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Abstract: The automation of welding processes requires the use of automated systems and equipment,
in many cases industrial robotic systems, to carry out welding processes that previously required
human intervention. Automation in the industry offers numerous advantages, such as increased
efficiency and productivity, cost reduction, improved product quality, increased flexibility and
safety, and greater adaptability of companies to market changes. The field of welding automation is
currently undergoing a period of profound change due to a combination of technological, regulatory,
and economic factors worldwide. Nowadays, the most relevant aspect of the welding industry is
meeting customer requirements by satisfying their needs. To achieve this, the automation of the
welding process through sensors and control algorithms ensures the quality of the parts and prevents
errors, such as porosity, unfused areas, deformations, and excessive heat. This paper proposes an
intelligent and adaptive system based on the measurement of welding joints using laser scanning
and the subsequent analysis of the obtained point cloud to adapt welding trajectories. This study
focuses on the optimization of T-joints under specific welding conditions and is intended as an initial
implementation of the algorithm, thus establishing a basis to be worked on further for a broader
welding application.

Keywords: welding; robotics; automation; thick joints

1. Introduction

A welded joint is defined as the union of two or more elements, creating continuity
through heat and/or pressure with or without the use of filler material. Currently, there
are numerous welding processes available, such as Gas Metal Arc Welding (GMAW) with
a consumable electrode, which is the wire itself [1]; Flux Cored Arc Welding (FCAW) [2];
Gas Tungsten Arc Welding (GTAW) [3]; and Submerged Arc Welding (SAW) [4], among
others. Among these processes, GMAW technology is widely used and will be employed in
this work.

In certain industries, known as heavy industries (naval industry, oil and gas sector,
energy sector, etc.), many components are large-scale mechanized and welded structures.
For example, in the naval industry, the construction of large ships with lengths exceeding
24 m and internal volumes T.R.G. greater than 50 requires over 1000 h of welding. These
joints can present some difficulties [5], including: (i) non-uniform and irregular pre-welded
grooves, (ii) the need for certified and qualified welding operators, (iii) long deposition
times, and (iv) welding positions that require special skills. Furthermore, in these types of
sectors, there is often high physical demand and risk for the operator.

Specifically, within the different types of joints, welding thick joints has been shown in
the literature to be one of the most challenging to automate, as they require multiple layers
of deposited material to fill the joint [6]. Consequently, the current practice of manufacturing
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thick-component joints has largely been limited to manual welding processes. Thus, the
automation of welding using robotic systems has become an inevitable trend for this type
of joint.

Until now, two main alternatives have been proposed for automating this type of
welding, but complete automation has not been achieved. In the first alternative, the
predefined welding paths are established using robotic welding configurations based on
computer-aided design (CAD), where the welding solution can be planned, programmed,
modified, and simulated offline with precise robotic kinematics and ideal (nominal) di-
mensions of the welds [7]. Systems that program manufacturing in advance clearly cannot
predict or take into account the deformations and contractions that these types of parts
undergo during layer-by-layer welding. Furthermore, deviations in geometry present in
pre-welded joints cannot be considered solely by contemplating nominal dimensions that
may not align with reality. Lastly, the exact positioning of the parts can also be inadequate
due to incorrect assemblies or unforeseen displacement of the parts [8].

Second, there are methods based on scanning the joints and subsequently predicting
the welding points, which generally consist of three stages. First, the geometric data of the
joints are acquired through vision systems [9], and then they are processed to automatically
select an optimal torch location. Next, precise tracking of the joints is performed, passing
through the preselected optimal points [10]. Third, real-time defect detection is considered
to assess whether the welds meet quality control requirements [11]. These processes are
complex due to the high degree of automation required and algorithmic complexity. Other
factors that also affect these processes are reflection problems with vision systems during
welding caused by spectral signals [12], the sound of the arc [13], and the molten pool that
can alter the scanned profile [14]. Another significant challenge in the automatic welding
of thick plates is the contraction that the joint undergoes, leading to deformation as a result
of high welding temperatures.

