Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review
Abstract
:1. Introduction
1.1. Binary Phase Diagram of TiAl Alloys
1.2. Microstructures and Properties of TiAl Alloys
1.3. Influence of Alloying Elements on TiAl Alloys
1.4. Applications of TiAl Alloys
2. Review Methodology
3. Low-Cycle Fatigue Behaviour of γ-TiAl-Based Intermetallic Alloys
3.1. Microstructural Mechanisms
3.2. Influence of Temperature and Environment on LCF Behaviour
3.3. LCF Life of γ-TiAl-Based Alloys
4. Models for Low-Cycle Fatigue Behaviour of γ-TiAl-Based Intermetallic Alloys
4.1. Fatigue Crack Initiation Models
4.2. Fatigue Crack Propagation Models
4.3. Fatigue Life Models
5. Microstructural Optimisation for Improved LCF Life of γ-TiAl-Based Alloys
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pushp, P.; Dasharath, S.; Arati, C. Classification and applications of titanium and its alloys. Mater. Today Proc. 2022, 54, 537–542. [Google Scholar] [CrossRef]
- Kumar, N.S.; Dhruthi; Pramod, G.; Samrat, P.; Sadashiva, M. A Critical Review on Heat Treatment of Aluminium Alloys. Mater. Today Proc. 2022, 58, 71–79. [Google Scholar] [CrossRef]
- Dzogbewu, T.C. Additive manufacturing of TiAl-based alloys. Manuf. Rev. 2020, 7, 35. [Google Scholar] [CrossRef]
- Illarionov, A.G.; Stepanov, S.I.; Naschetnikova, I.A.; Popov, A.A.; Soundappan, P.; Raman, K.H.T.; Suwas, S. A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb. Materials 2023, 16, 991. [Google Scholar] [CrossRef] [PubMed]
- Cobbinah, P.V.; Matizamhuka, W.R. Solid-State Processing Route, Mechanical Behaviour, and Oxidation Resistance of TiAl Alloys. Adv. Mater. Sci. Eng. 2019, 2019, 4251953. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Song, S.; Liu, P.; An, Q.; Reddy, K.M. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy. J. Alloys Compd. 2020, 846, 156381. [Google Scholar] [CrossRef]
- Mathabathe, M.; Bolokang, A.; Govender, G.; Mostert, R.; Siyasiya, C. Structure-property orientation relationship of a γ/α2/Ti5Si3 in as-cast Ti-45Al-2Nb-0.7Cr-0.3Si intermetallic alloy. J. Alloys Compd. 2018, 765, 690–699. [Google Scholar] [CrossRef]
- Xu, R.; Li, M.; Zhao, Y. A review of microstructure control and mechanical performance optimization of γ-TiAl alloys. J. Alloys Compd. 2023, 932, 167611. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Dimiduk, D.M. Progress in the Understanding of Gamma Titanium Aluminides. JOM 1991, 32, 40–47. [Google Scholar] [CrossRef]
- Mphahlele, M.R.; Olubambi, P.A.; Olevsky, E.A. Advances in Sintering of Titanium Aluminide: A Review. JOM 2023, 75, 2877–2896. [Google Scholar] [CrossRef]
- García-Martínez, E.; Miguel, V.; Martínez-Martínez, A.; Coello, J.; Naranjo, J.A.; Manjabacas, M.C. Optimization of the Dry Turning Process of Ti48Al2Cr2Nb Aluminide Based on the Cutting Tool Configuration. Materials 2022, 15, 1472. [Google Scholar] [CrossRef] [PubMed]
- Mphahlele, M.; Olevsky, E.; Olubambi, P. Spark Plasma Sintering of Near Net Shape Titanium Aluminide: A Review; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Chrapoński, J.; Szkliniarz, W.; Kościelna, A.; Serek, B. Microstructure and chemical composition of phases in Ti–48Al–2Cr–2Nb intermetallic alloy. Mater. Chem. Phys. 2003, 81, 438–442. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Kim, S.-L. Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics 2014, 53, 92–101. [Google Scholar] [CrossRef]
- Genc, O.; Unal, R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review. J. Alloys Compd. 2022, 929, 167262. [Google Scholar] [CrossRef]
- Appel, F.; Paul, J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys—Science and Technology; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2011; Volume 12, p. 69469. [Google Scholar]
- Mathabathe, M.; Govender, S.; Bolokang, A.; Mostert, R.; Siyasiya, C. Phase transformation and microstructural control of the α-solidifying γ-Ti-45Al-2Nb-0.7Cr-0.3Si intermetallic alloy. J. Alloys Compd. 2018, 757, 8–15. [Google Scholar] [CrossRef]
