is formed by Mg and Zn has a large solid solubility in the matrix. The solid solubility de-
creases significantly with the decrease in temperature, which have a strong age-hardening
ability and was the main strengthening phase of the Al-Zn-Mg-Cu alloy. With the increase
in Mg content, α(Al) grains were refined (Figure 4) and the tertiary dendrites and the
T(AlCuMgZn) phases increased [7]. In addition, the increase in Mg content could improve
the volume fraction of the precipitate phase during aging treatment, thus improving the
yield strength [8]. However, high yield stress could also lead to lower deformation resis-
tance at grain boundaries, thus promoting intergranular fracture and reducing plasticity [9].
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2.3. Zn
2.3.1. Effect of Different Zn Contents on Al-Zn-Mg-Cu Alloys

In an Al-Zn-Mg-Cu alloy, increasing the Zn content can promote the nucleation,
growth and phase precipitation transformation of the alloy. Al-Zn-Mg-Cu alloys with
high Zn content had high precipitation density and fast precipitation rate, which had the
advantages of improving the alloy strength and shortening the peak aging time [10]. When
the Zn content increased from 4.4% (mass fraction) to 7.2% (mass fraction), the ultimate
tensile strength (UTS) of the Al–xZn–2.3Mg–1.7Cu alloy increased from 212.15 MPa to
248.05 MPa, which is an increase of 16.92%; the elongation (elongation, EL) increased first
and then decreased with the increase in Zn content. And the maximum elongation was
8.78% when x = 5.8 [11]. The increase in the number of MgZn2 strengthened phases, and
the changes in the shape, number and size of the intercrystalline eutectic phases improved
the tensile strength. And the change in elongation was mainly due to the refinement of
grain size and the transformation of the dendrite morphology from columnar dendrite to
cellular dendrite [12].

2.3.2. Effect of Zn on Softening Behavior of Al-Zn-Mg-Cu Alloys

Zn has an important effect on the softening behavior of Al-Zn-Mg-Cu alloys. At
300 ◦C, there was a plateau in the static softening curve of the alloy. The increase in Zn
content promoted the formation and coarsening of η phases, which also promoted the
duration and softening fraction of the plateau decrease (Figure 5a,b). When the deformation
temperature increased to 400 ◦C, the static softening curve was less affected by Zn content
(Figure 5c,d) [13]. The effect of Zn content on the dynamic softening behavior is shown
in Figure 6. The increase in Zn led to the acceleration of work hardening at the initial
deformation stage at 300 ◦C and the dynamic softening process enhanced with the increase
in Zn content. However, at 400 ◦C, the high supersaturation solid solubility caused by the
addition of Zn inhibited the dynamic recovery and recrystallization process, which resulted
in a slow-down of the dynamic softening behavior (Figure 6c,d) [14].
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2.3.3. Effect of Zn on Hot-Cracking Sensitivity of Al-Zn-Mg-Cu Alloys

The hot-cracking sensitivity of an Al-Zn-Mg-Cu alloy increases first and then decreases
with the increase in Zn content. When the Zn content was 5% (mass fraction) and 11%
(mass fraction), the hot-cracking sensitivity was low. And when the Zn content was 9%
(mass fraction), the hot-cracking sensitivity was the highest [15]. The thermal cracking
sensitivity of the alloy was determined by grain morphology, grain size, thermal shrinkage
behavior of the solidification interval and non-equilibrium eutectic content. The increase in
Zn content increased the thermal shrinkage of the alloy, which resulted in a larger thermal
strain during the solidification process. Although the decrease in grain size helped to
reduce the thermal cracking sensitivity of the alloy, the transition from equiaxed spherules
to irregular grains reduced the fluidity of the alloy (Figure 7), so the hot-cracking sensitivity
of the alloy with 9% Zn content (mass fraction) was the highest. When the content of Zn
was further increased to 11% (mass fraction), the grain was refined and transformed from
an equiaxed crystal to a fine dendrite and the thermal shrinkage rate increased. But the
significant increase in the non-equilibrium eutectic content enabled the alloy to have a
better ability to heal the cracks and began to decrease the thermal crack sensitivity.
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2.3.4. Effect of Zn on Thermal Stability of Al-Zn-Mg-Cu Alloys

BF TEM images and corresponding SAED modes of Al-Mg-Cu alloy with Zn addition
after aging at 125 ◦C for 192 h were shown in the Figure 8. It could be observed from
the figure that a large number of small cubic precipitates were evenly distributed in the
aluminum matrix and its structure was stable, which could prevent deformation at high
temperature. The thermal stability of the alloy was significantly improved [16].
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2.4. Cu/Mg Ratio
2.4.1. The Synergistic Action of Cu and Mg

Mg content was the main factor affecting the strength of over-aged Al-Zn-Mg-Cu
alloy. The increase of Cu content could also enhance the strength, but to a lesser extent. In
contrast, for spray formed aluminum alloy, the volume fraction of the secondary phase
inside the grain was mainly determined by the Mg content and the volume fraction of the
secondary phase at the grain boundary was mainly controlled by the Mg + Cu content.
After solid solution treatment, coarse grain boundary phase with high Mg content was
difficult to enter the single-phase Al region, so the formation of refractory phase in Mg rich
(2.65%, mass fraction) aluminum alloy could be promoted by adding Cu element, which
was conducive to maintaining the peak strength of the alloy in the over-aging state [8].
In addition, it had been found that compared with non-Cu alloys, the yield strength of
Al-4.0Mg-3.0Zn-1.5Cu aluminum alloys with high Cu increased by 80.5%, while the ductil-
ity didn’t decrease [17]. Therefore, a balance between ductility and strength was expected
to be achieved by appropriate adjustment of Cu/Mg ratio.

