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Abstract: The study of material hardness is crucial for determining its quality, potential failures, and
appropriate applications, as well as minimizing losses incurred during the production process. To
achieve this, certain criteria must be met to ensure high quality. This process is typically performed
manually or using techniques based on analyzing indentation image patterns produced through the
Vickers hardness technique. However, these techniques require that the indentation pattern is not
aligned with the image edges. Therefore, this paper presents a technique based on convolutional
neural networks (CNNs), specifically, a YOLO v3 network connected to a Dense Darknet-53 network.
This technique enables the detection of indentation corner positions, measurement of diagonals, and
calculation of the Vickers hardness value of D2 steel treated thermally and coated with Titanium
Niobium Nitride (TiNbN), regardless of their position within the image. By implementing this
architecture, an accuracy of 92% was achieved in accurately detecting the corner positions, with
an average execution time of 6 seconds. The developed technique utilizes the network to detect
the regions containing the corners and subsequently accurately determines the pixel coordinates of
these corners, achieving an approximate relative percentage error between 0.17% to 5.98% in the
hardness results.

Keywords: material hardness; indentation image analysis; Vickers hardness; corner detection;
diagonal measurement; D2 steel; thermal treatment; titanium niobium nitride (TiNbN) coating

1. Introduction

Material selection is one of the most important processes in industry for the production
of components and tools. For example, the automotive industry aims to find materials that
meet specific requirements such as high mechanical strength, low weight, high energy ab-
sorption, and other characteristics that are suitable for the conditions specific to a vehicle [1].
One of the most commonly used materials is steel for creating components such as nuts,
bolts, and various automotive parts, among others. These components must maintain
high standards of strength in order to minimize production losses due to non-productive
downtime for maintenance. Therefore, the study of material strength and hardness is of
vital importance. Various types of tests have been designed for this purpose [2].

The microhardness test allows determination of the hardness of a material at micro-
scopic and macroscopic dimensions, such as coatings, hardened surfaces, wires, screws,
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and watch parts, among others [3]. This test is performed using two methods, Vickers and
Knoop, which differ in terms of the shape of the indenter. These techniques involve the use
of a microindenter and a microscope, with which the lengths of the diagonals produced by
the indenter are measured, and images of the indented impression are obtained [4]. The
Vickers hardness method utilizes a pyramidal indenter with a square base and face angles
of 136°, as illustrated in Figure 1. After the test, the diagonals of the indentation impression
are measured to determine the Vickers hardness value, taking into account the applied load
and the indentation time [5,6].

Figure 1. Diagram of the Vickers indenter and impression shape [7].

The Vickers hardness value is calculated using Equation (1), which is based on the
geometric shape of the indenter:

HV =
0.1891× F

d2

[
N

mm2

]
(1)

where d is the average length of the major diagonals of the indentation impression (principal
diagonals), and F is the applied force on the indenter in Newtons [6].

The Vickers hardness technique is widely used for material characterization. However,
despite being a straightforward method for determining hardness, the images obtained
from the test exhibit significant background noise and poorly defined corners, which make
it challenging to measure the diagonals of the indentation impression and, consequently,
obtain the Vickers hardness of the material. Additionally, the manual procedure used for
material identification and classification based on hardness is inefficient, as it requires a
considerable amount of time for researchers or laboratory technicians, due to the large
number of hardness tests performed on the material [8,9]. Therefore, different methods
have been implemented for automatic determination of Vickers hardness.

Among image processing-based techniques, Sugimoto and Kawaguchi proposed a
method that employs statistical moments to determine the edges and corners of the in-
dentation based on changes in brightness levels, resulting in average tolerance values
above 4% [10]. Domínguez and Wiederhold used the Harris–Stephen corner detection
method to obtain the lengths of the diagonals and determine the Vickers hardness value,
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achieving a maximum error of 6% [9]. Polanco et al. employed thresholding and mathe-
matical morphology techniques for edge determination and introduced a quadrature index
to choose among methods: maximum local radius, perimeter, and Hough transform, which
yielded the best result. They obtained the Vickers hardness value with an error of 4.5%
compared to manual measurements [11].