- Bolz, S.; Oehring, M.; Lindemann, J.; Pyczak, F.; Paul, J.; Stark, A.; Lippmann, T.; Schrüfer, S.; Roth-Fagaraseanu, D.; Schreyer, A.; et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions. Intermetallics 2015, 58, 71–83. [Google Scholar] [CrossRef]
- Kothari, K.; Radhakrishnan, R.; Wereley, N.M.; Sudarshan, T.S. Microstructure and mechanical properties of consolidated gamma titanium aluminides. Powder Met. 2007, 50, 21–27. [Google Scholar] [CrossRef]
- Ellard, J.; Mathabathe, M.; Siyasiya, C.; Bolokang, A. Vacuum melting of compressed powders and hot rolling of the as-cast Ti-48Al-2Nb-0.7Cr-0.3Si intermetallic alloy: Mechanical properties and microstructural analysis. J. Manuf. Process. 2023, 101, 1214–1223. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Wang, W.; Xu, G.; Liu, X. Effects of Tantalum on the microstructure and properties of Ti-48Al-2Cr-2Nb alloy fabricated via laser additive manufacturing. Mater. Charact. 2021, 179, 111317. [Google Scholar] [CrossRef]
- Ge, W.; Guo, C.; Lin, F. Effect of process parameters on microstructure of tial alloy produced by electron beam selective melting. Procedia Eng. 2014, 81, 1192–1197. [Google Scholar] [CrossRef]
- Liu, X.; Lin, Q.; Zhang, W.; Van Horne, C.; Cha, L. Microstructure design and its effect on mechanical properties in gamma titanium aluminides. Metals 2021, 11, 1644. [Google Scholar] [CrossRef]
- Wu, X. Review of alloy and process development of TiAl alloys. Intermetallics 2006, 14, 1114–1122. [Google Scholar] [CrossRef]
- Wimler, D.; Lindemann, J.; Kremmer, T.; Clemens, H.; Mayer, S. Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology. Intermetallics 2021, 138, 107316. [Google Scholar] [CrossRef]
- Huang, S.-C.; Hall, E.L. Plastic deformation and fracture of binary TiAl-base alloys. Met. Trans. A 1991, 22, 427–439. [Google Scholar] [CrossRef]
- Erdely, P.; Staron, P.; Maawad, E.; Schell, N.; Clemens, H.; Mayer, S. Lattice and phase strain evolution during tensile loading of an intermetallic, multi-phase γ-TiAl based alloy. Acta Mater. 2018, 158, 193–205. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, D.; Zhu, J.; Xiao, H.; Liu, C.; Wang, Y. Non-conventional transformation pathways and ultrafine lamellar structures in γ-TiAl alloys. Acta Mater. 2020, 189, 25–34. [Google Scholar] [CrossRef]
- Raji, S.A.; Popoola, A.P.I.; Pityana, S.L.; Popoola, O.M. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review. Heliyon 2020, 6, e04463. [Google Scholar] [CrossRef]
- Fang, H.; Chen, R.; Liu, Y.; Tan, Y.; Su, Y.; Ding, H.; Guo, J. Effects of niobium on phase composition and improving mechanical properties in TiAl alloy reinforced by Ti2AlC. Intermetallics 2019, 115, 106630. [Google Scholar] [CrossRef]
- Dong, C.; Jiao, Z.; Yu, H.; Zhou, H.; Kong, F.; Chen, Y. Effect of dwell condition on fatigue behavior of a high-Nb TiAl alloy at 750 °C. Intermetallics 2017, 91, 1–7. [Google Scholar] [CrossRef]
- Kim, S.-W.; Hong, J.K.; Na, Y.-S.; Yeom, J.-T.; Kim, S.E. Development of TiAl alloys with excellent mechanical properties and oxidation resistance. Mater. Des. 2014, 54, 814–819. [Google Scholar] [CrossRef]
- Jiang, H.; Hirohasi, M.; Lu, Y.; Imanari, H. Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr. Mater. 2002, 46, 639–643. [Google Scholar] [CrossRef]
- Bibhanshu, N.; Bhattacharjee, A.; Suwas, S. Hot deformation response of titanium aluminides Ti–45Al-(5, 10)Nb-0.2B-0.2C with pre-conditioned microstructures. J. Alloys Compd. 2020, 832, 154584. [Google Scholar] [CrossRef]
- Clemens, H.; Wallgram, W.; Kremmer, S.; Güther, V.; Otto, A.; Bartels, A. Design of novel β-solidifying tial alloys with adjustable β/b2-phase fraction and excellent hot-workability. Adv. Eng. Mater. 2008, 10, 707–713. [Google Scholar] [CrossRef]
- Cui, N.; Wu, Q.; Bi, K.; Xu, T.; Kong, F. Effect of heat treatment on microstructures and mechanical properties of a novel β-solidifying TiAl alloy. Materials 2019, 12, 1672. [Google Scholar] [CrossRef] [PubMed]
