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Abstract: In the present work, the relationship between deformation, microstructure and mechanical
properties of the Sr-modified 4032-type eutectic aluminum alloy was studied. The alloy was prepared
from recycled materials, mainly from maritime and automotive 356 alloy scrap samples. Solubilizing
heat treatment was carried out at a temperature of 450 ◦C with a holding time of 8 h. Finally, different
samples were subjected to rolling and forging processes at a temperature of 450 ◦C, thus achieving a
reduction of 25% of the original thickness. As expected, the microstructure and properties changed
significantly due to the deformation processes, where an important factor was the change in the
morphology of eutectic silicon, not only produced by the application of deformation, but also on
the effect of adding strontium as a modifying agent. The samples were characterized by optical
microscopy and scanning electron microscopy, where it was possible to observe not only the effect of
strontium on the morphology of eutectic silicon but also the effect of the heat treatment performed.
The tensile tests showed that there was indeed a notable increase in the ultimate tensile stress, yield
strength, and resistance to fracture, while initial hardness also considerably increased. Finally, the
fracture analysis showed that, after thermal treatment and deformation, all the samples analyzed
presented a fracture within the ductile regime. It was shown that the combination of deformation
and the addition of strontium led to improved globulization of the eutectic silicon.

Keywords: aluminum recycling; rolling; forging; silicon microstructure and morphology

1. Introduction

Aluminum-based alloys have interesting properties such as high corrosion resistance,
high ductility, good thermal and electrical conductivity, and high chemical stability coupled
with relatively low density when compared to steel. To improve resistance to environmental
corrosion, complex electro-passivation processes are often applied to avoid pitting and
grain-boundary corrosion. Worldwide, aluminum products have reached second place in
terms of production volume, just below iron and steel products [1]. Another important
feature of most aluminum alloys is the relative ease of being recycled, as remelting requires
only 5% of the total energy required to obtain it directly from bauxite [2]. Specifically, the
4032-aluminum alloy (AA4032) is considered a high-performance aluminum alloy, which
is used in industrial applications such as the elaboration of automotive and aerospace
components or the manufacturing of many other miscellaneous components [3].

The presence of diverse and complex intermetallic phases is quite common in this
alloy; the main elements that contribute to the formation of such intermetallic phases are
Cu, Fe, Mg, Ni and Si. The composition and density of the intermetallic phases commonly
found in the microstructure of a typical 4032 alloy are compared to those mentioned by
Belov and collaborators [4]. Iron is an element that can be usually found in most aluminum
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alloys; this element is added to improve strength and usually presents a trade-off with
ductility [5].

Several works have reported the influence of the addition of modifying elements
of eutectic silicon, such as Sr, Na or P; the main effect is on the mechanical properties,
particularly tensile strength, which can reach significant values as compared to those of the
alloy in the as-cast condition [6]. Other elements, such as Mg, promote the precipitation
of the intermetallic Mg2Si, having an η—phase well known to improve strength in a
range of Al alloys, such as the 7xxx series, which has an important effect on hardness
and ductility. Cu and Ni also have an important influence on both microstructure and
mechanical properties, specifically after heat treatment [7].

On the other hand, thermomechanical treatments, such as equal-channel angular
pressing (ECAP) [8], accumulative roll bonding (ARB) [9,10], severe plastic deformation
by twist extrusion (TE), hot extruding, free forging [11] and hot rolling [12], have gained
importance in the last decade. The importance of these severe plastic deformation (SPD)
techniques centers on the fact that they can cause the aluminum alloy to produce a finer
grain structure, which gives the alloy greater strength and/or ductility [13].

Among these deformation technologies, hot rolling and free forging tend to be rel-
atively cheaper and simpler to perform but have a profound effect on the mechanical
properties and microstructure of the alloy [14].

Temperature also has a great influence on the mechanical properties and microstruc-
ture of aluminum alloys. As mentioned by Huie Hu et al. [15], tensile strength increases
rapidly at processing temperatures between 400 ◦C and 450 ◦C, while elongation decreases
at temperatures above 400 ◦C. As for the effect of deformation temperature on the mi-
crostructure, a finer grain refinement homogeneously distributed throughout the matrix is
achieved for temperatures close to 430 ◦C; however, at a deformation temperature close
to 480 ◦C, the recrystallized grains undergo coarsening and therefore a not very favorable
microstructure, as mentioned by Peng Sun et al. [13].

For these reasons, the objective of this work was to study the feasibility of deformation
processing of aluminum alloy type 4032, where the specimens were prepared using recycled
materials, studying the relationship between processing conditions and the microstructure
and mechanical properties, and through digital image processing, the transformation
percentage and the average circularity of the eutectic silicon were evaluated.