On the other hand, machine learning techniques based on convolutional neural net-
works (CNNs) have been implemented, employing different architectures for the identifica-
tion of the corners of the indentation impression. These techniques are more robust against
variations in shape, color, and texture of the material surface, allowing them to distinguish
indentations on a wider variety of materials. This is because CNNs learn the characteristics
of the indentation impression independently of the material used for indentation [12–16].

Among the developed methods, Tanaka et al. used two CNN architectures to measure
the diagonals of the indentation impression based on a bounding box and automatically
determine the hardness value, obtaining errors between 0.1% and 6% depending on the
surface type [8]. Jalilian and Uhl used the RefineNet architecture to locate a polygon in
the indentation region. By doing so, they determined the dimensions of the diagonals,
achieving average errors of 1.51% and 2.43% [17]. Li and Yin implemented a CNN to predict
a pixel mask and segment the area of the indentation impression from the background
of the image. They then located a bounding box to measure the length of the diagonals
and determine the hardness value on different materials such as titanium oxide, copper,
and nylon, obtaining maximum relative errors for diagonal length between 0.33% and
1.67% [18]. Chen et al. studied different CNN architectures (AlexNet, VGG, ResNet,
GoogLeNet, and SqueezeNet) to evaluate hardness in chromium–molybdenum steel alloys
(SCM 440) with revealed microstructure, finding that VGG16 yielded the lowest mean
absolute error (MAE) of 10.2 [19].

The results obtained using CNN have led to notable improvements in the accuracy of
the methods. Following this trend, this study presents a novel method for the determination
of Vickers hardness based on CNN. Unlike previously proposed methods, the objective
is not to find the polygon that best fits the indentation, but rather to directly detect its
corners. This approach allows for flexibility in hardness calculation by measuring diagonals
regardless of the indentation’s position. Additionally, an external pixel of the indentation
corner is found through binarization and a pixel scanning process to identify the pixels
forming the geometric triangle structure and, thus, identify the tip. This model utilizes
the YOLO v3 architecture for feature extraction and a Darknet-53 network for corner
identification. The database consists of images of commercially available D2 steel, thermally
treated steel, and steel with titanium niobium nitride (TiNbN) coating.

2. Materials and Methods
2.1. Materials

For the development of this work, commercially graded D2 steel cylinders with a
diameter of 2.5 cm and a height of 7 mm were used. Subsequently, a heat treatment process
was carried out by quenching the samples in a furnace at 1000 °C with a holding time of
30 minutes, followed by water cooling. Then, tempering was performed by heating the
steel to 400 °C with a holding time of 90 min, followed by air cooling. This process was
repeated twice. Finally, for the coating, samples with double tempering were taken, and
the surface was prepared until obtaining a mirror finish. TiNbN coatings were deposited
using an Oerlikon Domino Mini Arc-PVD equipment at different substrate temperatures
(Ts = 200 °C, 400 °C, and 600 °C). The thickness and chemical composition of the coatings
are shown in Table 1. The indentation images were obtained from previous works [20].
It is worth mentioning that a certain number of samples were reserved for each process
performed on the steel to measure Vickers hardness.
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Table 1. Chemical composition and coating thickness [20].

Ts (°C) Ti (at%) Nb (at%) N (at%) Thickness (µm)

200 57.86 ± 7.28 0.21 ± 0.01 41.93 ± 7.27 4.68 ± 0.03
400 51.06 ± 0.57 0.18 ± 0.02 48.76 ± 0.58 6.80 ± 0.12
600 44.72 ± 3.09 0.15 ± 0.02 55.12 ± 3.08 5.93 ± 0.04

Table 2 shows the average hardness measured manually for each steel process. In total,
81 indentation images were used on D2 steel, including 42 with TiNbN coatings and 39 of
steel with and without quenching and tempering heat treatment, as shown in Figure 2.

Table 2. Average Vickers hardness.