- Brotzu, A.; Felli, F.; Pilone, D. Effect of alloying elements on the behaviour of TiAl-based alloys. Intermetallics 2014, 54, 176–180. [Google Scholar] [CrossRef]
- Wang, F.; Tang, Z.; Wu, W. Effect of chromium on the oxidation resistance of TiAl intermetallics. Oxid. Met. 1997, 48, 381–390. [Google Scholar] [CrossRef]
- Liu, G.; Li, T.; Wang, X.; Guo, R.; Misra, R.; Wang, Z.; Wang, G. Effect of alloying additions on work hardening, dynamic recrystallization, and mechanical properties of Ti–44Al–5Nb–1Mo alloys during direct hot-pack rolling. Mater. Sci. Eng. A 2019, 773, 138838. [Google Scholar] [CrossRef]
- Erdely, P.; Staron, P.; Stark, A.; Klein, T.; Clemens, H.; Mayer, S. In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo (at.%) solid solution. Acta Mater. 2019, 164, 110–121. [Google Scholar] [CrossRef]
- Holec, D.; Legut, D.; Isaeva, L.; Souvatzis, P.; Clemens, H.; Mayer, S. Interplay between effect of Mo and chemical disorder on the stability of β/βo-TiAl phase. Intermetallics 2015, 61, 85–90. [Google Scholar] [CrossRef]
- Neelam, N.S.; Banumathy, S.; Bhattacharjee, A.; NageswaraRao, G. The effect of Cr and Mo addition on the oxidation behaviour of Ti-46.5Al-3.5Nb-2Cr-0.3B. Mater. Today Proc. 2019, 15, 30–35. [Google Scholar] [CrossRef]
- Klein, T.; Holec, D.; Clemens, H.; Mayer, S. Pathways of phase transformation in β-phase-stabilized σ/γ-TiAl alloys subjected to two-step heat treatments. Scr. Mater. 2018, 149, 70–74. [Google Scholar] [CrossRef]
- Huang, H.; Ding, H.; Xu, X.; Chen, R.; Guo, J.; Fu, H. Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy. J. Alloys Compd. 2021, 860, 158082. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, S.; Zhao, A.; Ding, X.; Dong, P. Hot deformation behavior of β phase containing γ-TiAl alloy. Mater. Sci. Eng. A 2016, 661, 160–167. [Google Scholar] [CrossRef]
- Lu, Y.; Yamada, J.; Miyata, R.; Kato, H.; Yoshimi, K. High-temperature mechanical behavior of B2-ordered Ti–Mo–Al alloys. Intermetallics 2020, 117, 106675. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, H.; Chen, R.; Su, Y.; Ding, H.; Guo, J. A Comparative Study on Microstructure and Mechanical Properties of Ti-43/46Al–5Nb–0.1B Alloys Modified by Mo. Adv. Eng. Mater. 2020, 22, 1901075. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013, 15, 191–215. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.; Luo, L.; Wang, B.; Wang, L.; Su, Y.; Guo, J.; Fu, H. Microstructures and mechanical properties of Ti-44Al-5Nb-3Cr-1.5Zr-xMo-yB alloys. J. Mater. Res. 2020, 35, 2756–2764. [Google Scholar] [CrossRef]
- Oehring, M.; Stark, A.; Paul, J.; Lippmann, T.; Pyczak, F. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field. Intermetallics 2013, 32, 12–20. [Google Scholar] [CrossRef]
- Guan, R.; Misra, R.; Shang, Y.; An, Y.; Wang, Y.; Zhang, Y.; Tie, D. Mechanism of microstructural refinement of deformed aluminum under synergistic effect of TiAl3 and TiB2 particles and impact on mechanical properties. Mater. Sci. Eng. A 2017, 716, 129–139. [Google Scholar] [CrossRef]
- Hu, D. Role of boron in TiAl alloy development: A review. Rare Met. 2016, 35, 1–14. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, H.; Zhang, H.; Chen, R.; Guo, J.; Fu, H. Variations of microstructure and tensile property of γ-TiAl alloys with 0–0.5 at% C additives. Mater. Sci. Eng. A 2017, 700, 198–208. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.; Chen, Y.; Xu, L.; Tian, J. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys. J. Alloys Compd. 2019, 775, 441–448. [Google Scholar] [CrossRef]
- Cabibbo, M. Carbon content driven high temperature γ-α2 interface modifications and stability in Ti–46Al–4Nb intermetallic alloy. Intermetallics 2020, 119, 106718. [Google Scholar] [CrossRef]
- de Farias Azevedo, C.; Flower, H.M. Microstructure and phase relationships in Ti–Al–Si system. Mater. Sci. Technol. 1999, 15, 869–877. [Google Scholar] [CrossRef]
