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Abstract: To bond a semiconductor power chip on a substrate using the formation of bondlines
exhibiting long-term mechanical durability at high temperatures such as 300 ◦C, compression-assisted
sinter bonding between Cu finishes was carried out at 300–350 ◦C in air. Cu flakes of approximately
7 µm were used as the main filler material; their surfaces were modified by pretreatment using
a formic acid solution, and the existing oxide layers were transformed into copper formate shells. To
increase the amount of the copper formate shells, the shell transformation reaction was controlled by
the deliberate addition of 30 nm Cu2O particles and sustained for 50 min. The formate shells formed
decomposed at a peak temperature of 250 ◦C, forming pure Cu, which rapidly induced sintering
between the flakes and at the Cu-finish–flake interfaces. Therefore, the paste containing Cu flakes
showed a sufficient shear strength of 26.3 MPa even in air after sinter bonding for only 3 min under
5 MPa at 350 ◦C. Although the bimodal-type paste presented near-full-density bondline structures
within 3 min of adding 350 nm pure Cu particles, the strengths with respect to bonding time showed
trends of values less than 26.3 MPa, owing to the excessive oxidation of the 350 nm Cu.

Keywords: core-shell; copper flake; copper formate; surface treatment; sinter bonding; thermo-
compression; thermal decomposition; bondline; shear strength

1. Introduction

For the attachment and stable connection of wide band-gap semiconductor power
devices used at high operating temperatures of 200–300 ◦C [1], or other high heat-generating
devices [2], the current solder joints should be replaced with either Ag [3] or Cu [4]
bondlines. This is because they no longer provide long-term mechanical durability owing
to their lower melting points [5,6]. Hence, a bonding process involving the sintering of Ag
or Cu particles is considered a next-generation bonding technique that can provide superior
mechanical reliability even at high temperatures [7,8] and high thermal conductivities [9].

Bonding using Ag or Cu particles should be performed through solid-state sinter-
ing [10], considering the reported bonding temperature range of 250–350 ◦C [11,12]. Even if
the high surface energy in the particle state enables sintering at temperatures significantly
lower than the melting point, the resultant bondline provides a high melting point identical
to that of the bulk [13,14]. Furthermore, the thermal conductivity in the bondline is higher
than that in solder joints [15], although the value can vary significantly based on the void
fraction in the bondline [16]. However, a long bonding time is inevitably required for
sinter bonding [17]; therefore, reducing the bonding time through the compression-assisted
method is a crucial research topic for increasing productivity [18–21].

Recent research has focused on sinter bonding between Cu finishes using Cu particles
owing to the low cost of bonding material and the elimination of an additional Ag coating
process for the current Ag finish. However, Cu is susceptible to oxidation in air, and its
degree of oxidation increases with increasing temperature [22–24]. The oxidized layer on
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the Cu surface forms a rough contour [25] or detached shell structure [26], making sintering
between Cu particles difficult by diminishing the physical contact between them. Hence,
removing the existing oxide layers on the particles and suppressing oxidation during
heating for bonding are fundamental factors in successfully performing sinter bonding
using a paste containing Cu particles. Most studies on sinter bonding using Cu paste have
adopted reductive formulations to remove oxide layers and particular atmospheres, such as
reducing atmospheres with formic acid vapor [27] or inert atmospheres [28–30]. However,
the formation of a copper compound surface layer by a direct surface modification of Cu
particles may be more effective than indirect methods, such as reductive formulation and
atmosphere control, owing to the elimination of the initial Cu oxide layers and suppres-
sion of Cu oxidation as a barrier during bonding at high temperatures in air. Moreover,
the copper compound layer can generate pure Cu atoms in situ, which is favorable for
sinter bonding, together with the removal of the barrier by decomposition at a specific
temperature. As a representative example, Kim et al. fabricated copper formate layers on
Cu nanoparticles with an average size of 100 nm and subsequently prepared a conductive
ink as a mixture of the particles and 1-methoxy-2-propanol [31]. With the benefits of the
copper formate layers, a film formed after sintering the ink for 1 h at 250 ◦C in nitrogen and
had a low electrical resistivity of 13.5 µΩ·cm [31]. However, research on making a paste
with Cu particles that have formed copper formate layers on the surfaces and performing
sinter bonding using the paste has not been well reported. Due to the fact that, unlike the
filler in ink, the filler size in paste reaches several to tens of micrometers, the thickness of
the copper formate layer should be thickened in proportion; however, there has been no
discussion on how to increase the thickness of the copper formate layer. Therefore, after
developing a low-cost process that covers micrometer-sized Cu particles with a sufficient
thickness of copper formate layer, it is required to evaluate its sinter bonding characteristics
by preparing a paste using the particles as filler.