The solutions provided for robotic welding path generation span a range of approaches,
including classical methods, such as arc detection, and novel techniques, such as multi-
target programming. In addition, recent research has delved into intelligent path opti-
mization strategies, which are poised to revolutionize the field. Through-arc sensing was
developed for reciprocating wire feed gas metal arc welding, utilizing the welding volt-
age waveform to detect torch height and weld joint tracking, with voltage characteristics
analyzed to reveal effective estimators for torch height sensing and reliable seam tracking
achieved through voltage integration and a moving average algorithm [15]. Fridenfalk
and Bolmsjö [16] addressed the challenges of joining ship sections in confined spaces. This
classic approach utilizes control algorithms for seam tracking during welding, enhancing
the adaptability of robotic systems to tolerate tolerances and variations in joint geometry.
Kim [17] extended this concept by developing an arc sensor for reciprocating wire feed
gas metal arc welding, leveraging voltage waveform characteristics to achieve torch height
sensing and seam tracking.

Recent advancements in multi-objective programming have yielded substantial ben-
efits. Zhou, Wang, and Gu [18] proposed a discrete MOEA/D with hybrid environment
selection, optimizing welding paths based on path length and energy consumption. This
technique showcases the power of optimization algorithms in achieving effective and
efficient robotic welding processes. Ogbemhe, Mpofu, and Tlale [19] harnessed a hy-
brid multi-objective genetic algorithm to design trajectories that minimize discontinuities,
ultimately enhancing tracking ability and process efficiency.

A survey by Wang, Zhou, Xia, and Gu [20] highlighted the strides in intelligent path
optimization for welding robots. This study emphasizes the significance of automatic and
efficient path optimization technologies to streamline robot path planning. This intelligent
approach addresses the challenges posed by large-scale welding joints and welding seams,
contributing to enhanced enterprise competitiveness, productivity, product quality, and
reduced production costs.
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Furthermore, Rout et al. [21] proposed an improved multi-objective ant lion optimizer
for trajectory planning, considering kinematic and dynamic constraints. Their technique
optimizes trajectories while balancing smoothness and productivity, exemplifying the
potential of optimization algorithms in refining robotic motion planning.

Among these methods, “click and go” solutions can be found where the operator
decides the most suitable welding point based on the information acquired by the vision
system. This type of solution requires more operator intervention and can lead to errors, as
the operator is presented with a limited set of profiles that may be insufficient to account
for deformation along the entire joint. Additionally, manual point selection prolongs
production time, making automatic selection through algorithms an improvement for the
process, as it eliminates the need for an operator to select welding points for each layer.

This paper presents a system that takes the novelty of using profile scan data from
a laser profilometric sensor to generate trajectories aligned with the robot’s coordinate
system. In addition to improving accuracy, this approach has the dual capability of au-
tonomous operation and collaborative human supervision. The fusion of unsupervised and
operator-assisted functionality presents a compelling opportunity to drive the efficiency
and adaptability of robotic welding processes to new heights. In this work, following the
mentioned approach, to provide a fully automated, intelligent, and adaptive solution for
welding thick joints, an automatic robotic system equipped with a laser profilometer and an
algorithm for finding optimal welding positions was proposed. This system also checks the
robot’s accessibility and movement consistency. More specifically, the main objective of this
work was to define the torch’s trajectory automatically for welding the first layer of a thick
joint based on the profiles of the joints acquired by the laser profilometer. This study initially
targets the optimization of T-shaped joints within specific welding conditions. As we delve
into this innovative realm, it becomes evident that certain pivotal facets require further
exploration. One such facet pertains to the development of a comprehensive, perhaps
dimensionless, process description capable of extending the method’s applicability across
diverse scenarios. Moreover, a detailed exposition elucidating the automatic extension
of the algorithm to accommodate varying parameters, encompassing joint size, material
composition, and orientation, emerges as a logical progression. Additionally, a vital stride
toward the robustness of this approach necessitates a comprehensive series of validation
tests encompassing joints of varying sizes, materials, and orientations. By addressing
these fundamental components, this study not only solidifies its relevance in the context of
T-shaped joints but also lays a robust foundation for its extension to a broader spectrum of
welding applications.