- Knaislová, A.; Novák, P.; Cabibbo, M.; Jaworska, L.; Vojtěch, D. Development of tial–si alloys—A review. Materials 2021, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Mathabathe, M.N.; Bolokang, A.S.; Govender, G.; Mostert, R.J.; Siyasiya, C.W. The vacuum melted ɣ-TiAl (Nb, Cr, Si)-doped alloys and their cyclic oxidation properties. Vacuum 2018, 154, 82–89. [Google Scholar] [CrossRef]
- Knaislová, A.; Novák, P.; Průša, F.; Cabibbo, M.; Jaworska, L.; Vojtěch, D. High-temperature oxidation of Ti–Al–Si alloys prepared by powder metallurgy. J. Alloys Compd. 2019, 810, 151895. [Google Scholar] [CrossRef]
- Klein, T.; Clemens, H.; Mayer, S. Advancement of compositional and microstructural design of intermetallic γ-tial based alloys determined by atom probe tomography. Materials 2016, 9, 755. [Google Scholar] [CrossRef]
- Knaislová, A.; Novák, P.; Kopeček, J.; Průša, F. Properties comparison of Ti-Al-Si alloys produced by various metallurgy methods. Materials 2019, 12, 3084. [Google Scholar] [CrossRef]
- Zhu, J.F.; Yang, W.W.; Li, S.D. Effect of Si Addition on the Microstructures and Mechanical Properties of TiAl Intermetallics. Adv. Mater. Res. 2011, 239–242, 413–416. [Google Scholar] [CrossRef]
- Cobbinah, P.V.; Matizamhuka, W.; Machaka, R.; Shongwe, M.B.; Yamabe-Mitarai, Y. The effect of Ta additions on the oxidation resistance of SPS-produced TiAl alloys. Int. J. Adv. Manuf. Technol. 2020, 106, 3203–3215. [Google Scholar] [CrossRef]
- Fang, H.; Chen, R.; Chen, X.; Yang, Y.; Su, Y.; Ding, H.; Guo, J. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys. Intermetallics 2019, 104, 43–51. [Google Scholar] [CrossRef]
- Fang, H.; Chen, R.; Yang, Y.; Su, Y.; Ding, H.; Guo, J. Effects of Tantalum on Microstructure Evolution and Mechanical Properties of High-Nb TiAl Alloys Reinforced by Ti2 AlC. Research 2019, 2019, 5143179. [Google Scholar] [CrossRef] [PubMed]
- Tabie, V.M.; Li, C.; Saifu, W.; Li, J.; Xu, X. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review. Aircr. Eng. Aerosp. Technol. 2020, 92, 521–540. [Google Scholar] [CrossRef]
- Bazhenov, V.E.; Kuprienko, V.S.; Fadeev, A.V.; Bazlov, A.I.; Belov, V.D.; Titov, A.Y.; Koltygin, A.V.; Komissarov, A.A.; Plisetskaya, I.V.; Logachev, I.A. Influence of Y and Zr on TiAl43Nb4Mo1B0.1 titanium aluminide microstructure and properties. Mater. Sci. Technol. 2020, 36, 548–555. [Google Scholar] [CrossRef]
- Bresler, J.; Neumeier, S.; Ziener, M.; Pyczak, F.; Göken, M. The influence of niobium, tantalum and zirconium on the microstructure and creep strength of fully lamellar γ/α2 titanium aluminides. Mater. Sci. Eng. A 2018, 744, 46–53. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, X.; Hayat, M.D.; Yang, F.; Liu, C.; Li, Y.; Li, X.; Xu, W.; Qu, X.; Cao, P. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys. Corros. Sci. 2020, 166, 108449. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, X.; Liu, C.; Hui, T.; Zhang, C.; Qu, X. Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering. Intermetallics 2020, 125, 106891. [Google Scholar] [CrossRef]
- Wang, D.; Inui, H.; Lin, D.; Yamaguchi, M. Effects of Sn additions on the microstructures and tensile properties of two-phase TiAl alloys. Intermetallics 1996, 4, 191–200. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.-R.; Fang, H.-Z.; Guo, J.-J.; Ding, H.-S.; Su, Y.-Q.; Fu, H.-Z. Improving microstructure and mechanical properties of Ti43Al5Nb0.1B alloy by addition of Fe. Rare Met. 2019, 38, 1024–1032. [Google Scholar] [CrossRef]
- Kim, Y.-W. Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 1994, 46, 30–39. [Google Scholar] [CrossRef]
- Mercer, C.; Lou, J.; Soboyejo, W. An investigation of fatigue crack growth in a cast lamellar Ti-48Al-2Cr-2Nballoy. Mater. Sci. Eng. A 2000, 284, 235–245. [Google Scholar] [CrossRef]