2. Materials and Methods
2.1. Production of Aluminum Alloy Type 4032

Samples of the 4032-type alloy were prepared from scrap and chips from 356 aluminum
alloy (AA356)-type alloys, with the composition shown in Table 1. According to the reported
values, the calculation for the corresponding adjustment was made using silicon lumps
(99.9 wt.%), Cu wire chips (99.9 wt.%), Mg (99.9 wt.%), Al-20 wt.% Ni, and Al-15 wt.% Sr
master alloys; the latter was added as a eutectic silicon modifier. The melting of the scrap
was carried out in a medium frequency induction furnace in a temperature range between
750 ◦C to 800 ◦C to which the different alloying elements were added. After melting, flux
was added to remove the slag and subsequently degassed with commercial purity argon
for 10 min. The chemical composition of the alloy after adjustment is presented in Table 2,
where the concentration of Sr was chosen according to Tebib et al. [16]. The diagram in
Figure 1 shows the main stages of this process, as well as a brief description of them.

Table 1. Chemical composition of the AA356 chips and scraps used to prepare the samples used in
this work.

Element Si Mg Cu Ni Fe Ti Sr Zn Mn Al

Quantity
(wt.%) 7.52 0.25 0.08 0.06 0.24 0.11 Traces 0.03 0.01 Bal
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Table 2. Chemical composition of the alloy after adjustment.

Element Si Mg Cu Ni Fe Ti Sr Zn Mn Al

Quantity
(wt.%) 12.14 0.86 0.81 0.65 0.20 0.14 0.04 0.02 0.01 Bal
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Figure 1. Illustrative diagram of the main stages of the process.

2.2. Casting and Sample Collection

To cast the samples, a zirconia-painted H13 tooling steel mold was preheated at a
temperature of 350 ◦C, having attached a specially designed feeder. Pouring was done
by manually tilting the mold, and finally after solidifying, each sample was extracted
from the mold and cut according to the requirements of the scheduled mechanical tests.
The cut pieces were studied under the following conditions: As-cast, heat-treated (HT)
at a temperature of 450 ◦C for 8 h, followed by cooling to room temperature; rolled with
pre-heat treatment (HT-Rolled) and a rolling temperature of 450 ◦C; and finally, the forged
samples without/with heat pre-treatment, respectively (Forged and HT-Forged) at a forging
temperature of 450 ◦C.

2.3. Rolling and Forging Process

Rolling was carried out in a 2-hi rolling mill (International Rolling Mills, RI, USA)
equipped with D2 tool steel rollers (diameter = 10 cm) and a maximum separation force of
20 metric tons. The samples were preheated in a resistance electrical furnace at a tempera-
ture range between 420 ◦C to 450 ◦C, and according to some previous studies realized in
this work, it was selected to apply a thickness reduction of 25% to obtain the best values of
mechanical properties without cracking. The thickness reduction of 25% was reached after
4 steps of rolling while maintaining constant temperature (see Figure 1), where the speed
of the rollers remained at 8 rpm. Figure 2 shows the thickness of the sample before/after
the deformation process.
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rolling/forging process, and (c) after applying the rolling/forging process.

The open forging process was carried out in the same temperature range using a
100-ton hydraulic press, reducing the original thickness of the sample by 25% in a single
load (see Figure 2).

2.4. Testing and Characterization

The resultant microstructures were examined using a Vanox brand optical microscope,
while some samples were observed using a PHILIPS model XL30 scanning electron micro-
scope (SEM). In the case of the SEM analysis, backscattered electron (BSE) contrast was
used to obtain maximum contrast in the phases and secondary electrons (SE) for higher
resolution at higher magnifications. The stoichiometry of the alloy phases was identified by
comparing the results of the dispersed energy spectroscopy (EDS) analysis with the results
reported in the literature [17].

The specimens for the stress–strain tests were machined and tested (a specimen for each
sample, that is 5 in total) in accordance with ASTM E8, and an MTS QTEST/100 universal test
machine was used. Finally, fracture analysis was performed on the surface of these samples
using SEM.

2.5. DIP Using ImageJ

For digital image processing (DIP) [18], we present the use of ImageJ software [19],
which is in the public domain, for the analysis and determination of microstructural
parameters in AA4032. Specifically, the software was used to measure the percentage
conversion of eutectic silicon particles into more rounded particles using the circularity
function. Five images were analyzed, one for each sample.