2. Materials and Methods
2.1. Materials

To validate and illustrate the development carried out in this work, “T”-shaped joints
made of thick mild steel plates for oil and gas sector applications were analyzed and welded.
These types of joints had the geometry depicted in Figure 1b, featuring a double-beveled
joint that was pre-welded at the corners to ensure minimal deformations. The thickness
of the plates was 60 mm, and the bevel angle was 45 degrees. A commercially available
ER70S-6 steel wire with a diameter of 1.2 mm was used for welding.
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Figure 1. (a) Robotic welding set-up, (b) representation of the thick joint with T-shaped geometry,
and (c) diagram of the joint scanning process using the laser profilometer.

2.2. Set-Up

In this work, to develop an intelligent and adaptive welding system based on joint
scanning, a robotic cell designed to provide precise and reliable welds was used, as shown
in Figure 1a. This cell consisted of a Titan XQ 400 AC Puls welding generator with a
BUSINTX11 Profibus interface (EWM), which powers the GMAW welding torch mounted
on the Fanuc Arc Mate 100-iC robotic arm. This setup was also equipped with the M drive
4 Rob5 XR RE wire feeder (EWM) and a shielding gas system [22].

For joint scanning, a Queltech Q4-120 laser profilometer was installed on the welding
torch. It is a high-precision device designed to measure the three-dimensional shape of
objects. It has a range of 120 mm on the Z-axis, 70 mm on the X-axis, a working distance
of 84 mm, and a resolution of 0.0798 mm. The scanning position of the robot is shown in
Figure 1c.

For welding, a 17 mm diameter nozzle and a Stick-out (the distance the wire extends
from the nozzle) of 17 mm were used. As a shielding gas, a mixture of 80% argon and 20%
carbon dioxide was introduced into the torch, with a flow rate of 17 L/min.

2.3. Data Acquisition Chain

To communicate the different elements that make up this intelligent and adaptive
welding system, consisting of the robot, the monitoring application, the database, and the
laser profilometer, a device-dependent communication configuration was established, as
shown in Figure 2a. In this system, process monitoring was carried out using an open-loop
control. For this purpose, the laser profilometer was installed as an external sensor, and
the internal signals of the welding machine were also collected: current, voltage, wire feed
speed, and travel speed. The positions of the robot axes and the wrist angles with respect
to the coordinates of the workpiece were also monitored. Figure 2b illustrates the 3D joint
geometry in the torch coordinate system, providing a representation of the joint geometry
as perceived from the torch’s perspective. On the other hand, Figure 2c depicts the profile
captured by the sensor in its own coordinate system. This depiction offers insight into
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the joint profile from the sensor’s point of view. Therefore, while Figure 2b portrays the
geometry’s appearance from the torch, Figure 2c reveals the profile perception as captured
by the sensor.
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Figure 2. (a) Data acquisition chain for the developed intelligent and adaptive welding system;
(b) three-dimensional reconstruction of the acquired profiles; (c) discrete profile of the joint.

To initiate the process, a scanning sequence of the weld joint was performed with the
robot in the position shown in Figure 1c, scanning the entire length of the joint. Figure 2b
shows the 3D reconstruction of the joint based on the 2D profiles acquired by the laser
profilometer. For each welding layer, a profile was stored every 20 mm scanned along the
joint. From these profiles, the algorithm developed in this work calculated the welding
points, i.e., the points that the torch will travel to weld the joint.

Figure 2c shows the point clouds of the equidistant discrete profiles recorded by the
laser to cover the length of the joint. Although the profile shown in Figure 2c appears
remarkably clear and has minimal noise, it is recognized that this type of laser profilometer
inspection has general sources of uncertainty in the process. These sources of uncertainty
manifest themselves in several facets. First, there was the possible presence of outliers in
the point cloud dataset, which requires meticulous filtering procedures for their elimination.
In addition, inherent misalignments in the profiles themselves could indicate cases in which
the joint alignment does not exactly match the designated laser trajectory due to hold-ups
in the mechanical system of attaching the sensor to the robot. This last point required
frequent calibration of the system.

