Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls
Abstract
:1. Introduction
2. Methodology
3. Experimental Development
3.1. Material, Processing and Sampling
3.2. Designing of the Thermal Cycles
3.3. Supplementing the Experimental Approach
4. Results and Discussions
4.1. The Effect of Cooling Rates on the Position of the Transformation Curves in the CCT Diagram
4.2. The Effect of the Grain Size and Peak Temperature on the Position of the Transformation Curves
4.3. Forcing Cooling at Faster and Slower Rates than Feasible in the Experimental Gleeble Settings
4.4. Building the CCT Diagram of the Steel under Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trzaska, J.; Jagiełło, A.; Dobrzanski, L.A. The calculation of CCT diagrams for engineering steels. Arch. Mater. Sci. Eng. 2009, 39, 13–20. [Google Scholar]
- Alexandrov, B.T.; Lippold, J.C. In-Situ Weld Metal Continuous Cooling Transformation Diagrams. Weld. World 2006, 50, 65–74. [Google Scholar] [CrossRef]
- Atkins, M. Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels; Market Promotion Department, British Steel Corporation: London, UK, 1980. [Google Scholar]
- Kellogg, F.; Vasilev, E.; Kudzal, A.; Taggart-Scarff, J.; Marsico, J.; Knezevic, M.; McWilliams, B. Physical simulations of heat-affected zone microstructures to compare weldability characteristics of additively manufactured and wrought 17-4 stainless steel. Mater. Characterisation 2022, 185, 111714. [Google Scholar] [CrossRef]
- Halmešová, K.; Procházka, R.; Koukolíková, M.; Džugan, J.; Konopík, P.; Bucki, T. Extended Continuous Cooling Transformation (CCT) Diagrams Determination for Additive Manufacturing Deposited Steels. Materials 2022, 15, 3076. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Babu, A.; Schreurs, R.; Wu, K.; Hermans, M.J.M.; Ayas, C. Microstructure estimation and validation of ER110S-G steel structures produced by wire and arc additive manufacturing. J. Mater. Res. Technol. 2023, 23, 3579–3601. [Google Scholar] [CrossRef]
- Gutiérrez Castañeda, E.; Ruiz Cigarrillo, D.; Torres Castillo, A.; Salinas Rodríguez, A.; Deaquino Lara, R.; Bedolla Jacuinde, A.; Hernández Bocanegra, C. Intercritical continuous cooling transformation diagram for the manufacture of low-alloyed low-carbon multiphase steels. Mater. Lett. 2023, 331, 33528. [Google Scholar] [CrossRef]
- Cruz-Crespo, A.; Araujo, D.B.; Scotti, A. Effect of Tempering Pass on HSLA-80 Steel HAZ Microstructures. Weld. J. 2013, 92, 304s–311s. [Google Scholar]
- Zong, Y.; Liu, C.-M. Continuous Cooling Transformation Diagram, Microstructures, and Properties of the Simulated Coarse-Grain Heat-Affected Zone in a Low-Carbon Bainite E550 Steel. Metals 2019, 9, 939. [Google Scholar] [CrossRef]
- Zachrisson, J. In Situ Detection and Characterisation of Phase Transformations in Weld Metals. Master’s Thesis, Master of Science Programme, Engineering Physics, Luleå University of Technology, Luleå, Sweden, 2006; p. 44. [Google Scholar]
- Moravec, J.; Mičian, M.; Málek, M.; Švec, M. Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel. Materials 2022, 15, 4637. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Saunders, N.; Miodownik, P.; Schillé, J.-P. Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels. Int. J. Microstruct. Mater. Prop. 2009, 4, 187–195. [Google Scholar] [CrossRef]
- Collins, J.; Piemonte, M.; Taylor, M.; Fellowes, J.; Pickering, E. A Rapid, Open-Source CCT Predictor for Low Alloy Steels, and Its Application to Compositionally Heterogeneous Material. Metals 2023, 13, 1168. [Google Scholar] [CrossRef]