In this study, a novel thermo-compression sinter bonding technology under air using
a paste containing copper formate-coated Cu particles was developed between the upper
and lower surface finishes of low-cost Cu. Copper formate layers were formed on Cu
particles easily through the wet method, and the optimal formate-coating thickness for
sinter bonding was investigated. Although the air atmosphere may be a harsh condition
for sinter bonding considering the drastic decrease in sinterability between Cu particles
due to oxidation, it would provide a good opportunity to evaluate the usefulness of the
combination of a copper formate layer and thermo-compression by analyzing the sinter
bonding results obtained without a special reductive formulation. Furthermore, we adopted
micron-sized Cu flakes instead of Cu nanoparticles as the filler material, considering the
merits of their low cost, absence of aggregation, and ease of application to commercial
conductive pastes [32].

2. Materials and Methods
2.1. Surface Treatment of Cu Flakes

Purchased Cu flakes (CFL07, size: 6.5–7.2 µm, average thickness: 1.2 µm, JoinM,
Nonsan-city, Republic of Korea) were surface-treated to fabricate a core-shell structure as
follows: Cu flakes of 9 g were immersed in ethyl alcohol (95%, Samchun Pure Chemical
Co., Ltd., Seoul, Republic of Korea) and ultrasounded for 5 min to form a homogeneous
suspension. Next, 5 mL of formic acid (85%, Samchun Pure Chemical) was added to the Cu
flake suspension and stirred at 250 rpm for 10 min at room temperature (RT) to form copper
formate seed layers on the surfaces. Subsequently, Cu2O (size: 20–30 nm, CNVISION
Co., Ltd., Seoul, Republic of Korea), a precursor for copper formate, was added to the
suspension, and the mixed solution was stirred at 250 rpm for 10 to 50 min to develop the
copper formate shells. After the surface treatment, the Cu flakes were washed three times
with ethyl alcohol and dried at RT in a vacuum chamber. Schematic illustrations regarding
the surface treatment procedure of Cu flakes are shown in Figure 1a.
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Figure 1. Schematic illustrations of (a) the surface treatment procedure of Cu flakes and (b) the sinter
bonding procedure.

2.2. Paste Preparation

Pastes containing Cu flakes surface-treated with formic acid were prepared by mixing
with an α-terpineol (purity: 98.5%, Samchun Pure Chemical) at a particle-to-vehicle weight
ratio of 82:18. The premixture was then homogeneously mixed using a spatula to obtain
a stable viscosity for subsequent printing and was called single-modal paste (SM paste).
To prepare the other paste, 350 nm sized pure Cu particles, synthesized in the laboratory
using the wet method, were mixed with the flakes at a weight ratio of 6:4 to enhance the
sinterability between the particles by increasing the packing factor. This paste was named
bimodal paste (BM paste).

