Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of the As-Cast AXE432 Alloy
3.2. Microstructure of the As-Extruded AXE432 Alloy
3.3. Mechanical Properties of the Extruded AXE432 Alloy
4. Conclusions
- (1)
- The microstructure of the as-cast AXE432 alloy consists of α-Mg, C14, and C36 phases. During the heat treatment at 480 °C for 8 h, the C14 with a fine lamellar structure changes from narrow stripes to micro-scale particles. Additionally, part of the C36 and C14 dissolve in the α-Mg matrix, and many short needle-shaped C15 (Al2Ca) phase precipitates in the primary a-Mg grains.
- (2)
- After the extrusion process at a temperature as high as 420 °C, the AXE432 alloy exhibits a refined DRXed microstructure with an average grain size less than 1.5 ± 0.5 μm because of the PSN effect and pining effect of the large number of second-phase particles.
- (3)
- A complex combination of the effects from grain size, texture, second-phase particles, and strain hardening resulted in the balanced mechanical property of the extruded AXE432 alloy, with the TYS, UTS, El, CYS, and UCS measuring 331.4 ±2.1 MPa, 336.9 ± 3.8 Mpa, 16.1 ± 2.3%, 270.4 ±1.6 Mpa, and 574.5 ± 12.4 MPa, respectively. The tensile fracture morphology is characterized by ductile-oriented rupture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Yang, J.; Zhang, X.; Yang, Q.; Zhang, J.; Li, X. Development and application of magnesium alloy parts for automotive OEMs: A review. J. Magnes. Alloys 2023, 11, 15–47. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, F.; Kang, F.W.; Du, H.Q.; Chen, Z.Y. Recent research and advances in extrusion forming of magnesium alloys: A review. J. Alloys Compd. 2023, 953, 170080. [Google Scholar] [CrossRef]
- Zeng, Z.; Stanford, N.; Davies, C.; Nie, J.; Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev. 2019, 64, 27–62. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-ishi, K.; Kamado, S.; Uchida, F.; Homma, T.; Hono, K. High-strength extruded Mg–Al–Ca–Mn alloy. Scr. Mater. 2011, 65, 269–272. [Google Scholar] [CrossRef]
- Li, Z.T.; Zhang, X.D.; Zheng, M.Y.; Qiao, X.G.; Wu, K.; Xu, C.; Kamado, S. Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys. Mater. Sci. Eng. A 2017, 682, 423–432. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, P.; Yang, Q.; Luo, A.A. Bimodal grain structure formation and strengthening mechanisms in Mg–Mn–Al–Ca extrusion alloys. J. Magnes. Alloys 2023, in press. [CrossRef]
- Chai, S.; Zhong, S.; Yang, Q.; Yu, D.; Dai, Q.; Zhang, H.; Yin, L.; Wang, G.; Yao, Z. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys. J. Mater. Sci. Technol. 2022, 120, 108–117. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Su, J.; Breitbach, B.; Chwałek, M.L.; Wang, H.; Dehm, G. Elucidating dynamic precipitation and yield strength of rolled Mg–Al–Ca–Mn alloy. Mater. Sci. Eng. A 2022, 856, 143898. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, M.; Wei, K.; Li, F.; Li, X.; Zeng, X. Defect, microstructure and mechanical properties of Mg-Gd binary alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2022, 850, 143572. [Google Scholar] [CrossRef]
- Song, J.; Chen, J.; Xiong, X.; Peng, X.; Chen, D.; Pan, F. Research advances of magnesium and magnesium alloys worldwide in 2021. J. Magnes. Alloys 2022, 10, 863–898. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Liu, C.; Chen, X.; Tolnai, D.; Hu, Y.; Zhang, W.; Zhang, Y.; Pan, F. Annealing hardening effect aroused by solute segregation in gradient ultrafine-grained Mg-Gd-Zr alloy. J. Mater. Sci. Technol. 2023, 144, 70–80. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, C.; Meng, J.; Kamado, S. Microstructure evolution and mechanical properties of a high strength Mg–11.7Gd–4.9Y–0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing. Mater. Sci. Eng. A 2017, 703, 348–358. [Google Scholar] [CrossRef]