Load (N) Steel (HV) Quenched (HV) Tempered (HV) TiNbN-200 (HV) TiNbN-400 (HV) TiNbN-600 (HV)

1 576.25 ± 87.19 2106.27 ± 82.41 1935.61 ± 111.47 1701.23 ± 107.64
2 650.93 ± 39.38 1581.30 ± 41.66 1537.44 ± 135.49 1435.31 ± 12.20
3 596.64 ± 14.37 1476.44 ± 214.36 1290.03 ± 3.83 1331.98 ± 70.11

4.9 157.44 ± 2.97 542.86 ± 10.93
5 578.89 ± 24.17 1303.58 ± 173.80 1044.25 ± 41.49 1024.40 ± 21.92

9.8 243.78 ± 5.04 796.16 ± 9.61 639.54 ± 17.10
10 533.82 ± 3.69 1009.21 ± 14.53 846.24 ± 49.16 844.35 ± 49.02

Figure 2. Category of images used for the construction of the database: (a) TiNbN coating,
(b) tempered D2 steel, (c) D2 steel without heat treatment, and (d) quenched D2 steel.

The indentations on the TiNbN-coated and tempered steel (Figure 2a,b) were per-
formed using an Anton Paar RST3 scratch resistance tester, while the indentations on the
steels with and without heat treatment (Figure 2c,d) were carried out using a NOVOTEST
TB-MCV-1M microhardness tester. The range of load used for the first device was 1 N to
10 N and, for another tester, was 4.9 N to 9.8 N. The indentation images were captured at a
magnification of 50× using an OLYMPUS UPRIGHT BX51FM trinocular metallographic
microscope (Tokyo, Japan) equipped with a 10.2 Mpx SC100 camera.
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In order to increase the size of the database for indentification purposes, data aug-
mentation was performed by rotating the image every 5 degrees. The obtained images
were reflected across the x and y axes (see Figure 2) and scaled up by increments of 10 until
doubling the size of the original image, resulting in a total of 3000 images. Unlike the
images used for localization, the bounding box of the indentation was utilized to locate
the 4 corners, and the augmentation process developed for the indentation was repeated,
resulting in a database of 12,000 images, in other words, 3000 images for each corner.

The method was developed using Python 3.7 language and the TensorFlow library. An
Intel Xeon E5-2640 v4 computer (Santa Clara, CA, USA) with 12 cores at a base frequency
of 2.2 GHz, 16 GB of RAM, and an NVidia Quadro M4000 graphics (Santa Clara, CA, USA)
card with 8 GB GDDR5 was used.

2.2. Methods
2.2.1. Architectures of Neural Networks

In the most recent works for fingerprint detection using neural networks, the entire
fingerprint is used for training a neural network. In the case of Tanaka et al.’s method [8],
the fingerprint must be positioned as a diamond shape to facilitate the detection of the
corners. In contrast, this work aims to directly detect the corners, which enables time saving
and improved accuracy. For this purpose, a training dataset was constructed consisting
solely of corners of the fingerprints, as illustrated in Figure 3.

Figure 3. Corner of indentation imprints.

One state-of-the-art architecture used for object detection in images is YOLO v3, which
offers the advantage of high computational efficiency [21]. This model divides the image
into cells and calculates the probability of an object of interest being present in each cell [22].
Once an object is located, YOLO v3 uses five anchor boxes to define its boundaries [23]. It
then compares the object existence probabilities to generate a new anchor box that best fits
the object. Since indentations can have varying sizes, depending on image resolution and
material hardness, YOLO v3 produces anchor boxes of different sizes. Therefore, YOLO
v3 architecture is suitable for detecting indentations. YOLO is based on the Darknet-53
architecture, which utilizes 3 × 3 and 1 × 1 convolution filters and skip connections,
and requires fewer billion floating-point operations (BFLOPs) compared to the ResNet
architectures used by Tanaka [23], achieving the same classification accuracy percentage
while being twice as fast, as shown in Table 3.
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Table 3. Performance comparison of architectures employed for indentation imprint detection using
the COCO database [21].