2.4.2. Effect of Different Cu/Mg Ratio on Al-Zn-Mg-Cu Alloy

The influence of Cu/Mg ratio on Al-Zn-Mg-Cu alloy was mainly reflected in two
aspects: one was to affect the coarsening rate in the aging process; the other was to change
the size and distribution of precipitated phase. Alloys with a low Cu/Mg ratio had a
slow coarsing rate and a high tensile strength. Under T79 aging, Cu/Mg had the highest
tensile strength than the lowest 2.5Mg1.5Cu alloy. The alloys with a higher Cu/Mg ratio
had coarser Grain boundary precipitates, GBPs) and a wider Precipitate free zone (PFZ)
could effectively delay the propagation of microcracks along grain boundaries [18]. With
the increase of Cu/Mg ratio, the elongation of Al-Zn-Mg-Cu alloy increased significantly
and the fracture morphology changed from the typical brittle fracture to the intergranular
mixed fracture or ductile fracture.

2.5. Zn/Mg Ratio
2.5.1. Effect of Zn/Mg Ratio on the Precipitation Sequence and Phase of the Alloy

The Zn/Mg ratio was closely related to the strength and stress corrosion resistance of
Al-Zn-Mg-Cu alloy and also affected the precipitation sequence and phase of the alloy. It
was generally believed that the precipitation sequence of Al-Zn-Mg-Cu alloy was as follows:
SSSS → GP region → η′ phase → η′ phase (MgZn2) [19]. With the decrease of Zn/Mg
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ratio, T′ phase replaces η′ phase, and the precipitation sequence changed to SSSS→ GPI
region→ GPII region→ intermediate phase T′ → equilibrium phase T-Mg32(Al,Zn)49 [20].

2.5.2. Effect of Different Zn/Mg Ratio on Al-Zn-Mg-Cu Alloy

The influence of Zn/Mg ratio on mechanical properties of Al-Zn-Mg-Cu alloy was
shown in Figure 9. As the Zn/Mg ratio increased from 1.50 to 2.86, the density and strength
of precipitated phase in the alloy increased and more solute atoms precipitated at grain
boundaries or within grains, which led to a decrease in PFZ width and elongation. When
the Zn/Mg ratio further increased from 2.86 to 10.00, the changes in strength and elongation
were opposite to those before [21]. In addition, the increase of Zn/Mg ratio could reduce the
precipitation of equilibrium η phase during slow quenching, which resulted in the increase
of enhanced precipitates after aging treatment, thus reducing the quenching sensitivity of
the alloy [22]. For high Zn/Mg ratio alloys, the critical cooling rate without precipitation
during the cooling process was about 100 K/s. While for low Zn/Mg ratio alloys, the
critical cooling rate was about 1 K/s [23]. Therefore, Al-Zn-Mg-Cu alloys with high Zn/Mg
ratio showed higher quenching sensitivity and were more prone to hot cracking.
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2.5.3. Effect of Different Zn/Mg Ratio on Corrosion Resistance of Al-Zn-Mg-Cu Alloy

Electrochemical impedance spectroscopy (EIS) revealed the relationship between
impedance size, phase Angle, and frequency. Electrochemical impedance spectroscopy (EIS)
showed the relationship between electrochemical impedance, phase Angle, medium fre-
quency range and corrosion resistance of electrochemical impedance spectroscopy. With the
increase of Zn/Mg ratio, the arc radius and phase Angle of Nyquist curve decreased, which
indicated that the corrosion resistance of the alloy decreased [24]. And Al-Zn-Mg-Cu alloy
with lower Zn/Mg ratio showed better surface protection and corrosion resistance [25].

2.6. Brief Summary

In conclusion, the influence of alloy elements on the precipitation process can be sum-
marized in the following Table 1. Cu played an important role in the corrosion performance
of the alloy, which could adjust the trend of Zn and Mg to decrease the corrosion resistance
when the strength and hardness were increased. At the same time, Zn could make the alloy
have high plasticity properties, which was expected to achieve a balance between ductility
and strength. Therefore, adjusting the proportion between the main elements and finding
the threshold between the proportion of elements could effectively solve the contradiction
between strength and toughness and corrosion resistance.
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Table 1. Effect of alloy elements on the precipitation process.

Alloy Element Content Dissolving Process

low Zn/Mg ratio α(supersaturated solid solution)→ GP region→ η′(MgZn2)→ η(MgZn2)
high Zn/Mg ratio α(supersaturated solid solution)→ GP region→ T′(Al2Mg3Zn2)→ T(MgZn2)

excessive Cu α(supersaturated solid solution)→ GP region→ η′(MgZn2)→ S(MgZn2)

3. Microalloy Elements

Trace elements in Al-Zn-Mg-Cu alloys include two categories: First is impurity ele-
ments, mainly Fe and Si. A small amount of impurity elements inevitably exist in aluminum
alloys and with the recycling of recycled aluminum, the content of Fe and Si in the alloys
will further increase. The second is alloying elements including Ag, Ni, Ti, etc. Microalloy-
ing elements are mainly introduced to refine grain and improve alloy strength.