2.3. Sinter Bonding

Both chips and substrates for sinter bonding were prepared as dummies with Cu
plates with dimensions of 3 × 3 × 1 mm3 and 10 × 10 × 1 mm3, respectively. The Cu
plates were polished with 2000-mesh sandpaper and then immersed in a 10% H2SO4 water
solution for 1 min to remove surface oxides. The prepared pastes were stencil printed onto
the surface of a Cu dummy substrate using a stencil mask with a slit of 3 × 3 × 0.1 mm3.
Subsequently, the printed pattern was dried at 150 ◦C for 30 s to remove terpineol by
vaporization, followed by placing the dummy chip in alignment. Next, sinter bonding
in air was performed at 300 ◦C or 350 ◦C by thermo-compression bonding under 5 MPa.
Compression was applied throughout the process. The degree of bonding in the bondline
was analyzed as a function of bonding time. Schematic illustrations regarding the sinter
bonding procedure are provided in Figure 1b.

2.4. Characterization

High-resolution scanning electron microscopy (HR-SEM, SU8010, Hitachi High-
Technologies Corp., Tokyo, Japan) was used to examine the particle morphology and
bondline microstructure. To closely observe the surface-treated particles, cross-sectional
samples were prepared using a focused ion beam (FIB, Helios 650, FEI, Hillsboro, OR,
USA) and examined using transmission electron microscopy (TEM, JEM-2010, JEOL Ltd.,
Tokyo, Japan). In addition, the thermodynamic behavior of the surface-treated particles
was analyzed using thermogravimetry-differential thermal analysis (TG-DTA, DTG-60H,
Shimadzu Corp., Kyoto, Japan) by heating in air from 25 to 400 ◦C at a heating rate of
20 ◦C/min. X-ray diffraction (XRD) (DE/D8 Advance, Bruker Corp., Billerica, MA, USA)
and X-ray photoelectron spectroscopy (XPS, K-Alpha+, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) were used to determine the transitions of the phases and chemi-
cal states before and after surface treatment. The mechanical strengths of the bondlines
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were measured using a shear tester (DAGE-series-4000, Nordson Corp., Westlake, OH,
USA) at a shear rate of 200 µm/s. Shear strength was determined as the maximum strength
measured during shearing.

3. Results and Discussion
3.1. Characteristics of Cu Particles after Surface Treatment

Figure 2 shows the XRD results and Cu 2p and C 1s XPS spectra before and after
surface treatment to monitor the phase transition and changes in the surface chemical
states of the Cu particles. While the XRD results in Figure 2a indicate only pure Cu peaks
before treatment, the Cu2O (111) peak at 36.4◦ appeared after the 20 min treatment. Subse-
quently, additional peaks of the copper formate (Cu(COOH)2) phase were detected with
the extinction of the Cu2O peak after treatment for more than 30 min, and the intensity of
the peaks increased over time. Meanwhile, the Cu 2p3/2 XPS spectra (Figure 2b) before
and after treatment indicated a peak at 934.3 eV attributed to Cu–O bonding as well as
a peak at 932.6 eV corresponding to the contribution of neutral-state Cu [33]. However,
the intensity of the 934.3 eV peak decreased after treatment. Moreover, a novel peak at
935.1 eV was detected after treatment, which was attributed to Cu–COOH bonding [31]. In
the C 1s spectra of Figure 2b, a 286.24 eV peak of COO bonding together with
a 288.42 eV peak corresponding to the COOH bonding were observed after treatment [34].
These results imply the formation of a copper formate and the loss of Cu oxides on the
particle surfaces after surface treatment [31].
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Figure 2. (a) XRD patterns of Cu flakes surface-treated for different times, (b) XPS spectra of Cu
flakes before and after the 50 min surface treatment.