The process consisted of determining the percentage in area of the eutectic silicon
present in the sample. At the same time, the average circularity of the silicon was deter-
mined, considering that those particles that had a value very close to zero were consid-
ered needles or acicular silicon; while other particles that presented values very close to
one were considered globular silicon particles. The ImageJ version used for this analysis
was 1.53 t, and the process was carried out considering the ImageJ manual [20], which is
briefly described.

We worked with an 8-bit image format, and then the image was binarized considering
the areas of interest (eutectic silicon), using the parameters chosen for the analysis: “Area”
and “Shape descriptors”.

Finally, a particle size range was established between 0.1 and 40 and a circularity from
0.0 to 1.0.

The circularity or form factor was calculated as follows:

Circularity =
4 πA

p2 , (1)

where A is the area of all particles and p represents the perimeter of the particles. This
procedure was repeated for the 5 samples; the results obtained are discussed in the
following section.
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For the elaboration of the relative frequency histograms, the method described by
David Scott was used to evaluate the optimal width of the histogram bins [21].

3. Results and Discussion
3.1. Microstructure and Characterization

Figure 3a shows the microstructure of the As-cast, consisting of elongated particles of
needle-like morphology corresponding to eutectic silicon. As has been broadly discussed
in the literature, this type of morphology of the eutectic silicon particles decreases the
mechanical properties of the alloy [22]; as already mentioned, these negative effects can be
minimized by the application of heat treatment, together with the addition in the molten
state of a eutectic silicon modifying agent, such as strontium.
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The effect of the solubilized heat treatment on microstructure was evident, as is shown
in Figure 3b, where it was observed that the distribution of eutectic silicon was more
homogeneous in addition to a change from its normal needle-like morphology to a more
globulized morphology, solely by the effect of strontium addition in the molten state. This
effect has been discussed by Tebib et al. [16]. In a practical way, the percentage of eutectic
silicon transformation can be improved by having longer heat treatment times or even
slightly increasing the concentration of Sr to potentiate this effect.

The microstructure shown in Figure 3c corresponds to the HT-Rolled sample subjected
to a reduction of the original thickness of 25%. In this micrograph, it can be seen that
the acicular eutectic silicon morphology transformed into finer [15] and more evenly
distributed particles. Huie Hu et al. [13] found similar results under similar conditions
of heat treating and rolling. Eutectic silicon particles become thinner as the degree of
deformation increases, which is expected because the finer the grain, the more grain that
act as “barriers” to stop dislocations or propagation of cracks. Therefore, the mechanical
properties increase significantly.

Figure 3d shows a photomicrograph corresponding to the microstructure of the Forged
part. The forging process allowed a successful deformation, achieving a reduction of 25%
of the original thickness without suffering some type of cracking. In Figure 3d, it can be
seen that, at first sight, the microstructure was modified in the sense of forging, where the
main difference was that dendrites were much more elongated and narrower, contrary to
what was observed in the microstructure shown in Figure 3a. This behavior was reflected
in a slight increase in the mechanical properties.

The microstructure of Figure 3e corresponds to the HT-Forged sample; the change
in the microstructure was perfectly observed, that is, the dendritic structure was refined,
and the dispersion of the eutectic silicon particles was more homogeneous. Hard and
brittle intermetallic particles did not accumulate at the grain boundaries, appearing more
evenly distributed throughout the matrix [23]. This fact is reflected in an increase in the
mechanical properties compared to the mechanical properties of the HT-Rolled sample. The
transformation of the needle-like morphology of the eutectic silicon particles into globular
particles was very similar to that of the HT-Rolled sample.

It is worth mentioning that all intermetallics were identified from the different samples
by EDS in a way suggested by Belov, Hren and Shabestari [4,5,17]. As-cast aluminum alloys
exhibit a wide variety of complex intermetallic phases formed during the solidification
process. Due to its low solubility in the solid state, iron is one of the most common elements
forming intermetallics in aluminum alloys. In the present case, this element forms the
intermetallic phase Al8FeMg3Si6, as can be seen in the micrograph of Figure 4a, which
corresponds to the As-cast sample. The identification of these intermetallics agrees with
the results reported by Sweet et al. [24]. In the same figure, other precipitates were also
identified that most probably corresponded to Mg2Si and Al9FeNi.

Aluminum-silicon alloys containing magnesium will become suitable for heat-treating
since the intermetallic compound Mg2Si could be redistributed evenly. In this sense,
the microstructure appearing in Figure 4b, which corresponds to the HT part, shows the
intermetallic Mg2Si particles in a dark tone. Agglomerates can be seen in the microstructure,
which most probably corresponds to a combination of the intermetallics Al2Cu, Al7CuNi
or Al8Mg3Si6 [6].