3. Results
3.1. Influence of Welding Parameters

The welding process plays a crucial role in achieving strong and reliable joints, es-
pecially in applications involving thick plates and delicate ceramic components. In this
study, we delved into the influential factors affecting the welding of the first layer of a joint
subjected to a 45◦ bevel angle (Figure 1b). The primary objective of this initial layer was to
effectively fill the gap of 3–4 mm between the thick plates housing the ceramic material,
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which demands precise control of the welding parameters. To enhance joint filling, we
investigated the impact of introducing an oscillation in the welding trajectory. Additionally,
we explored the significance of the torch orientation, as an improper inclination could lead
to potential collisions with the joint walls. The nominal inclination of the torch stood at
22.5◦, but this study involved an analysis of various inclination angles. Detailed informa-
tion on the range of values examined for the oscillation amplitude and torch inclination
can be found in Table 1. By meticulously studying the effects of these critical parameters,
we aimed to provide valuable insights for optimizing the welding process in ceramic-plate
joints, ultimately ensuring robust and defect-free welds. The subsequent figure, Figure 3,
offers visual representations of the scanned profiles for the cases under consideration,
providing an initial glimpse into the influence of the welding parameters on the joint
filling process.

Table 1. Variation of the most critical parameters of the welding process for the analysis of their influence.

Analyzed Parameter Minimum Value Maximum Value Increment

Oscillation amplitude (A) 0 mm 3 mm 1 mm
Angle variation (α) −3◦ 3◦ 1◦
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angle of 0◦ and 3◦; (c) Profiles acquired after depositing the first bead with a variation of the torch
inclination angle of 0◦ and −3◦.

In this work, initially, an experimental study was conducted analyzing the influence
of the two most critical parameters in the welding of the first layer of the analyzed joint
(Figure 1b). This first layer needed to fill a gap of 3–4 mm between the thick plates where
the ceramic was placed. In order to ensure proper material deposition and distribution, a
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perpendicular oscillation into the welding trajectory was introduced. This oscillation did
not induce any variation in the torch height within the robot’s global coordinate framework.
Specifically, in this section, the influence of the oscillation amplitude value was studied
to observe its effect. On the other hand, another critical parameter was the orientation
of the torch, as the bevel angle of the joint was 45◦, and the torch could collide with the
joint walls. The nominal inclination of the torch was 22.5◦, but the influence of varying
this inclination was analyzed. The range of values analyzed for the oscillation and angle
variation parameters can be observed in Table 1.

In the following figure, the scanned profiles of the proposed cases can be observed.
As can be seen in Figure 3a, the change in oscillation amplitude from 0 to 3 mm did not
affect the joint filling shape, and the height reached by the first bead was similar. There was
also no apparent influence from the variation in the torch inclination angle, as observed in
Figure 3b,c. In conclusion, it was confirmed that the influence of oscillation amplitude and
variation of the torch inclination angle within the analyzed range was negligible. Therefore,
the system validation tests were conducted with an oscillation amplitude of 0 mm and a
variation in the torch inclination angle of 0◦.

3.2. System Learning

The approach described in this section was based on combining the experience of
a skilled operator with a machine learning system to develop an intelligent solution for
welding thick joints. To achieve this, before developing an algorithm that automatically
selected the welding points based on the profiles acquired by the laser, an expert operator
was asked to indicate the optimal welding points based on the geometric shape of the
profiles. For this purpose, the operator used a solution similar to the one presented in
Section 2, implementing a “click and go” approach. In this way, the system had an intuitive
user interface that allowed the expert operator to visualize the acquired profiles and select
the optimal welding points. During this process, the coordinates of these points were
recorded together with the acquired profiles. These data were later used to design the
prediction algorithm and validate the obtained results.