Figure 3 shows the surface SEM image, cross-sectional TEM image, and fast Fourier
transform (FFT) diffraction patterns of Cu particles with different treatment times using
formic acid. Before treatment (Figure 3a), the Cu particles had smooth surfaces of CuO in
particulate form. After treatment for 10 min (Figure 3b), the Cu particle surface maintained
a smooth state at low magnification; however, nanoscale surface roughness was observed at
high magnification in the form of a nanosized copper formate seed layer through Equation
(1) [35]. Furthermore, following the subsequent reaction of Equation (2) with the addition of
Cu2O, the thickness of the copper formate layer increased with an increase in the treatment
time to 50 min (Figure 3c) [36]. The particle surface exhibited adequate coverage by the
copper formate layer with an increased surface roughness. Cross-sectional TEM images of
a particle after treatment (Figure 3d) and its fast Fourier transform (FFT) patterns (Figure 3e)
provide clear evidence of the formation of a copper formate layer. The copper formate
layer formed a conformal coating on the core Cu particles, and the layer thickness was
approximately 70 nm. Crystalline phases of Cu (111), Cu2O (111), and copper formate (110)
(001) (221) were detected.
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CuO + 2HCOOH→ Cu(COOH)2 + H2O (1)

Cu2O + 2HCOOH→ Cu + Cu(COOH)2 + H2O (2)

While the decomposition of copper formate layers generates pure Cu atoms to enhance
sinterability between particles, the layer may also inhibit Cu oxidation until it decomposes
during heating in air. TG-DTA was performed to examine the decomposition temperature
and confirm oxidation inhibition, and the results are shown in Figure 4. Before surface
treatment (Figure 4a), the Cu particles exhibited a gradual weight increase from 156 ◦C with
heat generation owing to oxidation. In this study, the point of weight gain was defined as
a 0.1% increase compared to the initial weight. Meanwhile, the surface-treated Cu particles
produced different TG-DTA results depending on the surface treatment time, as shown in
Figure 4b. The results for the Cu particles surface-treated for 10 to 20 min were similar to
those for the non-treated particles. Meanwhile, the behaviors of the Cu particles surface-
treated for 30 to 50 min were completely different in both TG and DTA, indicating that the
Cu particles were well coated with sufficient thicknesses of copper formate layers in that
case. Therefore, the Cu particles well-covered with copper formate layers did not exhibit
a significant weight increase until they exceeded 200 ◦C, which implies that the formed
copper formate layers provided oxidation resistance to the core Cu thanks to the surface
coverage until decomposition. Consequently, the results in Figure 4b indicate again that
the addition method of Cu2O was very successful in enhancing the growth of the copper
formate layer and the coverage of the copper formate shells. The copper formate layer
eventually decomposed from approximately 220 ◦C, generating active Cu atoms using
Equation (3) [36]. This decomposition beginning temperature was similar to the result of
a previous similar measurement [37], and it appeared to be somewhat delayed compared
to the result measured at a relatively low heating rate of 10 ◦C/min [36].
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Cu(COOH)2 → Cu + 2CO2↑ + H2↑ (3)

The exothermic peak formed at an identical temperature is attributed to sintering
between the reduced Cu, indicating a peak temperature of 250 ◦C [38]. The stable emission
of carbon dioxide and hydrogen gases generated during decomposition is considered
beneficial for the temporal suppression of Cu oxidation. The observed TG-DTA results
indicate that copper formate layers hinder the oxidation of Cu particles until their decom-
position and normal oxidation behavior proceeds at temperatures exceeding 250 ◦C after
the decomposition. However, late oxidation can also be suppressed if sintering between
particles is rapidly performed under compression, as in our sinter bonding process.