3.1. Fe, Si
3.1.1. Effect of Fe and Si on the Properties of Al-Zn-Mg-Cu Alloys

Fe and Si were the most common impurity elements in Al-Zn-Mg-Cu alloys and
generally formed coarse Al7Cu2Fe, Al3Fe, α-AlFeSi and Mg2Si phases in the alloys [26,27].
The brittle and hard Al7Cu2Fe phase was not coherent with the α(Al) matrix and was easy
to crack or separate from the matrix to form voids. It grew up under the loading stress and
eventually formed macroscopic cracks, which led to the fracture of the alloy [28].

When Fe content increased from 0.12% (mass fraction) to 0.26% (mass fraction), the
tensile strength of the alloy changed little, where the elongation decreased seriously [29].
When Fe content increased from 0.0% (mass fraction) to 0.6% (mass fraction), the fracture
toughness decreased from 40 MPa.m1/2 to 30 MPa.m1/2 [30]. However, the fatigue life of
Al-Zn-Mg-Cu alloys could be improved by reasonable control of Fe content. When the
strain amplitude was less than 0.5%, the fatigue life of Al-Zn-Mg-Cu alloy with 0.33%
(mass fraction) Fe was obviously better than that with 0.01% (mass fraction) Fe [31]. The
reason was that fine fe-rich phase could change the crack propagation path under low strain
amplitude and increased the crack propagation resistance, which improved the fatigue
life. However, when the volume fraction and size of the Fe-rich phase exceeded a certain
critical value, the Fe-rich phase might still become a crack source, which would damage
the fatigue property of the alloy.

The Al-4.5Zn-1.5Mg-1.0Cu-0.35Si alloy contained fine and dispersed plate-strip precip-
itates in the intragranular structure, which was called the GPB-II zone [32]. The GPB-II zone
exhibited stronger stability than η′ and T′ phases under high temperature aging, which
significantly improved the alloy strength [33]. After aging at 125 ◦C, 175 ◦C and 225 ◦C, the
microhardness and strength of Al-Zn-Mg-Cu alloys containing Si were significantly higher
than those without Si.

3.1.2. Effect of Fe and Si on the Recrystallization Process of Al-Zn-Mg-Cu Series Alloys

Fe and Si could change the mechanical properties of Al-Zn-Mg-Cu alloy by influenc-
ing the recrystallization process. The change of grain boundary orientation distribution
was closely related to recrystallization caused by Particle stimulated nucleation (PSN) of
Al7Cu2Fe and Mg2Si [34]. Figure 10 shows the EBSD pattern of the matrix around the
coarse intermetallic particles in the longitudinal section of the aging alloy, with the white
line showing a low Angle boundary of 1.5◦ to 15◦ (LAGBs) and the black line showing a
high Angle boundary greater than 15◦ (HAGBs). The local deformation zones (outlined
with yellow dashed lines) of each kind of particles extending from the particle-matrix inter-
face to the neighboring matrix were evidently observed through the EBSD micrographs.
With the increase of Fe and Si content, the density of Al7Cu2Fe and Mg2Si increased. It
was easier to induce recrystallization and formed recrystallized grains whose orientation
was much different from the texture direction of extruded fibers, which contributed to
the formation of more high Angle grain boundaries. when the mass fraction of Fe and Si
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increased from 0.041% and 0.024% to 0.272% and 0.134%, respectively, Recrystallization
resulted in a decrease in the texture of extruded fibers from 56.8% to 53.8% [35], which
decreased slightly strength. High angle grain boundaries hindered deformation more
seriously and promote intergranular fracture more easily than low Angle grain boundaries.
Therefore, with the increase of Fe and Si content, a large number of coarse Al7Cu2Fe and
Mg2Si phases and more high Angle grain boundaries would also reduce the elongation.
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Figure 10. EBSD patterns of the matrix surrounding coarse intermetallic particles in the longitudinal
section of aged alloys: (a) η/S in 7055 alloy; (b) Al7Cu2Fe in7055 alloy; (c) Al7Cu2Fe larger than
70 µm in 7055 alloy; (d) Al7Cu2Fe and Mg2Si in another 7055 alloy (Reprinted with permission from
Ref. [35]. 2023 Elsevier).

3.2. Ag
3.2.1. Effect of Ag on the Hardness and Yield Strength of Al-Zn-Mg-Cu Alloy

Ag could significantly improve the early aging response and the overall aging response
of Al-Zn-Mg-Cu alloy [36], which increased the density of fine aggregates. The aggregate
density of 7075 alloy after peak aging was 1.2× 1024 m−3, which increased to 3.1× 1024 m−3

after adding 0.3% Ag. The increase of fine T-phase and η phase density in Ag-containing
alloys increased the hardness and yield strength by more than 10% [37].