As previously mentioned, the more the material is deformed, the more the microstruc-
ture will be refined. This can be seen in the microstructure shown in Figure 4c, which
corresponds to the HT-Rolled sample, where practically all eutectic silicon particles ac-
quired a rather globular morphology. In addition, eutectic silicon was easily identified in a
gray tone and intermetallic Al3Ni in a bright white tone.

The micrograph in Figure 4d corresponds to the Forged sample, where the typical
microstructure of an As-cast part can be observed, i.e., high heterogeneity intermetallics
in the shape of an elongated needle. In turn, the micrograph in Figure 4e corresponds to
the HT-Forged, where the main change observed is the homogeneous distribution of the
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elements throughout the matrix. In addition, the distribution of eutectic silicon was more
homogeneous. In both micrographs Figure 4d,e, it is observed, to a lesser extent, some Ni,
Mg, Fe and Cu rich intermetallics, constituting a mixture of phases, such as Al9FeNi, Mg2Si
Al8FeMg3Si6, Al5Cu2Mg8Si6 and, of course, eutectic silicon.
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3.2. Mechanical Properties

The following is a summary of the results obtained on the mechanical properties
measured for all samples studied in this work; there were 5 specimens in total, one for
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each condition. The first result in Table 3 corresponds to the “As-cast” sample in which a
maximum ultimate tensile stress (UTS) of 129 MPa and a yield strength (YS) of 110 MPa
were observed, while its hardness Brinell (HB) was 55 units. The second value corresponded
to the “HT” sample, which presented an UTS value of 200 MPa, a YS of 159 MPa and an
HB of 40 units. In the case of the HT-Rolled sample, it reached a maximum tensile stress of
225 MPa, a YS of 180 MPa, and an HB of 77 units. As for the “Forged” sample, it reached
a UTS value of 201 MPa, a YS value of 190 MPa, and an HB of 69.1 units. Finally, the
HT-Forged sample reached an UTS value of 275 MPa, a YS value of 204 MPa, and an HB of
85.7 units. The last value reported in Table 3 corresponded to the properties reported in the
literature for a commercial alloy in the 4xxx series [25].

Table 3. Comparison of the values of mechanical properties between alloys prepared from recycled
materials vs. commercial purity alloys.

Sample UTS
(MPa)

YS
(MPa)

Hardness
(HB)

As-cast 129 110 55
HT 200 159 40

HT-Rolled 225 180 77
Forged 201 190 69.1

HT-Forged 275 204 85.7
4xxx series

Commercial alloy 110–427 45–393 39–140

Table 3 summarizes all measured property values for the test conditions indicated; in
general, intermediate values of UTS, YS and hardness were achieved, which were close to
the values reported for commercial extruded alloys. Reaching higher values of mechanical
properties would concern the degree of circularity of globulized eutectic silicon particles.

3.3. Circularity Analysis of Eutectic Silicon

The histogram distribution in Figure 5a is the result of the great heterogeneity of silicon,
with a rather needle-like morphology, resulting in an average circularity of 0.44. The same
figure shows that the distribution was mainly located in the left zone, which denotes
minimal circularities corresponding to the As-cast sample. The frequency histogram
in Figure 5b corresponded to the HT sample, where the average circularity increased
considerably from 0.44 to 0.71. The frequency histogram was completely distributed to the
right. For the HT-Rolled sample, whose histogram frequency is shown in Figure 5c, the
average circularity of the eutectic silicon particles reached an average value of 0.74, with a
histogram distributed to the right. The main difference was that some particles reached
0.89 of maximum circularity.

The results of Figure 5d correspond to the Forged sample, where the average circu-
larity of eutectic silicon particles reached the value of 0.30. Figure 5e shows the results
corresponding to the HT-Forged sample, where the average circularity of the eutectic silicon
particles reached a circularity of 0.73. The frequency histogram included was distributed to
the right, and a maximum circularity of 0.82 of the eutectic silicon particles was reached.

Table 4 summarizes the microstructural features calculated using ImageJ. The circu-
larity was 0.44 in the As-cast sample, which was comprised of acicular eutectic silicon,
as shown in Figure 3a. It is well known that silicon globulization can be accelerated by
modifying the alloy with strontium [26].

Silicon modification is mainly promoted by the addition of strontium during the
molten stage of the alloy. Strontium modification induces a high density of crystalline
defects, effectively twinning the eutectic silicon and avoiding the growth of needle-like
particles. Because of strontium addition in the heat-treated sample, the particles reached an
average circularity of 0.71 and an average roundness of 0.65, as shown in Figure 3b and
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summarized in Table 4. The reduction of the particle count is related to the dissolution of
such particles during heat treatment [27].
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Table 4. Summary of the characteristics obtained by the DIP.