3.2. Bondline Microstructures

Figure 5 shows cross-sectional BSE images of the upper interfaces of the bondlines
formed under 5 MPa compression using the SM paste at varying bonding temperatures
and times. In the bonding at 300 ◦C, the bondlines that sinter-bonded for 1 to 3 min did not
indicate well-sintered microstructures. In a 5 min bonding sample (Figure 5a), however,
sintering between the Cu flakes and Cu finish/Cu flake interfaces was observed with
a high sinterability of fresh Cu generated in situ by the decomposition of copper formate,
which accomplished Cu-Cu bonding through the Cu bondline. Despite the presence
of interparticle voids in the bondline and thinly oxidized Cu layers at some interfaces
between the flakes and exposed Cu surfaces, bonding at the chip/bondline interface was
confirmed by microstructural observations. Therefore, the intended inter-bonding strategy
was successful. As shown in Figure 5b, aggregates of Cu nanoparticles formed by the
thermal decomposition of copper formate layers were also clearly observed. When the
bonding temperature was raised to 350 ◦C (Figure 5c–e), sinter bonding was achieved even
by 1 min bonding, and the density in the bondline gradually increased with increasing
time. The change in porosity in the bondline with bonding time is presented in Figure 6. At
1 min bonding, porosity reached 11.6%; however, as bonding time increased to 3 min and
5 min, porosity decreased to 10.1% and 9.6%, respectively. Furthermore, the oxidized areas
at the interfaces between the flakes expanded with increasing bonding time in the porous
structure of the bondline before reaching full density. The bondline microstructures in the
1 min bonding sample (Figure 5c) were similar to those (Figure 5a) after 5 min bonding at
300 ◦C. When the bonding time was increased to 3 and 5 min, oxidation gradually advanced
on the exposed Cu surfaces, but the degree of sintering by interdiffusion between the Cu
particles and between the Cu finish/Cu particle interfaces increased significantly, resulting
in a gradual reduction in porosity in the bondline.
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Figure 6. Porosities in cross-section BSE images of bondlines sinter-bonded under 5 MPa compression
at 350 ◦C in air using SM paste with different bonding times.

Figure 7 shows cross-sectional BSE images of the upper interfaces of the bondlines
formed using the BM paste with respect to the bonding temperature and time. Compared
to the SM paste samples, the BM paste samples indicated initial uniform packing factors,
which induced near-full-density bondline structures from only 3 min of bonding at both
300 ◦C and 350 ◦C. Meanwhile, in the 1 min bonding bondlines (Figure 7a,d), the added
350 nm Cu particles provided a highly scattered partial sintering with an enlarged contact
area between the particles. However, the scattered 350 nm Cu particles interrupted the
mature sintering between Cu flakes, which could account for the 11.5 MPa and 14.2 MPa
shear strengths. The 3 min bonding bondline at 300 ◦C (Figure 7b) presented a near-full-
density microstructure, and the distribution of Cu oxide layers (the darker gray area) at
interfaces between the particles and the Cu finish/Cu flakes interfaces was also observed.
During the sintering process in air, oxygen that has penetrated from the outside through the
particles that have not been densified oxidizes the surfaces of particles inside the bondline.
The surface oxidation greatly inhibits the sinterability of Cu particles. In the microstructure
in Figure 7b, while coarsened Cu grains by effective sintering exist (refer to rectangular
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region 2), it is observed that dark-gray color of Cu oxide is distributed around Cu grains
(refer to rectangular region 1 and 2) as a barrier. Subsequently, the 5 min bonding bondline
(Figure 7c) did not cause a significant microstructural change. Again, these high-density
bondlines were completely different from the microstructures obtained using the SM paste
that consisted of only Cu flakes. Meanwhile, the 1 min bonding at 350 ◦C (Figure 7d)
showed slightly improved sintering results between particles and at the particle/chip
interfaces compared to the bondline at 300 ◦C for the same bonding time. However,
the 3 min bonding bondline at 350 ◦C (Figure 7e) exhibited an extensive generation of
oxidized Cu owing to the high temperature. In the subsequent 5 min bonding bondline
(Figure 7f), the Cu oxide phase slightly expanded with the intensified oxidation of the
particles. Figure 7g,h show the black-and-white images of Figures 7e and 7f, respectively,
produced by image processing. The original dark gray area, namely the oxide area, has
been converted to black, and the black areas in the 3 min and 5 min bonded bondlines were
measured to be 60.4% and 68.4%, respectively, confirming a continuous growth of the oxide
phase with increasing bonding time.
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Figure 7. Cross-section BSE images of the upper interfaces of bondlines sinter-bonded under
5 MPa compression in air using BM paste at different temperatures and times: (a) 300 ◦C—1 min,
(b) 300 ◦C—3 min, (c) 300 ◦C—5 min, (d) 350 ◦C—1 min, (e) 350 ◦C—3 min, and (f) 350 ◦C—5 min.
(g,h) Image processing results of (e,f).