Architecture BFLOP (%) Accuracy Time(ms)

Darknet-19 7.29 91.8 5.84
ResNet-101 19.7 93.7 18.86
ResNet-152 29.4 93.8 27.02
Darknet-53 18.7 93.8 12.82

2.2.2. Implementation of the CNN (Convolutional Neural Network)

The following steps describe the flowchart shown in Figure 4:

Figure 4. Diagram of the prediction process.
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• Representative image of the indentation footprint: An image that exemplifies the
indentation footprint used in the study is selected;

• Image cropping and cleaning: The image is cropped to isolate the indentation footprint,
and cleaning techniques are applied to remove noise and enhance its quality;

• Data augmentation: A data augmentation technique is employed to increase the
diversity of the training set. This involves applying random transformations, such as
rotations, scaling, or contrast adjustments, to the existing images, thereby generating
new training samples;

• Dataset division: The dataset is divided into three subsets—an 80% training set, a 15%
validation set, and a 5% final test set;

• YOLO adaptation for training: The YOLO neural network architecture is adapted
and configured specifically for the detection of corners in indentation footprints. This
involves addressing transfer learning, where the pre-trained weights of the neurons
used for detecting the 80 classes in the COCO dataset are fine-tuned to detect a single
class, which, in this case, is corners. This allows for more efficient training with a
smaller training dataset;

• Training set labeling using LabelImg: The LabelImg tool is used to manually label the
corners of the indentation footprints in the training set. The coordinates of the corners
are marked and annotated on each image;

• Conversion from XML to YOLO format: The corner annotations in XML format are
converted to a YOLO-compatible label format, which is typically a plain text file with
a specific format;

• Corner detection: A convolutional neural network (CNN) is employed to detect the
corners in the processed indentation footprints. The CNN learns to identify relevant
features that indicate the presence of a corner in an image, which are obtained through
the convolutions that enrich the feature map;

• Corner prediction: Once the corners are detected, predictions are made to determine
the precise coordinates of the corners in the image, including object probabilities,
confidence probabilities, and coordinate probabilities;

• Euclidean distance scanning algorithm: An algorithm based on Euclidean distance
scanning is applied to identify the corresponding corners that form the main diagonals
of the indentation footprint. This allows for the measurement and calculation of the
lengths of the main diagonals;

• Drawing of the main diagonals: The main diagonals are drawn on the indentation
footprint image to provide a clear and accurate visualization of the indentation geometry;

• Conversion from pixels to micrometers: The pixel coordinates of the corners and the
lengths of the diagonals are converted to micrometer units to obtain more precise
and meaningful measurements, taking into account the scale at which the image
was captured;

• Input values into the Vickers hardness equation: The obtained values are used to
calculate the Vickers hardness using the specific equation for this type of hardness test;

• Determination of Vickers hardness value: Finally, the corresponding Vickers hardness
value of the analyzed indentation footprint is determined, providing information
about the material’s hardness.

For network tuning, a dataset of 3000 D2 steel indentation images was utilized, en-
compassing a variety of backgrounds, shades, and intensities. This diverse dataset enabled
the trained network to independently identify corners, regardless of the background noise
present in the image. The dataset was divided into training (80%), tuning (15%), and valida-
tion (5%). The dense Darknet network was fine-tuned using the training dataset, while the
tuning set was used to monitor the accuracy of the CNN during training, employing the
binary cross-entropy loss function (5) equation to encourage the neural network to produce
outputs that closely matched the true labels during training, taking into account that the
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architecture also calculated three additional losses, namely, coordinate loss (4), confidence
loss (2), and class loss (3).

S2

∑
i=0

B

∑
j=0

1obj
ij (IOUpred

ij − IOUtrue
ij )2λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
ij (IOUpred

ij − IOUtrue
ij )2 (2)

where S is the size of the feature map, B is the number of boxes per cell, 1obj
ij is an indicator

variable that is 1 if cell i in the feature map is assigned to object j and 0 otherwise, IOUpred
ij

is the intersection over union (IoU) between the prediction and ground truth for object j
in cell i, IOUtrue

ij is the IoU between the prediction and ground truth for object j in cell i,

1noobj
ij is 1 if cell i is not assigned to any object and 0 otherwise, and λnoobj is a weighting

coefficient for the confidence loss in cells that do not contain objects [24].

S2

∑
i=0

B

∑
j=0

1obj
ij

C

∑
c=0

(IOUpred
ij (Ppred

ij (c)− Ptrue
ij (c))2 (3)

where C is the number of classes, Ppred
ij (c) is the predicted probability that object j in cell i

belongs to class c, and Ptrue
ij (c) is the true probability that object j in cell i belongs to class c.