- Liu, L.; Dong, B.-B.; Cheng, M.; Xue, Y.; Zhang, Z.-M. Investigation of the optimum preheating treatment parameters for extruded Mg–Gd–Y–Zn–Zr alloy using high-throughput experiments. J. Mater. Res. Technol. 2023, 25, 4050–4062. [Google Scholar] [CrossRef]
- Xia, X.; Shu, D.; Yang, E.; Hu, C. A comparative study of the role of Zn in microstructures and the mechanical properties of Mg–Gd–Y–Zr alloys. J. Mater. Res. Technol. 2023, 25, 2903–2912. [Google Scholar] [CrossRef]
- Wu, Z.; Ahmad, R.; Yin, B.; Sandlöbes, S.; Curtin, W.A. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 2018, 359, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, R.; Ojiro, T.; Kubota, K. Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Metall. Mater. 1995, 43, 669–674. [Google Scholar] [CrossRef]
- Luo, A.A.; Powell, B.R.; Balogh, M.P. Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 2002, 33, 567–574. [Google Scholar] [CrossRef]
- Suzuki, A.; Saddock, N.; Jones, J.; Pollock, T. Structure and transition of eutectic (Mg,Al)Ca Laves phase in a die-cast Mg–Al–Ca base alloy. Scripta Mater. 2004, 51, 1005–1010. [Google Scholar] [CrossRef]
- Suzuki, A.; Saddock, N.D.; Jones, J.W.; Pollock, T.M. Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 2005, 53, 2823–2834. [Google Scholar] [CrossRef]
- Liang, S.M.; Chen, R.S.; Blandin, J.J.; Suery, M.; Han, E.H. Thermal analysis and solidification pathways of Mg–Al–Ca system alloys. Mater. Sci. Eng. A 2008, 480, 365–372. [Google Scholar] [CrossRef]
- Watanabe, H.; Yamaguchi, M.; Takigawa, Y.; Higashi, K. Mechanical properties of Mg–Al–Ca alloy processed by hot extrusion. Mater. Sci. Eng. A 2007, 454–455, 384–388. [Google Scholar] [CrossRef]
- Rzychoń, T. Characterization of Mg-rich clusters in the C36 phase of the Mg–5Al–3Ca–0.7Sr–0.2Mn alloy. J. Alloys Compd. 2014, 598, 95–105. [Google Scholar] [CrossRef]
- Janz, A.; Grobner, J.; Cao, H.; Zhu, J.; Chang, Y.; Schmidfetzer, R. Thermodynamic modeling of the Mg–Al–Ca system. Acta Mater. 2009, 57, 682–694. [Google Scholar] [CrossRef]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium-manganese alloys: Particle pinning. Mater. Sci. Eng. A 2011, 528, 4239–4247. [Google Scholar] [CrossRef]
- Zareian, Z.; Emamy, M.; Malekan, M.; Mirzadeh, H.; Kim, W.J.; Bahmani, A. Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process. Mater. Sci. Eng. A 2020, 774, 138929. [Google Scholar] [CrossRef]
- Pan, H.C.; Yang, C.L.; Yang, Y.T.; Dai, Y.Q.; Zhou, D.S.; Chai, L.J.; Huang, Q.Y.; Yang, Q.S.; Liu, S.M.; Ren, Y.P.; et al. Ultra-fine grain size and exceptionally high strength in dilute Mg–Ca alloys achieved by conventional one-step extrusion. Mater. Lett. 2019, 237, 65–68. [Google Scholar] [CrossRef]
- Zhang, A.; Kang, R.; Wu, L.; Pan, H.; Xie, H.; Huang, Q.; Liu, Y.; Ai, Z.; Ma, L.; Ren, Y.; et al. A new rare-earth-free Mg–Sn–Ca–Mn wrought alloy with ultra-high strength and good ductility. Mater. Sci. Eng. A 2019, 754, 269–274. [Google Scholar] [CrossRef]
- She, J.; Pan, F.S.; Guo, W.; Tang, A.T.; Gao, Z.Y.; Luo, S.Q.; Song, K.; Yu, Z.W.; Rashad, M. Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy. Mater. Des. 2016, 90, 7–12. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Nakata, T.; Yan, H.; Chen, R.S.; Kamado, S. Development of dilute Mg–Zn–Ca–Mn alloy with high performance via extrusion. J. Alloys Compd. 2016, 668, 13–21. [Google Scholar] [CrossRef]
- Zhang, B.P.; Geng, L.; Huang, L.J.; Zhang, X.X.; Dong, C.C. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scr. Mater. 2010, 63, 1024–1027. [Google Scholar] [CrossRef]