3.3. Shear Strength of Bondlines

Figure 8 shows the average shear strength values for bondlines formed as a function
of bonding temperature and time using the two types of paste under compression of 5 MPa.
While all the sintered bondlines exhibited increased strength with increasing bonding time,
each trend varied according to the paste type and bonding temperature. For the bondline by
SM paste at 300 ◦C, the shear strength could not be measured until 3 min of bonding owing
to inadequate sintering, while it reached 19.7 MPa after 5 min of bonding. However, when
the bonding temperature was increased to 350 ◦C, the shear strength approached 18.9 MPa
even after 1 min of bonding, which indicated a significant improvement in sinterability by
Cu diffusion that increases sharply from 300 ◦C. The subsequent 3 min bonding provided
an excellent shear strength of 26.3 MPa owing to the increased bondline density. When the
bonding time was increased to 5 min, the strength increased slightly to 27.1 MPa because of
the additional increase in bondline density under the increased Cu oxidation, as explained
in Figure 6. Wu et al. prepared a paste using multi-scale Cu particles that were composed
of spherical NPs (20–60 nm), submicrometer-particles (0.2–0.6 µm), and micro-particles



Metals 2023, 13, 1516 9 of 13

(1–2 µm) and performed a 5 MPa compression sinter bonding with real Si chips and direct-
bond copper (DBC) substrates [39]. To acquire a shear strength of 23.8 MPa, they adopted
a slow heating rate of 10 ◦C/min and a long bonding time of 30 min at 300 ◦C even in
Ar/H2 mixed gas [39]. Wang et al. prepared a paste by mixing lactic acid-treated Cu
nanoparticles with an average diameter of 100 nm and 3-dimethylamino-1,2-propanediol
and conducted a 4 MPa compression sinter bonding in air using Cu cylinders [40]. As
a result, a shear strength of approximately 21.5 MPa was obtained by bonding for 400 s
at 225 ◦C after maintaining for 3.5 min at 100 ◦C [40]. Son et al. prepared a bimodal
Cu paste by mixing 1 µm Cu particles, 0.3 µm Cu particles, and polyethylene glycol-
based solvent and carried out a 5 MPa compression sinter bonding for 1 min at 280 ◦C
between Cu dummy chips with Au finish and DBC substrates [41]. With the suppression
of Cu oxidation through processing in a vacuum, a high shear strength of approximately
30.5 MPa was achieved [41]. Liu et al. prepared a paste by mixing carboxylic acid-treated
quasi-nanoparticles, ethylene glycol, and terpilenol and obtained a high shear strength of
36.5 MPa after a 5 MPa compression sinter bonding for 3 min at 250 ◦C in nitrogen with Cu
dummy chips and DBC substrates [42]. In comparison with these results, the shear strength
result of 18.9 MPa after 1 min bonding in air atmosphere achieved in this study implies
that Cu particles well surface-treated with formic acid can provide a high sintering speed
and decent sinterability by suppressing Cu oxidation.
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Meanwhile, for bondlines formed by BM paste at 300 ◦C, 1 min bonding showed a low
strength of 11.5 MPa owing to incomplete sintering. However, a bonding time of 3 min
or longer resulted in sufficient strength, exceeding 21 MPa. Although a near-full-density
bondline was formed from 3 min of bonding, the strength values were lower than those
(26.3–27.1 MPa) of the 300 ◦C SM paste bonding because of the lack of effective sintering
between the particles due to the relatively low temperature of 300 ◦C and the existence
of oxide layers between the Cu particles. The bondline obtained by 1 min bonding after
raising the temperature to 350 ◦C presented an insufficient strength of 14.2 MPa; however,
subsequent 3 and 5 min bondings showed a gradual increase in strength to 21 MPa with an
extensive distribution of oxide phases. Consequently, complete sintering between the flake
particles was more effective in improving the robustness of the bondline than the packing
factor improvement effect with the addition of 350 nm sized pure Cu particles. The addition
of the 350 nm sized Cu particles was effective in improving sinterability in the early stage
of sintering; however, they were quickly oxidized during sintering in air, thereby hindering
an effective sintering between the Cu particles. As a result, the mechanical robustness of
the bondline where the oxidized 350 nm sized Cu particles had been interposed between
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the Cu flakes was analyzed to be low while very dense bondlines were observed after
compression sintering for more than 3 min.