- Reith, M.; Franke, M.; Schloffer, M.; Körner, C. Processing 4th generation titanium aluminides via electron beam based additive manufacturing—Characterization of microstructure and mechanical properties. Materialia 2020, 14, 100902. [Google Scholar] [CrossRef]
- Herrmann, D.; Appel, F. Diffusion bonding of γ(TiAl) alloys: Influence of composition, microstructure, and mechanical properties. Met. Mater. Trans. A 2009, 40, 1881–1902. [Google Scholar] [CrossRef]
- Clemens, H.; Chladil, H.; Wallgram, W.; Zickler, G.; Gerling, R.; Liss, K.-D.; Kremmer, S.; Güther, V.; Smarsly, W. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy. Intermetallics 2008, 16, 827–833. [Google Scholar] [CrossRef]
- Hu, D.; Jiang, H.; Wu, X. Microstructure and tensile properties of cast Ti-44Al-4Nb-4Hf-0.1Si-0.1B alloy with refined lamellar microstructures. Intermetallics 2009, 17, 744–748. [Google Scholar] [CrossRef]
- Niu, H.; Su, Y.; Zhang, Y.; Zhang, D.; Lu, J.; Zhang, W.; Zhang, P. Microstructural evolution and mechanical properties of a β-solidifying γ-TiAl alloy densified by spark plasma sintering. Intermetallics 2015, 66, 96–102. [Google Scholar] [CrossRef]
- Duan, B.; Yang, Y.; He, S.; Feng, Q.; Mao, L.; Zhang, X.; Jiao, L.; Lu, X.; Chen, G.; Li, C. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations. J. Alloys Compd. 2022, 909, 164811. [Google Scholar] [CrossRef]
- Güther, V.; Allen, M.; Klose, J.; Clemens, H. Metallurgical processing of titanium aluminides on an industrial scale. Intermetallics 2018, 103, 12–22. [Google Scholar] [CrossRef]
- Recina, V.; Karlsson, B. High-temperature low cycle fatigue properties of Ti-48Al-2W-0.5Si gamma titanium aluminide. Mater. Sci. Eng. 1999, A262, 70–81. [Google Scholar] [CrossRef]
- Viswanathan, R.; Stringer, J. Failure Mechanisms of High Temperature Components in Power Plants. J. Eng. Mater. Technol. 2000, 122, 246–255. [Google Scholar] [CrossRef]
- Hyde, C.; Sun, W.; Hyde, T. An investigation of the failure mechanisms in high temperature materials subjected to isothermal and anisothermal fatigue and creep conditions. Procedia Eng. 2011, 10, 1157–1162. [Google Scholar] [CrossRef]
- Chan, K.S. Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 2010, 32, 1428–1447. [Google Scholar] [CrossRef]
- Hénaff, G.; Gloanec, A.-L. Fatigue properties of TiAl alloys. Intermetallics 2005, 13, 543–558. [Google Scholar] [CrossRef]
- Edwards, T. Recent progress in the high-cycle fatigue behaviour of γ-TiAl alloys. Mater. Sci. Technol. 2018, 34, 1919–1939. [Google Scholar] [CrossRef]
- Recina, V.; Karlsson, B. High temperature low cycle fatigue properties of Ti-48Al-2Cr-2Nb gamma titanium aluminides cast in different dimensions. Scr. Mater. 2000, 43, 609–615. [Google Scholar] [CrossRef]
- Recina, V.; Lundström, D.; Karlsson, B. Tensile, creep, and low-cycle fatigue behaviour of a cast γ-TiAl-based alloy for gas turbine applications. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2002, 33, 2869–2881. [Google Scholar] [CrossRef]
- Zhang, M.; Song, X.; Yu, L.; Li, H.; Jiao, Z.; Yu, H. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C. Mater. Sci. Eng. A 2015, 622, 30–36. [Google Scholar] [CrossRef]
- Petrenec, M.; Polák, J.; Buček, P. Cyclic plasticity and strain localization in cast γ-TiAl based alloy. Procedia Eng. 2011, 10, 1390–1395. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, M.; Ye, T.; Liang, Y.; Ren, Y.; Dong, C.; Lin, J. Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta Mater. 2018, 145, 504–515. [Google Scholar] [CrossRef]
- Dahar, M.S.; Seifi, S.M.; Bewlay, B.; Lewandowski, J.J. Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti–48Al–2Nb–2Cr. Intermetallics 2015, 57, 73–82. [Google Scholar] [CrossRef]
- Trant, C.F.; Lindley, T.C.; Martin, N.; Dixon, M.; Dye, D. Fatigue cracking in gamma titanium aluminide. Mater. Sci. Eng. A 2020, 798, 140202. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Hu, D.; Dixon, M. Microstructural characterisation of fatigue crack growth fracture surfaces of lamellar Ti45Al2Mn2Nb1B. Intermetallics 2014, 45, 89–95. [Google Scholar] [CrossRef]