- Singh, A.; Osawa, Y.; Somekawa, H.; Mukai, T. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg–Zn–Y alloys containing quasicrystal phase. Scr. Mater. 2011, 64, 661–664. [Google Scholar] [CrossRef]
- Zhao, D.; Li, G.; Li, P.; Zhou, J.; Cheng, K.; Liu, Y.; Yang, Y.; Duan, J.; Ghomashchi, R.; Wang, X. A comparative study on the microstructures and mechanical properties of the Mg–xCa/Mn/Ce alloys and pure Mg. Mater. Sci. Eng. A 2021, 803, 140508. [Google Scholar] [CrossRef]
- Wu, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020, 42, 175–189. [Google Scholar] [CrossRef]
- Bohlen, J.; Yi, S.; Letzig, D.; Kainer, K.U. Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater. Sci. Eng. A 2010, 527, 7092–7098. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, D.; Zhang, X.; Xu, X. Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg-Zn-Y-Mn alloys. Mater. Sci. Eng. A 2014, 593, 70–78. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-ishi, K.; Sunohara, H.; Kamado, S. Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Mater. Sci. Eng. A 2012, 558, 356–365. [Google Scholar] [CrossRef]
- Pan, H.; Qin, G.; Ren, Y.; Wang, L.; Sun, S.; Meng, X. Achieving high strength in indirectly-extruded binary Mg–Ca alloy containing Guinier-Preston zones. J. Alloys Compd. 2015, 630, 272–276. [Google Scholar] [CrossRef]
Points | Elements (at.%) | Possible Compounds | |||
---|---|---|---|---|---|
Mg | Al | Ca | Gd | ||
1 | 9.0 | 57.4 | 6.7 | 26.9 | Al2Gd |
2 | 62.4 | 27.6 | 0 | 10.0 | Al2Gd |
3 | 80.0 | 9.7 | 10.3 | 0 | C14 |
4 | 66.4 | 22.6 | 11.0 | 0 | C36 |
Points | Elements (at.%) | Possible Compounds | |||
---|---|---|---|---|---|
Mg | Al | Ca | Gd | ||
1 | 9.5 | 62.7 | 2.0 | 25.8 | Al2Gd |
2 | 85.3 | 6.6 | 8.1 | 0 | C14 |
3 | 49.5 | 34.6 | 15.9 | 0 | C36 |
4 | 98.0 | 1.63 | 0.35 | 0 | C15 |
5 | 98.5 | 1.1 | 0.38 | 0 | α-Mg |
Alloys | Process | Temperature (°C) | AGS (μm) | TYS (MPa) | UTS (MPa) | E (%) | Reference |
---|---|---|---|---|---|---|---|
AXE432 | Extrusion | 420 | 1.5 ± 0.5 | 331.4 ± 2.1 | 336.9 ± 3.8 | 16.1 ± 2.3 | This study |
Mg-3.5Al-3.3Ca-0.4Mn | Extrusion | 350 | 1.2 | 410 | 420 | 5.9 | [4] |
Mg-5.99Zn-1.76Ca-0.35Mn | Extrusion | 300 | 1.4 | 289 | 310 | 15 | [37] |
Mg-5.99Zn-1.76Ca-0.35Mn | Extrusion | 350 | 2.7 | 219 | 267 | 16 | [37] |
Mg-4.4Al-1.1Ca-0.4Mn | Extrusion | 350 | >5 | 190 | 294 | 29.9 | [5] |
Mg-4.0Al-2.0Ca-0.4Mn | Extrusion | 350 | >3 | 243 | 314 | 16.6 | [5] |
Mg-3.0Al-2.7Ca-0.4Mn | Extrusion | 350 | 1.7 | 426 | 439 | 3.9 | [5] |
Mg-2.7Al-3.5Ca-0.4Mn | Extrusion | 350 | 1.4 | 438 | 457 | 2.5 | [5] |
Mg-3.5Zn-9.5Y-1.0Mn | Extrusion | 450 | 2.0 | 333 | 421 | 5.9 | [38] |
Mg-1Ca | Extrusion | 300 | 1 | 310 | 330 | 4 | [39] |
Mg-2Mn | Extrusion | 375 | 4.17 | 201.4 | 233.7 | 20.7 | [34] |
Mg-1Ce | Extrusion | 375 | 2.44 | 316.1 | 321.5 | 7.6 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, D.; Tang, S.; Liu, Y.; Zhang, S.; Liu, Y.; Wu, J.; Song, X.; Liu, H.; Zhang, X.; et al. Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy. Metals 2023, 13, 1333. https://doi.org/10.3390/met13081333
Zhou J, Zhao D, Tang S, Liu Y, Zhang S, Liu Y, Wu J, Song X, Liu H, Zhang X, et al. Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy. Metals. 2023; 13(8):1333. https://doi.org/10.3390/met13081333
Chicago/Turabian StyleZhou, Jixue, Dongqing Zhao, Shouqiu Tang, Yu Liu, Suqing Zhang, Yunteng Liu, Jianhua Wu, Xiaocun Song, Hongtao Liu, Xinfang Zhang, and et al. 2023. "Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy" Metals 13, no. 8: 1333. https://doi.org/10.3390/met13081333
APA StyleZhou, J., Zhao, D., Tang, S., Liu, Y., Zhang, S., Liu, Y., Wu, J., Song, X., Liu, H., Zhang, X., Yan, P., & Wang, X. (2023). Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy. Metals, 13(8), 1333. https://doi.org/10.3390/met13081333