3.2.2. Effect of Ag on the Corrosion Resistance of Al-Zn-Mg-Cu Alloy

The tensile strength of Al-4.5Zn-1.55Mg-0.12Cu alloy with 0.12% Ag added was
457.6 MPa in 3.5% NaCl solution, and it was 20.5 MPa higher than that without Ag
added, which loss elongation little and showed better corrosion resistance to NaCl solution
(Figure 11) [38]. On the one hand, Ag atoms were distributed around the grain boundary
precipitated phase, which significantly reduced the potential difference between PFZ and
GBPs, increased pitting potential, and reduced the sensitivity of the alloy to stress corrosion
cracking. On the other hand, the addition of trace Ag could increase the size of precipitated
phase and the distance between precipitated phases, which was conducive to the capture
of hydrogen atoms in the grain boundary, so as to improve the stress corrosion resistance
of the alloy.
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3.2.3. Effect of Ag on the Fracture of Al-Zn-Mg-Cu Alloy

When Ag was added to Al-Zn-Mg-Cu alloys containing Ge, a small amount of Ag
could effectively capture vacancy and reduced vacancy loss near the grain boundary, which
effectively reduced the width of PFZ. The joint addition of Ge and Ag made Mg2Ge particles
finer and more evenly distributed, which reduced the degree of stress concentration and
further improved the plasticity of the alloy. After air cooling, the fracture changed from
brittle intergranular fracture to ductile transgranular fracture (Figure 12) [39].
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3.3. Ni
3.3.1. Effect of Ni on the Thermal Cracking Sensitivity of Al-Zn-Mg-Cu Alloy

It had been shown that adding Ni to Al alloy could improve the strength at room
temperature or high temperature, which had been confirmed in Al-Zn-Mg-Cu alloy [40].
In the equilibrium phase diagram of Al-Zn-Mg-Cu-Ni alloy, Ni only existed in the form
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of (Al + Al3Ni) eutectic [41]. Generally speaking, the increase of eutectic helped to inhibit
the formation of hot cracking of casting alloy, which effectively reduced the hot cracking
tendency of alloy.

3.3.2. Effect of Ni on the Strength and Elongation of Al-Zn-Mg-Cu Alloy

In as-cast Al-Zn-Mg-Cu-Ni alloys, the amount of Al3Ni phase increased with the
increase of Ni content. The Al3Ni phase was formed by L → (α-Al + Al3Ni) eutectic
reaction at the last stage of solidification. The increase of Al3Ni phase on the fracture
surface meant that there was more residual liquid between the primary α-Al dendrites. In
this case, the initial fracture would be filled with residual eutectic liquid, which reduced the
possibility of thermal cracking. When the amount of Ni was less than 0.6% (mass fraction),
the improvement of grain size and shrinkage defect could improve the tensile strength and
elongation at the same time. However, when the Ni content was more than 0.6% (mass
fraction), the increase of alloy strength led to the decrease of the elongation(Figure 13).
When the Ni content was greater than 1.2% (mass fraction), the alloy had no hot cracking
tendency [42]. Therefore, the strength and elongation of Al-Zn-Mg-Cu alloy could be
increased by adding appropriate amount of Ni, and the thermal cracking sensitivity could
be reduced, so as to improve the service performance of the material.
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3.4. Ti
3.4.1. Effect of Ti on the Thermal Cracking Sensitivity of Al-Zn-Mg-Cu Alloy

The effects of Ti on Hot tearing sensitivity (HTS) of Al-Zn-Mg-Cu alloys were related
to the content of elements. Adding 0.06% (mass fraction) Ti could reduce the hot-cracking
sensitivity factor of Al–6Zn–2Mg–2Cu-Ti alloy from 17 (0.00%Ti, mass fraction) to 7 (0.06%Ti,
mass fraction). But with further increase of Ti content, the hot-cracking sensitivity factor
increased from 7 (0.06%Ti, mass fraction) to 13 (0.24%Ti, mass fraction) [43], which reduced
the pouring performance of the alloy.

3.4.2. Effect of Ti on the Strength and Plasticity of Al-Zn-Mg-Cu Alloy

In addition to affecting the hot-cracking sensitivity of the alloy, 0.1% (mass fraction)
Ti could also reduce the grain size and the degree of phase agglomeration during the
solidification of Al-Zn-Mg-Cu alloy, thus improving the strength and plasticity of the as-
cast alloy. The addition of Ti changed the chemical composition of L12 precipitated phase
from (Al,Zn)3Zr to (Al,Zn)3(Zr,Ti), and the lattice constant decreased from 0.4111 nm to
0.4018 nm. Because the decrease of lattice constant resulted in the lattice mismatch between
the precipitated phase and Al matrix, L12 precipitated phase was refined from 18.7 ± 0.4 nm
to 14.2 ± 0.4 nm [44]. In addition, the addition of Ti led to the formation of Al18Mg3Ti2
metal compound phase during the solid solution process, which played an important role
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in the preferential nucleation of η-Mg(Zn,Cu,Al)2 precipitates in slow-cooling alloys after
solid solution treatment [45]. At the same time, the interface between Al18Mg3Ti2 phase
and Al matrix also provided non-uniform nucleation sites for L12 precipitated phase and
zinc-rich phase [46].

3.5. Brief Summary

The impurity elements Fe and Si that were controlled in a certain range could not only
reduce the appearance of alloy cracks, but also improve the fatigue life and strength of the
alloy. Ag played an important role in improving resistance to stress corrosion and solution
corrosion. At the same time, the ductility decrease was small. Ti and Ni played a crucial
role in improving strength and reducing thermal cracking sensitivity. However, the role of
Ag, Ti and Ni also had a threshold and the right amount of addition could play its most
effective role. And balance the relationship between mechanical properties.