- Koko, A.; Singh, S.; Barhli, S.; Connolley, T.; Vo, N.; Wigger, T.; Liu, D.; Fu, Y.; Réthoré, J.; Lechambre, J.; et al. 3-Dimensional analysis of fatigue crack fields and crack growth by in situ synchrotron X-ray tomography. Int. J. Fatigue 2023, 170, 107541. [Google Scholar] [CrossRef]
- Malakondaiah, G.; Nicholas, T. High-temperature low-cycle fatigue of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1996, 27, 2239–2251. [Google Scholar] [CrossRef]
- Yu, L.; Song, X.; Zhang, M.; Jiao, Z.; Yu, H. Effect of stress ratio on fatigue lifetime of high Nb containing TiAl alloy at elevated temperature. Mater. Des. 2015, 84, 378–384. [Google Scholar] [CrossRef]
- Rodriguez, P.; Mannan, S.L. High temperature low cycle fatigue. Sadhana 1995, 20, 123–164. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, J.; Chen, C.; Weng, F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016, 685, 784–798. [Google Scholar] [CrossRef]
- Pilone, D.; Felli, F. Isothermal oxidation behaviour of TiAl–Cr–Nb–B alloys produced by induction melting. Intermetallics 2012, 26, 36–39. [Google Scholar] [CrossRef]
- Clemens, B.H.; Kestler, H. Processing and Applications of Intermetallic c -TiAl-Based Alloys. Adv. Eng. Mater. 2000, 2, 551–570. [Google Scholar] [CrossRef]
- Feng, R.C.; Rui, Z.Y.; Zuo, Y.; Yan, C.F.; Zhang, G.T. Influence of temperature on fatigue crack propagation in TiAl alloys. Strength Mater. 2014, 46, 417–421. [Google Scholar] [CrossRef]
- Christ, H.-J.; Fischer, F.; Maier, H. High-temperature fatigue behavior of a near-γ titanium aluminide alloy under isothermal and thermo-mechanical conditions. Mater. Sci. Eng. A 2001, 319–321, 625–630. [Google Scholar] [CrossRef]
- Gloanec, A.; Jouiad, M.; Bertheau, D.; Grange, M.; Hénaff, G. Low-cycle fatigue and deformation substructures in an engineering TiAl alloy. Intermetallics 2007, 15, 520–531. [Google Scholar] [CrossRef]
- Kruml, T.; Obrtlík, K. Microstructure degradation in high temperature fatigue of TiAl alloy. Int. J. Fatigue 2014, 65, 28–32. [Google Scholar] [CrossRef]
- Ding, J.; Liang, Y.; Xu, X.; Yu, H.; Dong, C.; Lin, J. Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue. Int. J. Fatigue 2017, 99, 68–77. [Google Scholar] [CrossRef]
- Ding, J.; Huang, S.; Dong, Z.; Lin, J. Thermal Stability and Lattice Strain Evolution of High-Nb-Containing TiAl Alloy under Low-Cycle-Fatigue Loading. Adv. Eng. Mater. 2021, 23, 2001337. [Google Scholar] [CrossRef]
- Maier, H.J.; Fischer, F.O.R.; Christ, H.-J. Environmental EFFECTS on the Isothermal and Thermomechanical Fatigue Behaviour of a Near-γ Titanium Aluminide; ASTM Special Technical Publication: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Kedir, Y.A.; Lemu, H.G. Prediction of Fatigue Crack Initiation under Variable Amplitude Loading: Literature Review. Metals 2023, 13, 487. [Google Scholar] [CrossRef]
- Rao, K.B.S. High temperature fatigue behaviour of intermetallics. Sadhana—Acad. Proc. Eng. Sci. 2003, 28, 695–708. [Google Scholar] [CrossRef]
- Chan, K.S.; Shih, D.S. Fundamental aspects of fatigue and fracture in a TiAl sheet alloy. Met. Mater. Trans. A 1998, 29, 73–87. [Google Scholar] [CrossRef]
- Gloanec, A.; Milani, T.; Hénaff, G. Impact of microstructure, temperature and strain ratio on energy-based low-cycle fatigue life prediction models for TiAl alloys. Int. J. Fatigue 2010, 32, 1015–1021. [Google Scholar] [CrossRef]
- Roth, M.; Biermann, H. Thermo-mechanical fatigue behaviour of the γ-TiAl alloy TNB-V5. Scr. Mater. 2006, 54, 137–141. [Google Scholar] [CrossRef]
- Lei, B.-M.; Tran, V.-X.; Taheri, S.; le Roux, J.-C.; Curtit, F.; He, M.; Wan, L.; Zhou, Y. Toward consistent fatigue crack initiation criteria for 304L austenitic stainless steel under multi-axial loads. Int. J. Fatigue 2015, 75, 57–68. [Google Scholar] [CrossRef]