3.3. Automatic Determination of the Welding Trajectory

In this section, the methodology used for the development of an algorithm that
automatically selected the welding points is described, starting from the treatment of
the profile acquired by the laser profilometer, continuing with the determination of the
welding points, and finally, determining their implications in defining the torch positions
for welding the first bead.

3.3.1. Processing of the Acquired Profiles

Once the thick joints were scanned to weld the first bead, point clouds were obtained.
As can be observed, the empty joint before welding the first bead had a V shape, and
the weld should go through the middle. Since performing a numerical analysis with a
point cloud was too challenging, polynomial interpolation and curve fitting were proposed
as solutions to work with the profile. In this way, a curve or mathematical function
(Equation (1)) was constructed that best fits the available series of data. However, as an
approximation, there was always an error calculated using Equation (2).

Pn(x) = f (x0) + f ′(x0)(x− x0) +

(
1
2!

)
f ′′(x0)(x− x0)

2 + . . . + (1/n!) f (n)(x0)(x− x0)
n (1)

f (x)− Pn(x) = Rn(x) = (1/(n + 1)!) f (n+1)(ε)(x− x0)
n+1 (2)

where n is the degree of the polynomial. This polynomial, defined by Equation (1), had the
desired degree. To determine the optimal degree, a sensitivity study was conducted, testing
polynomials of different degrees. The polynomial of degree 15 was the minimum degree
polynomial, which significantly reduced the difference in error. As the degree increased,
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the approximation of the regression of the points improved. However, working with a
higher degree polynomial became more challenging because the number of roots increased,
and the polynomial became too wavy. On the other hand, it was determined that this
polynomial must have a minimum degree of 4 because, if it is lower, the function will not
have at least two inflection points to work with, or the working areas of the polynomial
will be too wide, and the accuracy will not be sufficient. Therefore, it is important to strike
a balance, which in this case was achieved with a polynomial degree of 15 (Figure 4).

Metals 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

3.3.1. Processing of the Acquired Profiles 

Once the thick joints were scanned to weld the first bead, point clouds were obtained. 

As can be observed, the empty joint before welding the first bead had a V shape, and the 

weld should go through the middle. Since performing a numerical analysis with a point 

cloud was too challenging, polynomial interpolation and curve fiHing were proposed as 

solutions to work with the profile. In this way, a curve or mathematical function (Equation 

(1)) was constructed that best fits the available series of data. However, as an approxima-

tion, there was always an error calculated using Equation (2). 

����� � ����� 	 �
������ � ��� 	 � 1
2!� �

������ � ���� 	 ⋯ 	 �1/�!����������� � ���� (1)

���� � ����� �  ����� � �1/�� 	 1�!������������ � ������ (2)

where n is the degree of the polynomial. This polynomial, defined by Equation (1), had 

the desired degree. To determine the optimal degree, a sensitivity study was conducted, 

testing polynomials of different degrees. The polynomial of degree 15 was the minimum 

degree polynomial, which significantly reduced the difference in error. As the degree in-

creased, the approximation of the regression of the points improved. However, working 

with a higher degree polynomial became more challenging because the number of roots 

increased, and the polynomial became too wavy. On the other hand, it was determined 

that this polynomial must have a minimum degree of 4 because, if it is lower, the function 

will not have at least two inflection points to work with, or the working areas of the poly-

nomial will be too wide, and the accuracy will not be sufficient. Therefore, it is important 

to strike a balance, which in this case was achieved with a polynomial degree of 15 (Figure 

4). 

 

Figure 4. Stage of processing the measured profile by the laser profilometer, where the data is ap-

proximated to a polynomial of degree 15. 

3.3.2. Determination of the Welding Points 

For the determination of the optimal welding points and to be able to plan the torch 

path, it was beneficial to acquire the characteristic points of the joint profile. First, the 

characteristic points of the polynomial defined in the previous section were identified. 