4. Rare Earth Element

The effects of rare earth elements on Al-Zn-Mg-Cu alloys were similar, which were
mainly reflected in the following aspects: on the one hand, the solubility of rare earth
elements in aluminum was small and they could form Al3RE phase with Al. In the
solidification process, the Al3RE phase served as the heterogeneous core of Al matrix,
which significantly refined the grains. On the other hand, the dispersing Al3RE phase was
strongly pinned to the dislocation in the process of homogenization and solution aging,
which effectively inhibited the recrystallization of the alloy and significantly increased
the recrystallization temperature. In addition, rare earth elements could react with H, O,
N, C, S, Si, halogen, oxide and other nonmetallic impurities in aluminum melt to form
compounds. So this reduced the content of gas content, inclusions and harmful elements
in liquid aluminum, which achieved the role of gas removal, slag removal and matrix
purification. And it reduced porosity, porosity, slag inclusion and other defects in the ingot,
so as to improve the quality of the ingot.

4.1. Sc
4.1.1. Refinement Effect of Sc on Al-Zn-Mg-Cu Alloy

Sc had a very low solid solubility in Al-Zn-Mg-Cu alloy and the presence of Sc led
to the formation of primary Al3Sc phase, which could act as the nucleating particle of Al
matrix during solidification and significantly modify the as-cast structure [47]. Al3Sc phase
with different primary morphologies could produce different refining effects, which would
affect the mechanical properties of the alloy. Holding at 760 ◦C for 10 min followed by
rapid cooling (at a cooling rate of 100–1000 K/s) could lead to the diversity of primary
Al3Sc phase morphology, and this form of Al-Sc alloy had the best refining effect on
Al-Zn-Mg-Cu-Sc-Zr alloy [48].

4.1.2. Effect of Sc on the η’ Phase Distribution and Corrosion Resistance of
Al-Zn-Mg-Cu Alloys

Sc could not only affect the refining effect of Al-Zn-Mg-Cu alloy during solidification,
but also could promote the uniform precipitation of η′ phase during aging, which inhib-
ited the coarsing of η′ phase and prevented its transition to η phase [49]. Compared with
7055 aluminum alloy without Sc, the addition of 0.25% (mass fraction) of Sc made
7055 aluminum alloy smaller in size and it also made η′ phase distribution more uni-
form, so the alloy had higher hardness, tensile strength, ductility and thermal stability.
Sc microalloying could improve the corrosion potential of aluminum alloy, thus improv-
ing the corrosion resistance [50]. The addition of trace Sc elements led to an increase in
the proportion of grain boundaries in Al-Zn-Mg-Cu alloy, which reduced the amount of
precipitated phase per unit grain boundary. Moreover, the discontinuous distribution of
precipitated phase along grain boundaries reduced the anodic dissolution rate of precip-
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itated phase, which improved the resistance of the alloy to intergranular corrosion and
spalling corrosion [51].

4.1.3. Effect of Sc on the Damping Properties of Al-Zn-Mg-Cu Alloy

It had been shown that Sc also affected damping properties of Al-Zn-Mg-Cu alloys.
The excellent damping performance of metal was due to the excellent grain boundary
sliding ability of its crystal structure, and the fine grain structure always contributed to the
improvement of grain boundary sliding ability. Therefore, the damping performance of
Al-Zn-Mg-Cu alloy could be improved by refining the grain [52]. For example, reducing
grain size, promoting the formation of equiaxed crystals and introducing wetting interface
between Al-Zn phase, etc. [53]. 7055 alloy with 0.25% (mass fraction) Sc added was further
treated by friction stir, which had fine grain and equiaxed fine crystal structure and showed
the best damping performance [54].

4.1.4. Effect of Sc on the Plastic Properties of Al-Zn-Mg-Cu Alloy

The Figure 14 showed a transmission electron micrograph obtained from the measured
portion of an Al-Zn-Mg-Cu-0.10Sc–0.10Zr alloy sample at a strain value of 1.10 (correspond-
ing to 200% elongation). It could be observed that a large number of fine Al3ScxZr1−x
particles with Ashby-Brown contrast were evenly distributed inside the particles (black
circle) and remained almost constant in size (10–20 nm) during deformation. HRTEM
image of the Al3ScxZr1−x particle was shown in Figure 14c. The Al3ScxZr1−x particle was
spherical with a size of about 15 nm and was completely coherent with the aluminum
matrix alloy. These coherent particles strongly fixed dislocations and grain boundaries. As
shown by the arrows in Figure 14a,b, they resulted in the controlled growth of microscale
grains [55]. Therefore, adding an appropriate amount of Sc to the aluminum alloy could
significantly improve the plastic properties of the alloy.
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Metals 2023, 13, 1329 15 of 24

4.2. Zr
4.2.1. Refinement Effect of Zr on Al-Zn-Mg-Cu Alloy

Figure 15 shows the effects of mechanical properties of Al-5.8Zn-2.3Mg-1.7Cu al-
loys at different Zr contents. Adding 0.05% (mass fraction) Zr had no significant effect
on grain refinement of Al-Zn-Mg-Cu alloy, but the Brinell hardness reached the maxi-
mum. With the increase of Zr content, the grain refinement effect became more obvious.
When the addition amount reached 0.20% (mass fraction), the spacing between secondary
dendrite arms reached the minimum, and the ultimate tensile strength, yield strength
and elongation at room temperature reached the maximum 296.74 MPa, 249.41 MPa and
8.26%, respectively [56].
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4.2.2. Effect of Zr on the Quenching Sensitivity of Al-Zn-Mg-Cu Alloy

When Zr content was within a certain range, fine Al3Zr dispersion phase could be
formed to increase the number of crystal nuclei and refine grains [57]. For Al-Zn-Mg-Cu
alloys with high cold-rolling ratio, the coherent interface between Al3Zr particles and
substrate changed to semi-coherent interface after solid solution treatment, which led to
non-uniform nucleation of solutes during quenching. So the quenched sensitivity increased
that further increased with the cold rolling ratio. In contrast, Alloys with lower cold rolling
ratios didn’t show any significant quenching sensitivity [58].

