Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Setup
2.3. Experimental Methodology
2.3.1. Constant Reinforcement Area
2.3.2. Energy Input
2.3.3. Remelting and Dilution Ratios
2.4. Process Control Methods
3. Results
3.1. Process Control Methods
3.1.1. Arc Power Control Method
3.1.2. Travel Speed Control Method
4. Discussion
5. Demonstrator
6. Conclusions
- Decoupling of the material feed rate from the energy input, maintaining a constant reinforcement area during a broad range of thermal control;
- Accurate geometry control, especially in the bead height—with most of the changes being lower than 1 mm;
- Reduction in all the outputs related to the energy input to the pre-existent material , ultimately achieving dilution rates below 10%;
- Increase in productivity by achieving high deposition rates and a possible increase in TS;
- Feasible thermal and geometry control, as demonstrated in building a thick part using a high deposition rate of 9.57 kg h−1 with CWGMA AM while keeping a good surface finish, dimensional accuracy, and reduction in the energy input and accumulation during the deposition.
7. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BS EN ISO/ASTM 52900:2021; ISO/ASTM (International Organization for Standardization/American Society for Testing and Materials). Additive Manufacturing—General Principles—Fundamentals and Vocabulary. British Standards Institution (BSI): London, UK, 2022.
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Bento, J.B.; Lopez, A.; Pires, I.; Quintino, L.; Santos, T.G. Non-Destructive Testing for Wire + Arc Additive Manufacturing of Aluminium Parts. Addit. Manuf. 2019, 29, 100782. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; dos Santos, E.B.F.; Assunção, P.D.C.; Braga, E.M.; Gerlich, A.P. Cold Wire Gas Metal Arc Welding Droplet Transfer and Geometry. Weld. J. 2019, 98, 135–149. [Google Scholar] [CrossRef]
- Dupont, J.N.; Marder, A.R. Thermal Efficiency of Arc Welding Processes. Weld. Res. Suppl. 1995, 74, 406–416. [Google Scholar]
- Welding Handbook Committee. Welding Handbook, 9th ed.; Jenney, C.L., O’Brien, A., Eds.; American Welding Society: Miami, FL, USA, 1987; Volume 1, ISBN 0871716577. [Google Scholar]
- ISO/TR 17671-1:2002(E); Welding—Recommendations for Welding of Metallic Materials—Part 1: General Guidance for Arc Welding. ISO (International Organization for Standardization): Geneva, Switzerland, 2002.
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Li, K.H.; Chen, J.S.; Zhang, Y.M. Double-Electrode GMAW Process and Control. Weld. J. 2007, 86, 231s–237s. [Google Scholar]
- Huang, J.; Yuan, W.; Yu, S.; Zhang, L.; Yu, X.; Fan, D. Droplet Transfer Behavior in Bypass-Coupled Wire Arc Additive Manufacturing. J. Manuf. Process. 2020, 49, 397–412. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Duarte, V.R.; Miranda, R.M.; Santos, T.G.; Oliveira, J.P. Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM). J. Mater. Process. Technol. 2021, 296, 117196. [Google Scholar] [CrossRef]
- Li, K.H.; Zhang, Y.M. Consumable Double-Electrode GMAW—Part 1: The Process. Weld. J. 2008, 87, 11–17. [Google Scholar]
- Yang, D.; He, C.; Zhang, G. Forming Characteristics of Thin-Wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing. J. Mater. Process. Technol. 2016, 227, 153–160. [Google Scholar] [CrossRef]
- Chen, S.J.; Zhang, L.; Wang, X.P.; Wang, J. Stability of the Cross-Arc Process—A Preliminary Study. Weld. J. 2015, 94, 158–168. [Google Scholar]
- Costa, E.S.; Assunção, P.D.C.; Dos Santos, E.B.F.; Feio, L.G.; Bittencourt, M.S.Q.; Braga, E.M. Residual Stresses in Cold-Wire Gas Metal Arc Welding. Sci. Technol. Weld. Join. 2017, 22, 706–713. [Google Scholar] [CrossRef]
- da Mota, C.A.M.; do Nascimento, A.S.; Garcia, D.N.; da Silva, D.A.S.; Teixeira, F.R.; Ferraresi, V.A. Nickel Overlay Deposited by MIG Welding and Cold Wire MIG Welding. Weld. Int. 2018, 32, 588–598. [Google Scholar] [CrossRef]
- Dirisu, P. Development of Wire + Arc Additive Manufacture for Marine Application. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2019. [Google Scholar]
- Han, Q.; Gao, J.; Han, C.; Zhang, G.; Li, Y. Experimental Investigation on Improving the Deposition Rate of Gas Metal Arc-Based Additive Manufacturing by Auxiliary Wire Feeding Method. Weld. World 2021, 65, 35–45. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Bento, J.; Ding, J.; Pardal, G.; Chen, G.; Qin, J.; Suder, W.; Williams, S. A Novel Cold Wire Gas Metal Arc (CW-GMA) Process for High Productivity Additive Manufacturing. Addit. Manuf. 2023, 73, 103681. [Google Scholar] [CrossRef]
- Khaudair, H.J.; Ugla, A.A.; Almusawi, A.R.J. Effect of Double Wire Cold Feed on Characteristics of Additive Manufactured Components. J. Mater. Eng. Perform. 2021, 30, 6801–6807. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, J. External Filler Wire Based GMA-AM Process of 2219 Aluminum Alloy. Mater. Manuf. Process. 2020, 35, 1268–1277. [Google Scholar] [CrossRef]
- Wang, C.; Suder, W.; Ding, J.; Williams, S. Wire Based Plasma Arc and Laser Hybrid Additive Manufacture of Ti-6Al-4V. J. Mater. Process. Technol. 2021, 293, 117080. [Google Scholar] [CrossRef]
- 23. BS EN 10277:2018; CEN (European Commettee for Standardization). Bright Steel Products—Technical Delivery Conditions. British Standards Institution (BSI): Hong Kong, 2018.
