Feasibility of Recovering Valuable and Toxic Metals from Copper Slag Using Iron-Containing Additives
Abstract
:1. Introduction
2. Kinetic Parameters for Recovery of Valuable Metals at High Temperatures
3. Materials and Methods
4. Results
4.1. Mineralogical Characteristics
4.2. Chemical Composition
4.3. Recoveries
4.4. Settling with Iron-Containing Additives
5. Discussion
5.1. Process Optimization
5.2. Challenges in Obtaining Comparable Chemical Composition of the Slag
5.3. Toxicity Considerations
5.4. Environmental Considerations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moerenhout, T.; Lee, L.Y.; Glynn, J. Critical Mineral Supply Constraints and Their Impact on Energy System Models; Center on Global Energy Policy–Columbia University SIPA: New York, NY, USA, 2023. [Google Scholar]
- Gbor, P.K.; Mokri, V.; Jia, C.Q. Characterization of smelter slags. J. Environ. Sci. Heal. A 2000, 35, 147–167. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.; Premchand, M. Characteristics and utilization of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, D.; Aladejare, A.; Ozoji, T.; Qia, Y. World mineral loss and possibility to increase ore recovery ratio in mining production. Int. J. Min. Reclam. Environ. 2021, 35, 670–691. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slags: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Little-boy, A.; et al. Mineral supply for sus-tainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Jelenković, R.; Milovanović, D.; Koželj, D.; Banješević, M. The Mineral Resources of the Bor Metallogenic Zone: A Review. Geol. Croat. 2016, 69, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Francis, K. NI 43-101 Technical Report-Timok Copper-Gold Project Royalty, Serbia. Mineral Resource Management LLC; Highlands Ranch, CO, USA, 2021; Prepared for: EMX Royalty Corporation. Available online: https://www.sec.gov/Archives/edgar/data/1285786/000106299321006864/exhibit99-1.htm (accessed on 26 July 2023).
- Reservoir Minerals, Initial Resource Estimate for the Mineralisation at Cukaru Peki in Serbia. Belgrade. 2014. Available online: https://www.georesources.net/cms.php/en/archive/1949/reservoir-minerals-initial-resource-estimate-for-the-mineralisation-at-cukaru-peki-in-serbia (accessed on 26 July 2023).
- Kudełko, J. Effectiveness of mineral waste management. Int. J. Min. Reclam. Environ. 2018, 32, 440–448. [Google Scholar] [CrossRef]
- Xia, L.; Cao, S.; Li, Q.; Lu, X.; Liu, Z. Co-treatment of copper smelting slag and gypsum residue for valuable metals and sulfur recovery. Resour. Conserv. Recycl. 2022, 183, 106360. [Google Scholar] [CrossRef]
- Wolf, A.; Mitrašinović, A.M. Nickel, copper and cobalt coalescence in copper cliff converter slag. J. Min. Metall. Sect. B 2016, 52, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, T.; Zheng, C. Reduction Kinetics of Copper Slag by H2. Minerals 2022, 12, 548. [Google Scholar] [CrossRef]
- Mitrašinović, A.; Wolf, A. Effect of reductants on valuable metals recovery from Copper Cliff Converter Slag. High Temp. Mater. Process. 2014, 33, 123–130. [Google Scholar]
- Sun, Y.; Zhang, Z.; Liu, L.; Wang, X. Heat Recovery from High Temperature Slags: A Review of Chemical Methods. Energies 2015, 8, 1917–1935. [Google Scholar]
- Liu, J.; Utigard, T.A. Reduction of Nickel-Copper Matte/Oxysulfide/Slag. Can. Metall. Q. 2006, 45, 379–393. [Google Scholar] [CrossRef]
- Warczok, A.; Utigard, T.A. Fayalite Slag Reduction by Solid Graphite. Can. Metall. Q. 1998, 37, 27–39. [Google Scholar] [CrossRef]
- Utigard, T.; Sanchez, G.; Manriquez, J.; Luraschi, A.; Diaz, C.; Cordero, D.; Almendras, E. Reaction kinetics of liquid iron oxide containing slags by carbon monoxide. Metall. Trans. B 1997, 28, 821. [Google Scholar]
- Toscano, P.; Utigard, T. Nickel, copper, and cobalt slag losses during converting. Metall. Trans. B 2003, 34, 121–125. [Google Scholar] [CrossRef]