The minimum point of the polynomial was useful not only for positioning the torch 

in each weld but also for defining the inclination of the torch to be applied. To search for 

this point of the polynomial, the roots of the derivative were calculated. These roots were 

filtered to choose the relevant ones, as those that were close to the area of the optimal torch 
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3.3.2. Determination of the Welding Points

For the determination of the optimal welding points and to be able to plan the torch
path, it was beneficial to acquire the characteristic points of the joint profile. First, the
characteristic points of the polynomial defined in the previous section were identified.

The minimum point of the polynomial was useful not only for positioning the torch
in each weld but also for defining the inclination of the torch to be applied. To search for
this point of the polynomial, the roots of the derivative were calculated. These roots were
filtered to choose the relevant ones, as those that were close to the area of the optimal torch
position were retained. In this case, the minimum point of the polynomial created in the
previous section (Figure 5 in blue) can be seen in Figure 5 in yellow.
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Regarding the inflection points of the polynomial, it was necessary to calculate the
second derivative. Once the list of inflection points was obtained, they were filtered, and
only the first inflection point to the left of the minimum point and the first inflection point
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to the right of the minimum point were considered. These points can be seen in Figure 5
in cyan.

f ′′(k) ≥ 0, f ′′(k + 1) ≤ 0 In f lection point k : k1 (3)

f ′′(k) ≤ 0, f ′′(k + 1) ≥ 0 In f lection point k : k2 (4)

Once the inflection points were calculated, the hot area (where the welding point is
located) was defined as the area between the two inflection points. Another polynomial
fitting was performed with the remaining profile points within this zone to obtain a more
accurate approximation (Figure 5, polynomial in red). To continue, the three characteristic
points of this new polynomial were recalculated: the minimum point (Figure 5, in pink)
and the two inflection points (Figure 5, in maroon).

Since the objective of the welding process is to fill the joint, and both inflection points
were prominent for this joint, a “midpoint” between these two points was sought as the
selected point. To accomplish this, two tangent lines were calculated from both inflection
points (k3 and k4), and the bisector of these two tangent lines was drawn, as shown in
Figure 5, in pink. Along the bisector lies the optimum point for torch placement, but the
distance from this point to the minimum point remains unknown.

From the data stored through the machine learning system (Section 3.2), where an
expert operator views some profiles and clicks on the optimal welding point, the average
of all distances from the minimum point to the welding point was calculated. Using this
average value, a polynomial parallel to the adjustment polynomial was created, shifting the
adjustment polynomial by that average value (Figure 5, polynomial in green). The selected
point, i.e., the optimum welding point where the torch (specifically the tip of the wire)
should be placed for proper welding, would be where this shifted polynomial intersects
with the bisector.

In summary, through this methodology, an algorithm was created that, starting from
the point cloud of a discrete profile acquired by the laser profilometer, selected the optimal
points for torch placement for welding the first layer of the joint.

3.3.3. Welding Path Generation

Once the procedure for obtaining welding points from a discrete profile of the joint was
defined, the system applied the same algorithm to all the profiles that were acquired along
the joint. By connecting these selected points, the optimal welding path was generated, as
shown in the following Figure 6.
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3.4. Validation of the System

Finally, in order to validate the automated and intelligent robotic solution designed
for the welding of very thick joints, two procedures were carried out. For the validation, a
T-type joint was used as in the definition of the methodology, which can be seen in Figure 7b,
with the joint fully welded along its entire length (similar to the trajectories seen in Figure 6
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positioned in the symmetrical position). In Figure 7a, a zoom of the joint area is shown
(similar to the one seen in Figure 5). First, the development of the automatic spot weld
selection algorithm was validated by comparing the welding spots selected by the expert
operator and the algorithm developed on the same scanned joint. As shown in Figure 7a,
the points chosen by the operator and those forecasted by the system exhibited similarity
and validity. It is important to note that in this case of welding, very high precision is
not required.
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developed system.

Second, as a final validation, a joint with complete T-shaped geometry (Figure 7b) was
welded using the developed automatic, intelligent, and adaptive robotic system within this
work, generating the trajectories of the first layer with the developed algorithm.