S2

∑
i=0

B

∑
j=0

1obj
ij ((xpred

ij − xtrue
ij )2 + (ypred

ij − ytrue
ij )2 + (wpred

ij − wtrue
ij )2 + (hpred

ij − htrue
ij )2) (4)

Taking into account that xpred
ij and ypred

ij are the predicted coordinates of the bounding

box center for object j in cell i, wpred
ij and hpred

ij are the predicted dimensions of the bounding
box for object j in cell i, and (x, y, w, h)true

ij are the true coordinates and dimensions of the
bounding box for object j in cell i,

S2

∑
i=0

B

∑
j=0

1obj
ij (log( p̂pred

ij ) ∗ 1obj
ij ∗ ptrue

ij + log(1− p̂pred
ij ) ∗ 1obj

ij ∗ (1− ptrue
ij )) (5)

p̂pred
ij is the predicted probability that cell i in the feature map contains an object. In

conclusion, the binary cross-entropy loss in YOLO measures the discrepancy between the
object presence predictions and the ground truth labels, penalizing incorrect predictions
using the algorithm of predicted probabilities and ground truth labels [24].

The labelImg tool was used for labeling the dataset. Although it remains a manual
process to label each image by identifying the object of interest (corner), this tool assists in
generating the bounding box coordinates and class label file, which are used for network
training, as shown in Figure 5.

YOLO v3 was pre-trained for the detection of 80 classes of objects, not for the detection
of points of interest within objects. Therefore, it was necessary to modify the outputs of the
first layer of the architecture for the detection and localization of corner coordinates in the
indentations. The initial layer of the CNN accepts images that are multiples of 32. In this
case, a standard input size of 416 × 416 pixels was used, and all input images were resized
to fit within a range of 160 × 172 to 676 × 642 pixels. The YOLO architecture is depicted in
Figure 6. The fine-tuning parameters are presented in Table 4. It can be observed that the
IoU threshold was set to 0.5, which was selected to cover the majority of objects of interest
without sacrificing accuracy. A lower threshold leads to false detections, while a higher
threshold results in more precise detections. However, in noisy images, such as those with
NiTiNb coating, not all corners of the same indentation footprint are detected.
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Figure 5. Process employed for sampling and labeling the corners of an indentation imprint.

Figure 6. YOLO v3 network structure with layer inputs and outputs [25].

Table 4. Fine-tuning parameters of the model.

Parameters Value

Data transfer True
COCO dataset False

Training epochs 100
Batch 4

lr 1 × 10−3 a 1 × 10−6

Neurons 2535
Threshold IoU 0.5

The initial learning rate of 0.0001 and the final learning rate of 0.000001 were variables;
182 and a smoother cosine function [26] were employed. This approach gradually reduced
the learning rate from the initial value to 0 following a cosine function, as expressed in (6).
This cosine function aided in preventing the loss function from ending up stuck in a local
minimum. To obtain the coordinates and measurements of the diagonals, the output
delivered by the CNN was configured as illustrated in Figure 7.

ηi ←−
1
2

[
1 + cos

(
iπ
T

)]
η (6)

where η is the initial learning rate, T is the total number of batches, and i is the current batch.
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Figure 7. Flowchart for obtaining coordinates of the corners of the indentation imprint.

To detect objects in an image, the following procedure was applied. Firstly, the image
was divided into an S × S grid, and N possible bounding boxes and their probabilities
were predicted for each grid cell. Subsequently, bounding boxes with a probability lower
than a threshold of 0.6 were discarded. Next, a technique called non-max suppression was
employed, which removed redundant bounding boxes that detected the same object and
retained only the most accurate ones. Finally, the coordinates of the remaining bounding
boxes were scaled to the original image size using a formula that depended on the input
image size and the grid size [27]. The formula was as follows:

xr = Sxp ∗W (7)
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yr = Syp ∗ H (8)

wr = Swp ∗W (9)

hr = Shp ∗ H (10)

where xr, yr, wr, and hr are the actual coordinates of the center, width, and height of the
bounding box in the original image; xp, yp, wp, and hp are the predicted coordinates of the
center (x, y), width, and height of the bounding box in the grid; S is the size of the grid;
and W and H are the width and height of the original image.