- Mitrašinović, A.M.; Wolf, A. Separation and Recovery of Valuable Metals from Nickel Slags Disposed in Landfill. Sep. Sci. Technol. 2015, 50, 2553–2558. [Google Scholar] [CrossRef]
- Mitrašinović, A.M.; Utigard, T.A. Copper Removal from Hypereutectic Cu-Si Alloys by Heavy Liquid Media Separation. Metall. Mater. Trans. B 2012, 43, 379–387. [Google Scholar] [CrossRef]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals 2022, 12, 547. [Google Scholar] [CrossRef]
- Potysz, A.; van Hullebusch, E.D.; Kierczak, J. Perspectives regarding the use of metallurgical slags as secondary metal resources–A review of bioleaching approaches. J. Environ. Manag. 2018, 219, 138–152. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhu, D.Q.; Pan, J.; Wu, T.J.; Zhang, F. Improving beneficiation of copper and iron from copper slag by modifying the molten copper slag. Metals 2016, 6, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Liu, Z.; Lu, X.; Zhang, L.; Li, Q.; Xia, L. The Phase Transition and Element Distribution of Copper Smelting Slag in the Cooling—Sulfidation Process. Metall. Mater. Trans. B 2023, 54, 969–979. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Lan, X.; Feng, G.; Guo, Z. A new method for continuous recovery of fine copper droplets from copper matte smelting slag via super-gravity. Resour. Conserv. Recycl. 2022, 182, 106316. [Google Scholar] [CrossRef]
- Fedorov, V.A.; Zhukov, E.G.; Nikolashin, S.V.; Potolokov, V.N.; Serov, A.V.; Smetanin, A.V. Sublimation Purification of Crude Arsenic Recovered from Nonferrous Waste. Inorg. Mater. 2001, 37, 1011–1016. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Taskinen, P.; Klemettinen, L.; Michallik, R.; O’Brien, H.; Jokilaakso, A. Novel fluxing strategy of copper matte smelting and trace metals in E-Waste recycling. Miner. Eng. 2023, 191, 107969. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Wang, M.; Wang, W. Desulfurization ability of refining slag with medium basicity. Int. J. Miner. Metall. Mater. 2014, 21, 1160–1166. [Google Scholar] [CrossRef]
- Mitrašinović, A.M. On the assimilation mechanism of additives used in non-ferrous metals extraction processes. Can. Metall. Q. 2015, 54, 494–499. [Google Scholar] [CrossRef]
- Yu, D.; Chattopadhyay, K. Enhancement of the nickel converter slag-cleaning operation with the addition of spent potlining. Int. J. Miner. Metall. Mater. 2018, 25, 881–891. [Google Scholar] [CrossRef]
- Stuckey, J.W.; Neaman, A.; Ravella, R.; Komarneni, S.; Martínez, C.E. Highly Charged Swelling Mica Reduces Free and Extractable Cu Levels in Cu-Contaminated Soils. Environ. Sci. Technol. 2008, 42, 9197–9202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ni, W.; Li, K.; Huang, H.; Zhu, L. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag. Int. J. Miner. Metall. Mater. 2011, 18, 455–459. [Google Scholar] [CrossRef]
- Hack, K. Materials Modelling Series in The SGTE-Casebook; The Institute of Materials: London, UK, 1996; ISBN 0 901716 74X. [Google Scholar]
- Batanova, V.G.; Sobolev, A.V.; Magnin, V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy. IOP Conf. Ser. Mater. Sci. Eng. 2018, 304, 012001. [Google Scholar] [CrossRef] [Green Version]
- Chou, K.C. General solution model and its new progress. Int. J. Miner. Metall. Mater. 2022, 29, 577–585. [Google Scholar] [CrossRef]
- Sun, B.; Dai, J.; Huang, K.; Yang, C.; Gui, W. Smart manufacturing of nonferrous metallurgical processes: Review and perspectives. Int. J. Miner. Metall. Mater. 2022, 29, 611–625. [Google Scholar] [CrossRef]
- Regulation on Limit Values of Polluting, Harmful and Dangerous Substances in Soil. The Official Gazette of the Republic of Serbia, No. 30/2018 and EU Directive No. 86/278/EEC-1986. Available online: https://faolex.fao.org/docs/pdf/srb195301.pdf (accessed on 8 August 2023).