4.3. Sc + Zr
4.3.1. Effect of Different Sc + Zr Contents on Al-Zn-Mg-Cu Alloy

The composite addition of trace Sc and Zr resulted in fine-grained strengthening,
substructural strengthening, and Orowan mechanism strengthening of Al3(Sc,Zr) and
Al3Zr dispersions [59]. By adding 0.07% (mass fraction) Sc and 0.07% (mass fraction) Zr, the
strength of the alloy increased about 133 MPa. With the addition of 0.10% (mass fraction)
Sc + 0.16% (mass fraction) Zr and 0.22% (mass fraction) Sc + 0.40% (mass fraction) Zr,
Al-Zn-Mg-Cu alloy could obtain better recrystallization resistance and thermal stability.
And with the increase of Sc and Zr addition, Abundant nano-Al3(Sc,Zr) particles could
effectively refine dislocations and subgrain boundaries(Figures 16 and 17), which showed
good recrystallization resistance and precipitation strengthening effect [60].
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from Ref. [60]. 2023 Elsevier).
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4.3.2. Effect of Sc + Zr on the Thermal Stability of Al-Zn-Mg-Cu Alloy

The influence of Sc and Zr on the mechanical properties of Al-Zn-Mg-Cu alloys was
mainly reflected in Al3Sc and Al3(Sc,Zr). Al3Sc was the precursor of Al3(Sc,Zr) precipitates.
Susaturated solid solutions containing Sc decomposed at 250 ◦C, which formed Sc-rich
clusters and gradually developed into Al3Sc crystal nuclei. With the increase of temperature,
driven by the chemical potential gradient,Zr atoms began to diffuse over long distances
and approached Al3Sc nuclei. Then they enriched around them to form Zr-rich thin layers,
thus forming the Al3(Sc,Zr) core/shell structure of Al3Sc crystal nuclei + Zr-rich shells [61].
The coarsening coefficient of Al3(Sc,Zr) precipitates was 3 orders of magnitude smaller
than that of Al3Sc particles, which showed better thermal stability.

4.3.3. Effect of Sc + Zr on the Yield Strength of Al-Zn-Mg-Cu Alloy

However, there was a threshold for the beneficial effect of Sc and Zr combined addition
on yield strength. The addition of trace Sc and Zr improved the hardness and yield
strength of 7055-T6 alloy by strengthening the grain boundary and Al3(Sc,Zr) phase. But
in Al-Zn-Mg-Cu alloy with high Cu content, Sc atoms diffused to θ-Al2Cu phase, which
promoted the formation of w-AlCuSc phase [62]. When the total mass fraction of Sc and Zr
exceeded 0.45% (mass fraction), large w phase and coarse primary Al3(Sc,Zr) phase were
formed, leading to the degradation of mechanical properties of the alloy (Table 2) [63].
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Table 2. Tensile properties of 7055-xZr-ySc alloy after rolling and T6 aging (Reprinted with permission
from Ref. [63]. 2023 Elsevier).

7055-xZr-ySc Sc + Zr/wt.% YS/Mpa UTS/Mpa EL/%

7055 0.16 577 ± 2 654 ± 2 12.8 ± 0.4
7055-0.2Sc 0.36 609 ± 2 649 ± 3 13 ± 0.5
7055-0.25Sc 0.41 600 ± 2 679 ± 2 14.3 ± 0.5

7055-0.14Zr-0.15Sc 0.45 602 ± 3 657 ± 4 13.7 ± 0.8
7055-0.14Zr-0.2Sc 0.5 593 ± 3 635 ± 5 10.3 ± 0.6
7055-0.24Zr-0.15Sc 0.55 580 ± 2 616 ± 3 7.3 ± 0.3

Note: (YS: Yield strength, UTS: Ultimate tensile strength, EL: Elongation).

4.4. Sm
4.4.1. Effect of Sm on the Peak Hardness of Al-Zn-Mg-Cu Alloy

Sm could effectively reduce the distance between secondary dendrite arms and was a
good thinning element of aluminum alloy. The addition of Sm to Al-Cu alloy could refine
the Al2Cu phase in the alloy and promote its precipitation during aging [64]. The as-cast
microstructure of Al-Zn-Mg-Cu-Zr alloy containing Sm mainly included η-(Mg(Zn,Cu,Al)2)
phases, Al10Cu7Sm2 phases and Fe-rich phases, and there were also fine η phases and
acicular θ(Al2Cu) phases distributed in the grain [65]. The addition of Sm made the peak
aging reach earlier and prolonged the peak aging time. With the increase of Sm content,
the peak hardness of the alloy increased first and then decreased, and the maximum peak
aging hardness was obtained at 0.3%Sm (mass fraction) [66].