- Tang, W.; Tang, Z.; Lu, W.; Wang, S.; Yi, M. Modeling and Prediction of Fatigue Properties of Additively Manufactured Metals. Acta Mech. Solida Sin. 2023, 36, 181–213. [Google Scholar] [CrossRef]
- Ruicheng, F. Improved Method of Fatigue Life Assessment for TiAl Alloys. Strength Mater. 2019, 46, 183–189. [Google Scholar]
- Yang, J.; Li, H.; Hu, D.; Martin, N.; Dixon, M. Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb. Mater. Sci. Technol. 2014, 30, 1905–1910. [Google Scholar] [CrossRef]
- Gloanec, A.-L.; Hénaff, G.; Bertheau, D.; Belaygue, P.; Grange, M. Fatigue crack growth behaviour of a gamma-titanium-aluminide alloy prepared by casting and powder metallurgy. Scr. Mater. 2003, 49, 825–830. [Google Scholar] [CrossRef]
- Dahar, M.S.; Tamirisakandala, S.A.; Lewandowski, J.J. Evolution of fatigue crack growth and fracture behavior in gamma titanium aluminide Ti-43.5Al-4Nb-1Mo-0.1B (TNM) forgings. Int. J. Fatigue 2018, 111, 54–69. [Google Scholar] [CrossRef]
- Constantinescu, A.; Charkaluk, E.; Lederer, G.; Verger, L. A computational approach to thermomechanical fatigue. Int. J. Fatigue 2004, 26, 805–818. [Google Scholar] [CrossRef]
- Roth, M.; Biermann, H. Thermo-mechanical fatigue behaviour of a modern γ-TiAl alloy. Int. J. Fatigue 2008, 30, 352–356. [Google Scholar] [CrossRef]
- Liu, S.; Ding, H.; Chen, R.; Guo, J.; Fu, H. Remarkable improvement in tensile strength of a polycrystalline γ-TiAl-based intermetallic alloy by deformation nanotwins. Mater. Sci. Eng. A 2021, 823, 141692. [Google Scholar] [CrossRef]
- Voisin, T.; Monchoux, J.-P.; Hantcherli, M.; Mayer, S.; Clemens, H.; Couret, A. ScienceDirect Microstructures and mechanical properties of a multi-phase b -solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014, 73, 107–115. [Google Scholar] [CrossRef]
- Crofts, P.; Bowen, P.; Jones, I. The effect of lamella thickness on the creep behaviour of Ti-48Al-2Nb-2Mn. Scr. Mater. 1996, 35, 1391–1396. [Google Scholar] [CrossRef]
- Mine, Y.; Takashima, K.; Bowen, P. Effect of lamellar spacing on fatigue crack growth behaviour of a TiAl-based aluminide with lamellar microstructure. Mater. Sci. Eng. A 2012, 532, 13–20. [Google Scholar] [CrossRef]
- Chan, K.; Kim, Y.-W. Effects of lamellae spacing and colony size on the fracture resistance of a fully-lamellar TiAl alloy. Acta Met. Mater. 1995, 43, 439–451. [Google Scholar] [CrossRef]
- Imayev, V.; Oleneva, T.; Imayev, R.; Christ, H.-J.; Fecht, H.-J. Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2-Ti3Al based alloys subjected to different treatments. Intermetallics 2012, 26, 91–97. [Google Scholar] [CrossRef]
- Schwaighofer, E.; Clemens, H.; Lindemann, J.; Stark, A.; Mayer, S. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy. Mater. Sci. Eng. A 2014, 614, 297–310. [Google Scholar] [CrossRef]
- Burtscher, M.; Klein, T.; Lindemann, J.; Lehmann, O.; Fellmann, H.; Güther, V.; Clemens, H.; Mayer, S. An advanced TiAl alloy for high-performance racing applications. Materials 2020, 13, 4720. [Google Scholar] [CrossRef]
Microstructure | Characteristics | Mechanical Properties |
---|---|---|
Fully lamellar (FL) | Coarse lamellar (α2 + γ) grains |
|
Duplex (DP) | Fine equiaxed γ-grains and (γ + α2) lamellae |
|
Alloying Element | Effects |
---|---|
Nb | |
Mn | |
Cr | |
V | |
Mo | |
B | |
C |
|
Si | |
Ta | |
Zr | |
Sn | |
Fe | |
Y |
Generation | Alloy Designation | Series | Ref. |
---|---|---|---|
1st | Ti-48Al-1V-(0.1Wt%) C | Ti-48Al-1V-(0.1Wt%) C | [73] |
2nd | Ti-(45–48)Al-(1–3)X-(2–5)Y-(1)Z X = Cr, Mn, V; Y = Nb, Ta, W, Mo; Z = Si, B, C | 4822 (Ti-48Al-2Nb-2Cr) 45XD (Ti-45Al-2Mn-2Nb-0.8vol%TiB2 47WSi (Ti-47Al-2W-0.5Si) | [74] |
3rd and 4th | Ti-(42–48)Al-(0–10)X-(0–3)Y- (0–1)Z-(0–0.5)RE X = Cr, Mn, Nb, Ta; Y = Mo, W, Hf, Zr; Z = C, B, Si; RE = rare earth elements | BMBF3 (Ti-47.5Al-5.5Nb- 0.5W K5 (Ti-46Al-3Nb-2Cr- 0.2W-xB-yC/Si) TNB-V5 (Ti-45Al-5Nb-0.2B-0.2C TNM (Ti-43Al-4Nb-1Mo-0.1B) Ti-44Al-4Nb-4Hf-0.1Si-0.1B Ti-44Al-6Nb-1Mo-0.2Y-0.1B | [75,76,77,78,79] |
Microstructure | Initiation | Propagation | Fracture |