- Sverdrup, H.U.; Vala Ragnarsdottir, K.; Koca, D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resour. Conserv. Recycl. 2014, 87, 158–174. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, O.J.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Sergeant, C.J.; Sexton, E.K.; Moore, J.W.; Westwood, A.R.; Nagorski, S.A.; Ebersole, J.L.; Chambers, D.M.; O’Neal, S.L.; Malison, R.L.; Hauer, F.R.; et al. Risks of mining to salmonid-bearing watersheds. Sci. Adv. 2022, 8, eabn0929. [Google Scholar] [CrossRef]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulos, R.; Lamghari, A. Simultaneous stochastic optimization of mining complexes-mineral value chains: An overview of concepts, examples and comparisons. Int. J. Min. Reclam. Environ. 2022, 36, 443–460. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, T.; Liu, L.; Bu, B.; Ke, Y.; Du, Q. Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl2•6H2O/expanded vermiculite shape stabilized phase change materials. Int. J. Miner. Metall. Mater. 2023, 30, 250–259. [Google Scholar] [CrossRef]
- Bobrowski, A.; Gawlicki, M.; Małolepszy, J. Analytical Evaluation of Immobilization of Heavy Metals in Cement Matrices. Environ. Sci. Technol. 1997, 31, 745–749. [Google Scholar] [CrossRef]
- Islam, M.; Catalan, L.; Yanful, E. Effect of Remineralization on Heavy-Metal Leaching from Cement-Stabilized/Solidified Waste. Environ. Sci. Technol. 2004, 38, 1561–1568. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Shang, J.; Ren, D.; He, M. Advances in Multifield and Multiscale Coupling of Rock Engineering. Energies 2023, 16, 4004. [Google Scholar] [CrossRef]
Element | Initial Slag, wt% | Matte, wt% | Detection Limit, wt% | Sensitivity, wt% | |||||
---|---|---|---|---|---|---|---|---|---|
No Additive | Coke | FeC | FeSi | FeS | |||||
Oxidic | Fe * | 49.85 | 33.45 | 35.35 | 43.30 | 43.65 | 34.40 | 0.01 | 0.01 |
Si | 11.12 | 3.10 | 2.90 | 2.95 | 3.80 | 3.15 | 0.05 | 0.01 | |
Ca | 0.15 | nd | nd | nd | nd | nd | 0.1 | 0.05 | |
Marketable | Al | 2.77 | 4.69 | 4.42 | 4.61 | 3.77 | 2.72 | 0.01 | 0.01 |
Cu | 0.97 | 16.45 | 25.57 | 20.44 | 18.40 | 18.46 | 0.01 | 0.01 | |
Cr | 0.71 | 8.03 | 7.90 | 8.35 | 8.41 | 7.65 | 0.01 | 0.01 | |
Mg | 0.06 | 0.29 | 0.28 | 0.3 | 0.31 | 0.27 | 0.02 | 0.01 | |
Mn | 0.02 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.01 | 0.01 | |
Ni | 0.031 | 0.23 | 0.23 | 0.24 | 0.25 | 0.22 | 0.005 | 0.001 | |
Toxic | As | 0.038 | 0.009 | 0.009 | 0.008 | 0.007 | 0.009 | 0.001 | 0.001 |
Cd | 0.057 | 0.533 | 0.527 | 0.558 | 0.581 | 0.515 | 0.0005 | 0.0005 | |
Hg | 0.079 | 1.659 | 1.934 | 2.023 | 1.930 | 1.783 | 0.0005 | 0.0001 | |
Mo | 0.02 | 0.21 | 0.21 | 0.215 | 0.215 | 0.185 | 0.0005 | 0.0005 | |
Pb | 0.07 | 1.390 | 1.490 | 1.670 | 1.640 | 1.450 | 0.001 | 0.0005 | |