4.4.2. Effect of Sm on the Yield Strength and Elongation of Al-Zn-Mg-Cu Alloy

The effect of Sm content on the ultimate tensile strength, yield strength and elongation
of Al-Zn-Mg-Cu alloy at room temperature was similar, which firstly increased and then
decreased. When the mass fraction of Sm reached 0.3%, the strengthening effect was the
best, and the tensile strength, yield strength and elongation were 732 MPa, 694 MPa and
9.3%, respectively. Compared with unmodified alloy, they were improved by 3.8%, 4.5%
and 19%, respectively (Figure 18) [67].
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4.5. Er

In Zr-containing Al-Zn-Mg-Cu alloys, Er and Zr could form dispersed Al3(Er,Zr)
phases [68]. Al3(Er,Zr) phase could not only serve as the strengthening phase of matrix,
but also nailed grain boundaries to inhibit the migration of low-angle grain boundaries
to high-angle grain boundaries [69]. η phases tended to preferentially gather at the high
Angle grain boundaries with higher energy, but the high Angle grain boundaries with
abundant η phases were prone to anodic dissolution, which provided favorable channels
for crack propagation [70]. Therefore, the addition of Er could preserve more low Angle
grain boundaries, thus improving the corrosion resistance of the alloy. When the Er mass
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fraction increases from 0% (mass fraction) to 0.10% (mass fraction), the hardness and yield
strength of the alloy increased by 25.4 HV and 70 MPa, respectively, and the intergranular
corrosion depth decreased by 65% [71].

4.6. La

In Al-Zn-Mg-Cu alloys, Al-Ti-B was the most commonly used refiner. When La was
added to aluminum alloys containing Al-Ti-B, La mainly existed in the form of Ti2Al20La
phase [72]. Ti2Al20La phase was a non-thermodynamically stable phase [73], which could
release rare earth elements. The rare earth could combine with TiB2 particles to form “rare
earth film”, which reduced the free energy of TiB2 phase and hindered the aggregation and
growth of TiB2 phase, thus maintaining the long-term refining ability of Al-Ti-B. In addition,
La atoms significantly promoted the nucleation and motion of di-slocation and could
promote the twinning deformation at the crack tip, thus inhi-biting brittle propagation.
Moreover, high concentration of La atoms was conduci-ve to promoting twin deformation
and improving the plastic deformation ability o-f grain boundaries [74]. When 0.3% (mass
fraction) of La was added into Al-6.7Zn-2.6Mg-2.0Cu-0.1Zr alloy, the tensile strength and
yield strength were 583 MPa an-d 559 MPa, respectively, which were 18 MPa and 19 MPa
higher than those wit-hout La modification [75].

4.7. Ce
4.7.1. The Effect of Ce on the Second Phase in Al-Zn-Mg-Cu Alloy

Al-Zn-Mg-Cu alloys without Ce had a high degree of Cu susaturation, which would
provide more Cu atoms to form A12CuMg phase, which resulted in a more stable A12CuMg
particles. After adding 0.12%Ce (mass fraction), the stable AlCuCe phase could trap a large
number of Cu atoms, effectively inhibit the further formation of Al2CuMg phase [76], and
it facilitated the dissolution of homogenization process. When Ce content increased to
0.3% (mass fraction), Al4Ce phase appeared in the alloy [75]. In the process of solution
treatment, fine Al4Ce phase could nail the grain boundary, inhibit recrystallization and
refine the structure.

4.7.2. The Effect of Ce on the Corrosion Resistance on Al-Zn-Mg-Cu Alloy

In addition, adding Ce to Al-Zn-Mg aluminum alloy could significantly prolong the
stress corrosion cracking time and reduce the stress corrosion sensitivity. When 0.04% (mass
fraction) Ce was added to Al-Zn-Mg aluminum alloy, Ce atoms and Al atoms could be
oxidized simultaneously to form rare-aluminum composite oxide film (Al2O3·Ce2O3 and
(Al,Ce)2O3) [77], which improved the resistance of passivation film, significantly reduced
the self-corrosion current density, and significantly improved the corrosion resistance of
the alloy [78].

4.8. Y
4.8.1. Effect of Y on the Effect of Al-Zn-Mg-Cu Alloy Refinement and Dislocation Density

The addition of 7.5% (mass fraction) Y in aluminum alloy could greatly improve
the degree of grain refinement and dislocation density. And the formation of β-Al3Y
intermetallic phases at grain boundaries could not only promoted nucleation, but also
prevented grain growth, for which Al-7.5% (mass fraction) Y alloy could maintain fine
grains in annealed state [79]. In 6063 aluminum alloy, the combined addition of rare earth
Y and Al-Ti-B also played a role in reducing the grain size [80].

4.8.2. Effect of the Phase of the Y on the Al-Zn-Mg-Cu Alloy

In Al-Zn-Mg-Cu alloys, adding Y element alone could refine dendrite substructure and
increase the proportion of equiaxed crystals. The combined addition of Zr, Ti and Y could
simultaneously refine the grain and dendrite substructure, and the tensile strength could
reach about 700 MPa [81]. The synergistic strengthening of rare earth Y with transition
elements Zr and Ti might be related to the formation of Al8Cu4Y and Al3(Zr,Y) phases in
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the nanonetwork structure. The ideal tensile strength of Al8Cu4Y phase in (100) [001] slip
system was 15.4 GPa [82], and it had good mechanical properties and thermal stability. The
nanocrystalline Al8Cu4Y phase was a more ideal existence form than the conventional
Al8Cu4Y phase. The strengthening of Al-Zn-Mg-Cu alloys had a wider application prospect.