Sample Particle
Number

Perimeter
(µm)

Area
(µm)2 Roundness Circularity

As-cast 719 9.42 2.77 0.51 0.44
HT 245 11.93 8.73 0.65 0.71

HT-Rolled 496 8.17 4.47 0.73 0.74
Forged 648 11.40 2.92 0.49 0.30

HT-Forged 280 8.65 5.14 0.69 0.73

A combined effect of deformation and modification can be appreciated in the HT-
Rolled sample. Both circularity (0.74) and roundness (0.73) of this sample were the highest
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of all the samples analyzed and can be corroborated in Figure 3c. It is believed that the
defects caused by rolling act synergistically with strontium modification [26]. In contrast,
the Forged sample displays the lowest values of circularity and roundness, as shown in
Figure 3d and summarized in Table 4. This is probably related to the non-uniform strain
caused by open forging as compared to the planar deformation induced by rolling [28].

3.4. Fracture Analysis

The fracture surface analysis of the As-cast sample subjected to the tensile test was
analyzed by SEM, which showed a fracture of the ductile regime type. This can be verified
because it presents an irregular surface with very marked valleys and crests, as can be seen
in the micrograph of Figure 6a, which is characteristic of this type of fracture [29,30]. In the
same figure, the dendritic structure, as well as a certain degree of porosity due to shrinkage,
which act as small cavities that later coalesce into small cracks, is shown. Its mode of
propagation perpendicular to the applied load generated the failure of the material.
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The micrograph in Figure 6b corresponds to the fracture analysis of the HT sample,
in which an irregular fracture surface with a certain degree of porosity was observed,
corresponding to ductile fracture. The micrograph in Figure 6c corresponds to the HT-
Rolled sample, where small fibrous cavities were also observed along the entire surface.
This structure is characteristic of fracture caused by uniaxial tension, where each micro-
cavity is half of a micro-dimple that was formed and then separated in the fracture process.
Based on these features, it can be concluded that the sample presented a ductile fracture.

The surface fracture analysis of the Forged sample is shown in the micrograph of
Figure 6d. The structures observed correspond to an irregular surface full of valleys
and crests, but unlike the previous ones, which do not contain shrinkage of gas porosity
defects, the mode of fracture corresponds to the ductile regime [31]. On the other hand, the
micrograph in Figure 6e corresponds to the HT-Forged sample, which, in a very similar
way to the previous image, shows a fracture mode within the ductile regime.

Hot processing by rolling and forging had an important effect on the microstructure
and mechanical properties of the alloy. In general, the silicon corals were crushed, achieving
a more homogeneous dispersion of silicon particles after plastic deformation.

The high temperature before rolling/forging in conjunction with plastic deformation
caused a better diffusion of the atoms of the constituent elements, resulting in a more
homogeneous composition, regardless of the increased density due to the holes being filled
during plastic deformation.

4. Conclusions

1. All alloys prepared from recycled materials reached values of mechanical properties
and hardness close to those of commercial alloys. Nevertheless, the mechanical
properties could still be improved by applying some post-forging or rolling processes,
such as aging.

2. The modification with Sr that acted directly on the eutectic silicon, the solubilized
heat treatment and the rolling/forging processing together contributed to obtaining a
more homogeneous and refined microstructure with which the mechanical properties
improved considerably.

3. The circularity analysis was of great value since it was possible to quantitatively obtain
the percentage of silicon transformation, achieving in some cases a transformation
close to 90%, which was raised as a primary objective at the beginning of the work.

4. Regarding the open forging process, the results were quite positive, since the HT-
Forged sample presented hardness, UTS and Ys values similar to those of the HT-
Rolled sample. Considering the relative ease of carrying out this process, it is sug-
gested that the open forge turned out to be a much more efficient process.

5. The fracture analysis showed that all samples presented a fracture within the ductile
regime, caused mainly by the coalescence of microvoids in the constituent particles.

6. The chemical compositions of the processed alloy and the commercial alloy were quite
similar. The only differences in the composition were Sr (0.04%) and Ti (0.10%) of
the alloy type 4032 that was manufactured in the laboratory from aluminum scrap;
therefore, it can be said that the alloy is within international specifications.

7. Finally, it can be concluded that the implementation of the forging or rolling process at
an industrial level for the manufacture of small parts using 4032-type alloy prepared
from scrap becomes an economically profitable and attractive process for future
implementations and investigations.
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