---|---|---|---|
Duplex | Damaged surface, pores, oxide inclusions, debonded γ-grains, grain clusters, large single-phase γ-grains (by intrusion and extrusion), inter- dendritic γ-areas. | Stable crack growth (striations present when lamellae and γ-grain size critical crack size) | Brittle transgranular cleavage or intergranular |
Lamellar | Pores, cavities, damaged surface, oxides inclusions, interlamellar (for lamellar colonies oriented perpendicular to the load axis. | Interlamellar and translamellar cracking (fast crack growth for lamellae oriented perpendicular to the load axis) | Delamination, translamellar, stepwise fracture, quasi-cleavage fracture |
Alloy | Microstructure | Processing Route | (%) | Temperature (°C) | Nf | Ref. |
---|---|---|---|---|---|---|
Ti-48Al-2W-0.5Si | DP NL | Casting Casting | 0.6 0.6 | 600 600 | 3000 600 | [82] |
Ti-48Al-2Cr-2Nb | NL NG NL | Casting PM Casting | 0.6 0.6 0.6 | 25 25 750 | 100 20 40 | [113] |
TiAl-8 at.%Nb | FL FL FL | IM IM IM | 0.4 0.4 0.4 | 700 750 800 | 300 200 100 | [106] |
Ti-45Al-8.5Nb- 0.2W-0.2B-0.02Y | FL FL FL | IM IM IM | 0.39 0.3 0.25 | 850 850 850 | 70 139 12,075 | [92] |
TNB-V5 (Ti-45Al- 5Nb-0.2C-0.2B) | NG NG NG NG NG | IM + Extrusion IM + Extrusion IM + Extrusion IM + Extrusion IM + Extrusion | 0.575 0.575 0.575 0.65 0.65 | 400 600 800 400 800 | 133 94 641 86 206 | [114] |
Alloy | Microstructure | Processing Route | Temperature (°C) | R | m | Ref. | ||
---|---|---|---|---|---|---|---|---|
Ti-48Al-2Nb-2Cr | FL | Casting | 25 | 0.1 | 9.2 | 6.5–10.4 | 20.4 | [93,119] |
FL | Casting | 25 | 0.3 | 8 | 23.2 | 18.3 | ||
FL | Casting | 25 | 0.7 | 5.8 | 35.8 | 24.6 | ||
FL | Casting | 25 | 0.9 | 2.2 | 78.1 | 24.1 | ||
Equiaxed | ||||||||
γ-grains | PM | 25 | 0.1 | 5 | 8.39 | 8 | ||
NL | Casting | 25 | 0.1 | 7.5 | 8.11 | 30 | ||
NL | Casting | 25 | 0.5 | - | 8.11 | - | ||
4522XD | FL | Cast + HIPed | 400 | 0.1 | 4 | - | - | [94] |
FL | Cast + HIPed | 750 | 0.1 | 7.1 | - | - | ||
Ti-43.5Al-4Nb- 1Mo-0.1B (TNM) | NL | Casting (T-L) | 25 | 0.1 | 9.9 | 9 | 24 | [120] |
NL | Cast + HIPed | 25 | 0.1 | 5.9 | 6 | 19.4 | ||
DP | Cast + Forging | 25 | 0.1 | 9.3 | 14 | 18.3 | ||
NL | Cating (T-L) | 25 | 0.7 | 4.8 | 50 | 18.8 | ||
NL | Cast + HIPed | 25 | 0.3 | 4.1 | 9.3 | 17.2 | ||
DP | Cast + Forging | 25 | 0.7 | 3.7 | 35 | 15.3 |
Classification | Designation | Expression | Remarks |
---|---|---|---|
Fatigue crack initiation | Total interaction forces model | Yields relatively accurate results. It needs improvement. | |
Fatigue crack propagation | Paris model | Commonly used and gives accurate results only in stage II. | |
Forman model | Suitable for stages II and III. | ||
Zheng–Hirt model | Suitable for stages I and II. | ||
Feng model | Characterises only stage II. A new model is needed for all the stages. | ||
Fatigue life | Strain–life model | Gives accurate results. | |
Energy-based model | Suitable for LCF life prediction. | ||
Not suitable for LCF life prediction. | |||
Smith–Watson–Topper damage model | Suitable for accurate LCF life prediction of γ-TiAl alloys. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellard, J.J.M.; Mathabathe, M.N.; Siyasiya, C.W.; Bolokang, A.S. Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review. Metals 2023, 13, 1491. https://doi.org/10.3390/met13081491
Ellard JJM, Mathabathe MN, Siyasiya CW, Bolokang AS. Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review. Metals. 2023; 13(8):1491. https://doi.org/10.3390/met13081491
Chicago/Turabian StyleEllard, John J. M., Maria N. Mathabathe, Charles W. Siyasiya, and Amogelang S. Bolokang. 2023. "Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review" Metals 13, no. 8: 1491. https://doi.org/10.3390/met13081491
APA StyleEllard, J. J. M., Mathabathe, M. N., Siyasiya, C. W., & Bolokang, A. S. (2023). Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review. Metals, 13(8), 1491. https://doi.org/10.3390/met13081491