4.9. Ta

The growth limiting factor Q value of Ta in aluminum alloy was 10.5 K. It had been
shown that the larger the Q value is, the more obvious the grain refinement effect is [83].
And Ta and Al had higher chemical activity and could form Al3Ta phase in situ.The Al3Ta
phase with Al had small mismatch, which had been proven to be an efficient grain refiner
for additive manufacturing [84].

Al-Zn-Mg-Cu alloy was prepared by laser powder bed melting (3D printing). The
addition of 2% (mass fraction) Ta replaced Al atoms in the nano-Al2Cu phase, and Al3Ta
and AlTaCu nano-phases were formed by in-situ reaction, which prevented coarsening
during solidification. These nanophases could inhibit hot cracking, refine and strengthen
the alloy, and accelerate the aging process by hetero-nucleation or by hindering the oriented
epitaxy growth of grains, thus increasing the ultimate tensile strength from 103± 21 MPa to
401 ± 11 MPa (Figure 19b). The aluminum alloy with Ta had a high Angle grain boundary,
which could be used as a source of dislocation in the deformation process [85]. Therefore,
the grain boundary surface of the alloy melted by laser powder bed had a high density of
dislocation sources, which was conducive to deformation and thus to enhancing ductility.
The addition of Ta transformed the fracture morphology from brittle intergranular fracture
(Figure 19a) to ductile fracture (Figure 19c), and the elongation increased from 0.8 ± 0.4%
to 5.1 ± 0.6%. In addition, the discontinuous ultrafine grains and grain boundaries could
inhibit the expansion of corrosion path, reduce the corrosion sensitivity of grain boundaries,
and improve the Cl− corrosion resistance of Al-Zn-Mg-Cu alloy [86].
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4.10. Brief Summary

In summary, the rare-earth phases are summarized as follows (Table 3). Sc played
an important role in refining grain, improving toughness and corrosion resistance [87,88].
However, due to its high cost, it was not conducive to widespread industrial application and
it was necessary to achieve the same effect by low-cost rare earth elements or composite
addition. For example, the combined addition of Sc and Zr could not only promote
precipitation strengthening, but also improve thermal stability. Other rare earth elements
Sm, Er, La, Ce, Y and Ta all played different roles in refining grains.Among them, Er and
Ce could greatly improve the corrosion resistance of the alloy. Sm and La played a role in
improving the tensile strength.It is important to clarify the main functions and effects of
each rare earth element. Compound addition of rare earth elements that reduced cost and
balanced performance were urgent problems in the development of alloys.
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Table 3. Rare-earth phase in the aluminum alloy.

Rare Earth Element Rare Earth Phase Crystal Structure

Sc Al3Sc FCC
Sm Al10Cu7Sm2 Hexagonal structure
Er Al8Cu4Er Hexagonal structure
Ce Al4Ce FCC
La Al11La3 FCC
Y Al8Cu4Y Hexagonal structure
Ta Al3Ta FCC

5. Forecast

The effect of alloying on the microstructure and properties of Al-Zn-Mg-Cu alloy
was reviewed. For the purpose of corrosion resistance, the ratio of Zn/Mg should be
appropriately reduced to improve the corrosion resistance, and the content of Cu should
be controlled to avoid the potential difference between grain boundary and Al matrix
to cause the corrosion of precipitated phase. In order to achieve comprehensive energy,
the iron-rich phase should be made as small as possible to reduce the adverse effects of
impurity elements such as Fe and Si on plasticity and fracture toughness. By adding Sc, Zr
and other rare earth elements, solution strengthening, aging strengthening and fine crystal
strengthening should be introduced to improve the strength and toughness of the alloy.
In addition, considering the machining properties of Al-Zn-Mg-Cu alloy, the quenching
sensitivity of the alloy should be reduced by adding an appropriate amount of Ge element
and the hot cracking tendency should be reduced by adding Ni element. According to the
research status and existing problems of alloying Al-Zn-Mg-Cu alloy, the future research
directions are as follows:

(1). Optimize the content of main alloy elements and control the content ratio of differ-
ent main alloys, especially the content ratio of Zn/Mg to Zn/Cu. The influence mechanism
of the main alloying elements on the microstructure and properties of Al-Zn-Mg-Cu alloy
is studied deeply, and the action threshold of the main alloying elements is defined.

(2). Reduce the content of impurity elements to reduce the influence of impurity
elements on the microstructure and properties of the alloy. The strong toughness and
corrosion resistance of the alloy can be improved by adding microalloying elements as
needed, especially by adjusting the content of rare earth elements and adding compound
rare earth elements.. The effects of precipitated phase content and distribution on the
properties of Al-Zn-Mg-Cu alloys are analyzed and studied to improve the comprehensive
mechanical properties of Al-Zn-Mg-Cu alloys.

(3). Combining the effects of main alloying elements and trace alloying elements,
the optimal alloying ratio of elements is analyzed through experimental tests, and the
mechanism is explored to further optimize the microstructure and mechanical properties
of the alloy.
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