- Pepe, N.; Egerland, S.; Colegrove, P.A.; Yapp, D.; Leonhartsberger, A.; Scotti, A. Measuring the Process Efficiency of Controlled Gas Metal Arc Welding Processes. Sci. Technol. Weld. Join. 2011, 16, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.A.; Assunção, P.D.C.; Braga, E.M.; Gerlich, A.P. Welding Thermal Efficiency in Cold Wire Gas Metal Arc Welding. Weld. World 2021, 65, 1079–1095. [Google Scholar] [CrossRef]
- Soderstrom, E.J.; Scott, K.M.; Mendez, P.F. Calorimetric Measurement of Droplet Temperature in GMAW. Weld. J. 2011, 90, 77–84. [Google Scholar]
- Chen, Q.; Chen, J.; Lu, S.; Zhang, Y.; Wu, C. Study of High-Speed GMAW Assisted by Compound External Magnetic Field. Weld. World 2020, 64, 885–901. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Ding, J.; Bridgeman, P.; Williams, S. A Three-Dimensional Wire-Feeding Model for Heat and Metal Transfer, Fluid Flow, and Bead Shape in Wire Plasma Arc Additive Manufacturing. J. Manuf. Process. 2022, 83, 300–312. [Google Scholar] [CrossRef]
- Ou, W.; Mukherjee, T.; Knapp, G.L.; Wei, Y.; DebRoy, T. Fusion Zone Geometries, Cooling Rates and Solidification Parameters during Wire Arc Additive Manufacturing. Int. J. Heat Mass Transf. 2018, 127, 1084–1094. [Google Scholar] [CrossRef]
- Bunaziv, I.; Aune, R.; Olden, V.; Akselsen, O.M. Dry Hyperbaric Welding of HSLA Steel up to 35 Bar Ambient Pressure with CMT Arc Mode. Int. J. Adv. Manuf. Technol. 2019, 105, 2659–2676. [Google Scholar] [CrossRef]
- Cadiou, S.; Courtois, M.; Carin, M.; Berckmans, W.; Le Masson, P. 3D Heat Transfer, Fluid Flow and Electromagnetic Model for Cold Metal Transfer Wire Arc Additive Manufacturing (Cmt-Waam). Addit. Manuf. 2020, 36, 101541. [Google Scholar] [CrossRef]
- Bai, X.; Colegrove, P.; Ding, J.; Zhou, X.; Diao, C.; Bridgeman, P.; roman Hönnige, J.; Zhang, H.; Williams, S. Numerical Analysis of Heat Transfer and Fluid Flow in Multilayer Deposition of PAW-Based Wire and Arc Additive Manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Michel, F.; Lockett, H.; Ding, J.; Martina, F.; Marinelli, G.; Williams, S. A Modular Path Planning Solution for Wire + Arc Additive Manufacturing. Robot. Comput. Integr. Manuf. 2019, 60, 1–11. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, Y. Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review. Micromachines 2020, 11, 633. [Google Scholar] [CrossRef]
- Wu, Q.; Mukherjee, T.; De, A.; DebRoy, T. Residual Stresses in Wire-Arc Additive Manufacturing—Hierarchy of Influential Variables. Addit. Manuf. 2020, 35, 101355. [Google Scholar] [CrossRef]
- Ahmad, B.; Zhang, X.; Guo, H.; Fitzpatrick, M.E.; Neto, L.M.S.C.; Williams, S. Influence of Deposition Strategies on Residual Stress in Wire + Arc Additive Manufactured Titanium Ti-6Al-4V. Metals 2022, 12, 253. [Google Scholar] [CrossRef]
- Martina, F.; Ding, J.; Williams, S.; Caballero, A.; Pardal, G.; Quintino, L. Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel. Addit. Manuf. 2019, 25, 545–550. [Google Scholar] [CrossRef] [Green Version]
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Ti | Zr | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrate | 0.140 | 0.170 | 0.750 | 0.016 | 0.004 | - | - | - | - | - | - | balance |
Filler wires | 0.060 | 0.940 | 1.640 | 0.013 | 0.016 | 0.020 | 0.020 | 0.005 | 0.020 | 0.004 | 0.002 | balance |
Process Control Method | Deposition Rate [kg h−1] | ||||
---|---|---|---|---|---|
Arc Power Control | 9.57 | 6 to 10 | 12 to 8 | 0.6 | 30 |
Process Control Method | Deposition Rate [kg h−1] | ||||
---|---|---|---|---|---|
Travel Speed Control | 6.38 to 12.76 | 0 to 12 | 12 | 0.4 to 0.8 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bento, J.B.; Wang, C.; Ding, J.; Williams, S. Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing. Metals 2023, 13, 1334. https://doi.org/10.3390/met13081334
Bento JB, Wang C, Ding J, Williams S. Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing. Metals. 2023; 13(8):1334. https://doi.org/10.3390/met13081334
Chicago/Turabian StyleBento, João B., Chong Wang, Jialuo Ding, and Stewart Williams. 2023. "Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing" Metals 13, no. 8: 1334. https://doi.org/10.3390/met13081334
APA StyleBento, J. B., Wang, C., Ding, J., & Williams, S. (2023). Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing. Metals, 13(8), 1334. https://doi.org/10.3390/met13081334