The flowchart (see Figure 7) describes the specific steps used in YOLO for the pre-
diction of bounding boxes. It provides a detailed understanding of how predictions are
made and how the predicted coordinates are adjusted to the original image. These steps
are essential for achieving accurate and efficient object detection in images using YOLO:

1. Use of three probabilities: During the prediction of bounding boxes, three distinct
probabilities are used. The first is the coordinate prediction (x, y, w, h), which repre-
sents the average of the predicted coordinates for each bounding box. The second
is the confidence prediction, indicating how confident the model is that the object
is present in the bounding box. The third is the probability prediction, assigning a
probability to each object class within the bounding box;

2. Computation of the resizing factor: The resizing factor is calculated using the size of
the original image and the maximum width (wmax) and height (hmax) values of the
predicted bounding boxes. The resizing factor is obtained by dividing the size of the
original image by the values wmax and hmax. This factor is used to adjust the predict
coordinates to the scale of the original image;

3. Obtaining the width and height offset (dw, dh): The width (dw) and height (dh)
offsets of the bounding boxes are computed using the resizing factor. These offsets
represent the difference between the actual size of the bounding boxes and the size
predicted by the model;

4. Prediction of the x and y coordinates through the offset (dw, dh): The predicted x and
y coordinates are adjusted by considering the previously calculated width and height
offsets. This is carried out by adding or subtracting the values of dw and dh to the
predicted coordinates, depending on the position of the bounding box with respect to
the original image;

5. Drawing the bounding boxes using the coordinates: Finally, the bounding boxes are
drawn using the predicted coordinates and the resizing factor. These bounding boxes
represent the delimited regions where the model has identified the presence of objects
of interest.

The object probability in YOLO v3 is determined by generating bounding boxes that
enclose potential objects in the image. Each bounding box has a score indicating the
probability of containing an object, calculated based on the response of the detection layers.
This score is combined with the corresponding class probability, representing the likelihood
of belonging to a specific category, such as “corner” or “no corner”. The YOLO v3 approach
enables efficient and accurate real-time object detection by performing the entire process in
a single pass, achieving a balance between speed and precision in object classification.

Therefore, detecting the coordinate of the inner pixel of the bounding box represents
the specific corner of the indentation footprint, which should be close to the center of the
anchor box. Its pixel neighbors a pixel with a different tonality. Taking this into account,
the center of the bounding box was found using

width(x) =
(x2 − x1)

2
+ x1 (11)

height(y) =
(y2 − y1)

2
+ y1 (12)
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Using Equations (11) and (12), the coordinate (x, y) corresponding to the center c of the
bounding box where the corner of the indentation footprint found by the CNN was located
was obtained. To find the exact point where the corner of the indentation footprint was
located, the pixels within the bounding box were first binarized using the skimage.filters
library to determine the optimal threshold. Then, the contour was obtained using the
OpenCV findContours library. After this step, the approxPolyDP function was used to
obtain the triangular geometry formed at the corner of the indentation footprint. This
function approximates a contour shape with a reduced number of vertices. Finally, to locate
the precise point where the triangle corner was formed, the pixels along the boundary
between the two thresholded regions, one corresponding to the background and the other
to the indented region, were traced, as shown in Figure 8. The pixel that was farthest
from the boundary and aligned with the height of the triangle was considered as the pixel
corresponding to the position of the corner.

Figure 8. Image thresholding.

Once the four corners of the indentation footprint (V) had been identified, it was
necessary to arrange them within the footprint in order to find the main diagonals. To
achieve this, the first located corner a was selected, and the corner d located farthest from a
was identified using the Euclidean distance, while the remaining two corners corresponded
to points b and c, as shown in Figure 9. The vector of data containing the coordinates of the
pixels corresponding to each corner of the indentation footprint was traversed.

Figure 9. Measurement of corners in the indentation imprint.

Using the following notation for the corner coordinates: a = (x1, y1), b = (x2, y2),
c = (x3, y3), d = (x4, y4), the main diagonals of V were calculated.