Sb | 0.02 | 0.105 | 0.105 | 0.110 | 0.110 | 0.105 | 0.001 | 0.001 | |
Se | 0.17 | 1.26 | 1.24 | 1.31 | 1.31 | 1.21 | 0.01 | 0.01 | |
Te | 0.23 | 2.74 | 2.695 | 2.845 | 2.96 | 2.93 | 0.01 | 0.005 | |
Zn | 0.037 | 0.012 | 0.012 | 0.012 | 0.010 | 0.011 | 0.001 | 0.001 | |
Trace | Ba | 0.007 | 0.090 | 0.095 | 0.105 | 0.115 | 0.090 | 0.0005 | 0.0005 |
Co | 0.01 | 0.10 | 0.10 | 0.11 | 0.12 | 0.09 | 0.001 | 0.001 | |
Sr | 0.01 | 0.129 | 0.127 | 0.135 | 0.135 | 0.122 | 0.001 | 0.0005 | |
Ti | 0.005 | 0.005 | nd | nd | nd | nd | 0.005 | 0.005 | |
Not Detected | B | nd ** | - *** | - | - | - | - | 0.05 | 0.05 |
Bi | nd | - | - | - | - | - | 0.005 | 0.005 | |
K | nd | - | - | - | - | - | 0.1 | 0.1 | |
Na | nd | - | - | - | - | - | 0.05 | 0.05 | |
La | nd | - | - | - | - | - | 0.005 | 0.005 | |
P | nd | - | - | - | - | - | 0.01 | 0.01 | |
Sc | nd | - | - | - | - | - | 0.01 | 0.005 | |
Tl | nd | - | - | - | - | - | 0.01 | 0.005 | |
V | nd | - | - | - | - | - | 0.005 | 0.005 | |
W | nd | - | - | - | - | - | 0.001 | 0.001 | |
Zr | nd | - | - | - | - | - | 0.005 | 0.005 | |
Other | S | 1.67 | 21.49 | 12.84 | 9.94 | 11.92 | 21.57 | 0.01 | 0.01 |
Nonmetals | O | 31.9 | 3.91 | 1.84 | 0.66 | 0.22 | 2.96 | 0.01 | 0.05 |
Summation | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Analysis Type | Initial Slag | Matte | Detection Limit | Sensitivity | ||||
---|---|---|---|---|---|---|---|---|
No Additive | Coke | FeC | FeSi | FeS | ||||
Titrimetric | 49.85 | 33.45 | 35.35 | 43.30 | 43.65 | 34.40 | 0.01 | 0.01 |
EPMA | 49.75 | 33.40 | 35.25 | 43.20 | 43.65 | 34.35 | 0.05 | 0.01 |
Difference, % | 0.20 | 0.15 | 0.28 | 0.23 | 0 | 0.14 |
Additive | Yield, g | Yield, % |
---|---|---|
- | 17.8 | 4.19 |
coke | 11.0 | 2.59 |
ferrocarbon | 14.1 | 3.32 |
ferrosilicon | 16.3 | 3.83 |
ferrosulfide | 14.9 | 3.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrašinović, A.M.; Yuankun, Y.; Stopic, S.; Radosavljević, M. Feasibility of Recovering Valuable and Toxic Metals from Copper Slag Using Iron-Containing Additives. Metals 2023, 13, 1467. https://doi.org/10.3390/met13081467
Mitrašinović AM, Yuankun Y, Stopic S, Radosavljević M. Feasibility of Recovering Valuable and Toxic Metals from Copper Slag Using Iron-Containing Additives. Metals. 2023; 13(8):1467. https://doi.org/10.3390/met13081467
Chicago/Turabian StyleMitrašinović, Aleksandar M., Yang Yuankun, Srecko Stopic, and Milinko Radosavljević. 2023. "Feasibility of Recovering Valuable and Toxic Metals from Copper Slag Using Iron-Containing Additives" Metals 13, no. 8: 1467. https://doi.org/10.3390/met13081467
APA StyleMitrašinović, A. M., Yuankun, Y., Stopic, S., & Radosavljević, M. (2023). Feasibility of Recovering Valuable and Toxic Metals from Copper Slag Using Iron-Containing Additives. Metals, 13(8), 1467. https://doi.org/10.3390/met13081467