Figure 7a reveals a wider dispersion of system points compared to those meticulously
selected by the operator. It is crucial to determine the magnitude of the impact resulting
from this wider scatter of spots on the quality of the welded joint. It is also important to
consider whether this wider distribution of spots introduces discernible variations in the
structural integrity or mechanical characteristics of the final weld. Figure 7b serves as a
tangible exemplification of the developed algorithm’s merits. Notably, the solution derived
from the system points converges toward a height consistency that mirrors the intrinsic
nature of the actual joint. Conversely, the solution attained by the skilled operator forms a
diffuse cloud with closely clustered points. The crux of the matter emerges in Figure 7b,
where the welded joint is showcased. This portrayal vividly demonstrates the algorithm’s
advantages: the delineated trajectory adheres more closely to the actual joint’s geometry, a
geometry presupposed as a straight line based on technical specifications. This alignment
is accomplished automatically, yielding a consequential reduction in time expenditure.

Finally, a salient feature is the system’s potential for operator intervention. This
provision accommodates adjustments or the introduction of trajectories by the operator,
thereby harmonizing the automated precision of the system with the judicious oversight
and expertise of the operator. This thoughtful integration thus synergizes efficiency and
expertise, ultimately enriching the welding process.

4. Conclusions

In conclusion, this work developed an automated and adaptable robotic system
for welding joints with large thicknesses. The system was based on the use of a laser
profilometer and an algorithm for searching for optimal welding positions based on the
data acquired by the laser. The following were the main conclusions of this work:
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1. This automated and adaptable robotic system was intricately designed and implemented
at both the physical and communication levels. In the physical domain, meticulous
integration of the sensor, including precise mechanical alignment and thorough calibra-
tion, ensured accurate data collection during welding. Meanwhile, the establishment
of robust communication protocols facilitated seamless real-time coordination among
system components. Complementing this, sophisticated software algorithms drove
decision-making and task execution, resulting in a cohesive, high-performance robotic
system ready to enhance industrial and technological applications.

2. This system was applied in the field of welding of large thickness joints since the
automation and adaptability of the robotic system developed allowed greater effi-
ciency and precision in the welding process. Additionally, by using real-time acquired
profiles, the system could adapt to different joint geometries and even deformations
arising during welding or due to incorrect assembly, making it versatile and flexible.

3. For welding “T”-shaped joints with large thicknesses, it was confirmed that the
amplitude of oscillation and variation in the torch’s tilt angle in the analyzed range
had no influence on the welding of the first layer of such joints.

4. For welding this type of joint, the developed system was able to automatically generate
the torch trajectory for welding the first layer based on the profiles acquired by laser
profilometer. To achieve this, a robust and precise algorithm for selecting optimal
welding points was developed.

5. The developed system was validated in two ways, achieving satisfactory results. On
the one hand, the automatically selected welding points through the algorithm were
compared to the welding points selected by an expert operator, yielding similar results.
On the other hand, a real joint was welded, achieving a quality weld.

In summary, this study offers a significant contribution to the development of ad-
vanced automated solutions for welding joints with large thicknesses, thereby improving
efficiency, precision, and adaptability. Therefore, these alternatives have become a viable
option to replace the manual welding used today. As future lines of research, algorithms
could be developed for predicting points for additional layers of joints, enabling the au-
tomatic welding of the entire joint, and also analyzing other geometries of joints with
large thicknesses.

The work presented in this paper lays the foundation for future research and devel-
opment in the field of welding process automation. While we have demonstrated the
effectiveness of our approach in the context of T-shaped joints and specific welding con-
ditions, we acknowledge the potential to extend this methodology to a variety of joint
geometries and welding scenarios. In forthcoming endeavors, we plan to explore the
adaptability of our method across different setups, including joints of varying sizes and
materials, as well as diverse welding conditions. Additionally, we will consider optimizing
key parameters and integrating advanced machine learning techniques to achieve enhanced
autonomy and precision in the welding process. These investigations hold the promise of
delivering innovative and versatile solutions to address a wide range of challenges in the
welding and manufacturing industry.
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