One of those coordinates within the rectangles was randomly chosen as a reference
point, and each rectangle center was denoted as a = (x1, y1), b = (x2, y2), c = (x3, y3),
d = (x4, y4), taking into account that they would be close to the center of the bounding
box. Next, the Euclidean distance between them was calculated to have a parameter for
comparison and to determine which corner was correct for forming the diagonal. The pair of
corners with the greatest distance was the correct pair, while the remaining corners formed
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the missing pair. The distances between points were obtained using Equations (13) and (14):

d3 =
√

adx + ady (13)

d3 =
√

bcx + bcy (14)

Finally, the values of the two diagonals, d1 and d2, were averaged to obtain the Vickers
hardness value using Equation (1).

3. Results
3.1. Identifier Using Transfer Learning

In this section, the results obtained using a classifier are presented. After different
training sessions of the CNN, it was determined that the maximum accuracy percentage
was achieved at 100 epochs. Therefore, the network was retrained only up to 100 epochs
to prevent overfitting (Figure 10a). A high accuracy rate of 92% was achieved, indicating
the effectiveness of the proposed classifier. Importantly, an ascending behavior in the
CNN’s accuracy was observed when identifying a new class, specifically, the corners. The
CNN successfully located and precisely delineated these corners in the corresponding
frames (Figure 10a).

Figure 10. Training for 100 epochs: (a) Accuracy achieved during training, (b) Convergence of the
error function.

Furthermore, during the training process, it was observed how the binary cross-
entropy (loss function) significantly penalized values that were considered reliable but
were not. This function assigned a high value to those close to 1 and a very small value
to values close to 0. A value of 1 or close to 1 indicates high confidence in the precise
delineation of the frame, i.e., its similarity to the ground truth.

These results demonstrate the algorithm’s ability to efficiently converge towards loss
minimization in a short period, as observed in Figure 10b. The combination of the high
accuracy rate and the network’s capability to accurately locate and delineate corners makes
this classifier a promising tool for object detection and localization in images. Detailed
experiments and their corresponding results are presented in the following sections.

The obtained data were in line with what is shown in Figure 11, where Lu Tan et al. [28]
compared the YOLO v3 model with RetinaNet and SSD (Single Shot Multi-Box Detector)
networks using different metrics such as F1 score, mAP (Mean Average Precision), Precision,
and Recall. YOLO v3 demonstrated superior results compared to the other two architec-
tures.
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Figure 11. Comparison of CNNs in accuracy metrics (mAP, F1, Recall) over 100 training epochs [28].

3.2. Corner Identification on Final Test Images

In Figure 12, the detection of corners obtained with the proposed model can be
observed. In Figure 12a,b, the algorithm identified the location of the corners when they
did not exhibit pores or surface scratches and had the same orientation. On the other hand,
in Figure 12c,d, pores were observed in the corners, possibly due to coating delamination.
This can pose a challenge in corner detection; however, the proposed method successfully
identified them.

Figure 12. Corner detection results: (a,b) D2 steels with similar orientations and (c,d) TiNbN coatings
with different orientations and noise in the corners.
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3.3. Corner Identification on Other Images

In order to verify the robustness of the developed method, two images available on the
internet and two images from the experiments with indentations and different backgrounds
were selected (see Figure 13). As can be seen, the method correctly identified the corners
of the indentation mark in each image. This additional evidence supports the capability
of the proposed model to accurately detect and locate corners under various conditions
and environments.

Figure 13. Corner detection results in different materials: (a) Computer-generated tools (noise)
with the indentation background [29], (b) Cracks in the indentation with color variations
(adapted from [30]), (c) Indentation with non-rectangular geometry, (d) Indentation with porous and
scratched background.

To assess the robustness of the developed method, four images were selected, repre-
senting different scenarios: two images obtained from the internet and two images obtained
experimentally. These images featured indentations with diverse backgrounds, as shown
in Figure 13. The developed method demonstrated its capability to accurately identify the
corners of the indentation marks in each of these images. This additional support confirms
the precision and effectiveness of the proposed model for the detection and localization of
corners under different conditions and environments.
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3.4. Drawing of Main Diagonals

The indentation marks presented in Figure 14 show two positions, one located with the
same orientation as used by Tanaka [8] (see Figure 14a), and the other corresponds to a foot-
print with a different orientation (see Figure 14b), demonstrating the correct identification
of corners and diagonals, independent of the orientation of the indentation mark.