An analysis of the mechanical properties in Figure 8 was attempted again through
fracture analysis. Figure 9 displays fracture surface images of bondlines formed at different
bonding temperatures and times. Except for the bondline/substrate interface failure in
the 1 min and 3 min samples of 300 ◦C bonding using SM paste, all the fracture paths in
the other samples were generated within the bondline. When comparing only the 1 min
bonding fracture surfaces, all showed somewhat insufficient sintering. In the case of the
SM fracture surface, sintering between the Cu flakes was observed, while in the case of
the BM fracture surfaces, 350 nm sized Cu particles were sintered, hindering sintering
between the Cu flakes (of course, the 350 ◦C bonding specimen was more sintered than
the 300 ◦C bonding specimen). Subsequently, when comparing only the 3 min bonding
fracture surfaces, quite well-sintered structures were indicated, such as striation fracture
structures formed by shearing, but messy debris was observed as the Cu oxide phases fell
off. In the case of the SM fracture surface, interparticle voids were observed, but sintering
between flakes seemed to be strong and oxide debris was mainly distributed near the
voids; however, in the case of the BM fracture surfaces, there were more complex fracture
structures as the 350 nm sized Cu particles fell off and oxide debris was distributed across
the entire fracture surface. Finally, when looking at the 5 min bonding fracture surfaces,
in the case of the SM fracture surface, sintering between flakes seemed to be stronger and
oxide debris was distributed locally. In contrast, in the case of the BM fracture surfaces,
although the densities of fracture surfaces were significantly high, more complex fracture
structures were observed owing to the influence of the 350 nm sized Cu particles and
oxide debris distributed across the entire fracture surface. Through these fracture structure
analysis results, it was confirmed that in the case of the BM samples, the oxidation of the
350 nm sized Cu particles greatly reduced the mechanical robustness of the bondline, which
led to a decrease in shear strength.
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4. Conclusions

For a next-generation chip attachment by sinter bonding in air, a paste containing
Cu-copper formate core-shell flakes was prepared, and thermo-compression bonding was
conducted between low-cost Cu finishes. Thick copper formate shells of approximately
70 nm were formed after an immersion of the flakes, together with Cu2O nanoparticles
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as a precursor, in a dilute formic acid solution for 50 min. The formation of the copper
formate shells was confirmed by XRD, XPS, and TEM analyses. Moreover, TG-DTA results
showed both the decomposition of the copper formate layers from approximately 220 ◦C
and sintering between generated Cu atoms related to the peak at 250 ◦C. The sinter bonding
in air using the flakes under a compression of 5 MPa exhibited a sufficient shear strength
of 18.9 and 26.3 MPa after only 1 and 3 min at 350 ◦C, respectively, despite the retention
of big interparticle voids and local oxidation in the bondline. This fast sinter bonding
result even in air indicates a suppression of Cu oxidation by the formate shells and a
superior sinterability of active Cu in situ generated by the thermal decomposition of the
shells. Consequently, the coverage by sufficient thicknesses of copper formate layers
greatly reduced the disadvantage of micrometer-sized Cu filler in sinter-bonding paste.
The addition of 350 nm size pure Cu particles filled the interparticle voids and generated
a near-full-density bondline within 3 min. Meanwhile, the shear strength values in the
bondlines were less than 26.3 MPa due to severe oxidation in the added Cu particles that
prevented sintering between the particles.
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