Figure 14. Detection and measurement results of diagonals in different materials: (a) D2 steel
indentation, (b) Indentation with a different background [31].

3.5. Comparison between the Tanaka Method and the One Developed

In this section, two images from Tanaka’s article [8] are included, which contain the
measurement scale from pixels to micrometers. This scale was obtained using imageJ.
The images were processed to remove the background of the indentation trace because
the squares enclosing Tanaka’s indentation trace in Figure 15b,d caused errors in corner
identification by YOLO. Subsequently, both images were inputted into the CNN, along with
the scale parameters and the applied load for each indentation trace, in order to determine
the Vickers hardness value. These results were collected in Table 5.

Table 5. Diagonal length and Vickers hardness using the Tanaka [8] and YOLO methods.

Diagonal Length (µm) Vickers Hardness (HV)

Load (N) Manual Tanaka Purpose Methode Manual Tanaka Purpose Methode

9.807 93.7 93.6 93.3 211.4 211.6 213.38
1.961 54.6 54.3 52.4 124.8 126.2 134.7

3.6. Comparison between the Manual Measurement and the One Developed

The developed method was applied to an indentation mark made on tempering D2
steel (Figure 16a) with a hardness value of HV = 530.17, and on D2 steel with TiNbN
coating (Figure 16c) under a 10 N load, measured manually. By inputting the image
shown in Figure 16a), the values of both diagonals were obtained, which corresponded to
58.95 (µm) and 58.12 (µm), respectively (see Figure 16b). After determining the values of the
diagonals, they were averaged, and Equation (1) was used to calculate the hardness value.
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Figure 15. Comparison between the developed method and Tanaka’s method: (a) indentation
footprint of 200 HV (Tanaka does not mention the material of this sample) and (c) indentation
footprint of titanium of 130 HV; figures (b,d) are those of Tanaka.

D =
58.95µm + 58.12µm

2
= 58.54µm (15)

HV =
0.1891× 10N
(0.05854 mm)2 = 551.81

N
mm2 (16)

The hardness value obtained using the proposed method for tempered D2 steel were
551.81 HV, while, for the coated steel, it was 1067.42 HV. This resulted in an error percent-
age of 4.08% for tempered steel and 5.43% for coated steel. In the Table 5, the values of
manual hardness and those obtained by the proposed method for 36 randomly acquired
images are not displayed. It is noteworthy that the error percentage between the manual
values and those obtained by the algorithm ranges from 0.17% to 5.98%. These results are
comparable to those obtained by other authors, ranging from 0.32% to 4.5% for Polanco [11],
and from 1% to 11.56%, depending on the material type, for Tanaka [8]. To determine if
the error produced by the model was higher than that produced by the experts, a close-up
analysis was performed on the corners detected by the model and those detected by the
experts. It was found that the error produced by the experts was greater and not repro-
ducible compared to the error generated by the method in corner localization, as shown in
Figure 17.
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Figure 16. Detection and measurement of the principal diagonals in the indentation marks: (a,c) Orig-
inal image, (b,d) Original image with detected corners and marked diagonals.

Figure 17. Comparison between manual marking by human personnel (red line) and marking
generated by the developed method (yellow line).
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The red marks represent the markings that may be made by researchers, as these are
subjective to each individual, based on where they believe the corner of the indentation
mark is located. Furthermore, it is unlikely that the researcher will mark the exact same
corner on the same pixel of the same image, making the manual method non-reproducible.
In contrast, the yellow markings depict the markings generated by the developed method,
which are reproducible.

4. Conclusions

This article presents a novel method for calculating Vickers hardness using corner
detection based on convolutional neural networks, achieving an accuracy of 92%. The
method is effective across three different types of images, eliminating the need for model
adjustments. This enables the measurement of diagonals, regardless of the position of
indentation imprints in the image, and is applicable to various materials, including steel
under different conditions.

Additionally, the hardness value is determined by measuring the diagonals, resulting
in a relative error of 0.17% to 5.98% for the 36 images used. A comparison with manual
markings performed by human experts demonstrates that the proposed method surpasses
subjective manual approaches, providing reproducible results. These findings establish the
reliability and applicability of the proposed method for analyzing indentations in diverse
conditions and environments.
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