- Adonyi, Y.; Blodgett, O. Heat-affected zone characterisation by physical simulations. Weld. J. 2006, 85, 42–47. [Google Scholar]
- Rakesh, R.; Ajit, K.N.; Kuldeep, K.S.; Velaphi, M. Physical simulation on Joining of 700 MC steel: A HAZ and CCT curve study. Mater. Res. Express 2022, 9, 046522. [Google Scholar] [CrossRef]
- Lan, L.; Chang, Z.; Fan, P. Exploring the Difference in Bainite Transformation with Varying the Prior Austenite Grain Size in Low Carbon Steel. Metals 2018, 8, 988. [Google Scholar] [CrossRef]
- Scotti, A.; Li, H.; Miranda, R.M. A Round-Robin Test with Thermal Simulation of the Welding HAZ to draw CCT diagrams: A need for harmonised procedures and microconstituent terminologies. Soldag. Insp. 2014, 19, 279–290. [Google Scholar] [CrossRef]
- Barrick, E.J.; Jain, D.; DuPont, J.N.; Seidman, D.N. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding. Metall. Mater. Trans. A 2017, 48, 5890–5910. [Google Scholar] [CrossRef]
- Krbaťa, M.; Majerík, J.; Barényi, I.; Ecker, M. Experimental determination of continuous cooling transformation diagram for high strength steel OCHN3MFA. Mater. Sci. Eng. 2020, 776, 012095. [Google Scholar] [CrossRef]
- Kardoulaki, E.; Lin, J.; Balint, D.; Farrugia, D. Investigation of the effects of thermal gradients present in Gleeble high-temperature tensile tests on the strain state for free cutting steel. J. Strain Anal. Eng. Des. 2014, 49, 521–532. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Bainite in Steels: Theory and Practice, 3rd ed.; Maney Publishing: Leeds, UK, 2015; p. 589. ISBN 978-1-909662-74-2. [Google Scholar]
- Mičian, M.; Winczek, J.; Harmaniak, D.; Koňár, R.; Gucwa, M.; Moravec, J. Physical Simulation of Individual Heat-Affected Zones in S960mc Steel. Arch. Metall. Mater. 2021, 66, 81–89. [Google Scholar] [CrossRef]
- Aprilia, A.; Zhai, W.; Guo, Y.; Aishwarya; Shandro, R.; Zhou, W. Decarburization of Wire-Arc Additively Manufactured ER70S-6 Steel. Materials 2023, 16, 3635. [Google Scholar] [CrossRef] [PubMed]
C | Mn | Si | Cr | Ni | Mo | P | S | W | Co | V |
0.122 | 1.803 | 0.547 | 0.017 | 2.317 | 0.550 | 0.008 | 0.008 | 0.006 | 0.007 | 0.010 |
Nb | Ti | Cu | Al | B | N | O | Residual (Sn, Pb, As, Sb, Zr, Zn) | |||
0.006 | 0.006 | 0.012 | 0.015 | 0.001 | 0.003 | 0.054 | <0.017 |
Power Source | Fronius TPS 500i CMT |
---|---|
Synergic line | 3861 |
Torch | MTB 500i |
Torch angle | 90° (perpendicular to the wall top surface) |
CTWD (mm) | 16–17 |
Set WFS (m/min) | 4.6 |
Set Travel speed (mm/s) | 5 |
Average current (A) | 156.6 |
Average voltage (V) | 15.2 |
Heating | Cooling | |||||||
---|---|---|---|---|---|---|---|---|
Reference Number | Cycle | Peak Temp (°C) | Δt 500-Peak | Rate from 500-Peak (°C/s) | Δt Peak-800 | Rate from Peak-800 (°C/s) | Δt8-5 | Rate from 800–500 (°C/s) |
(s) | (s) | (s) | ||||||
C-3 (reduced) | 1st | 1350 | 1.28 | 664.06 | 2.83 | 194.48 | 9.00 | 33.33 |
2nd | 1000 | 1.93 | 259.61 | 2.32 | 86.24 | 8.00 | 37.50 | |
3rd | 800 | 2.65 | 113.21 | 8.85 | 33.91 | |||
4th | 600 | 2.70 | 37.04 | |||||
C-2 (reduced) | 1st | 1350 | 1.28 | 664.06 | 5.98 | 92.02 | 14.45 | 20.77 |
2nd | 1000 | 1.93 | 259.61 | 4.37 | 45.76 | 14.69 | 20.42 | |
3rd | 800 | 2.65 | 113.21 | 16.79 | 17.87 | |||
4th | 600 | 2.70 | 37.04 | |||||
C-1 | 1st | 1350 | 1.28 | 664.06 | 5.98 | 92.02 | 14.45 | 20.77 |
2nd | 1000 | 1.93 | 259.61 | 4.37 | 45.76 | 14.69 | 20.42 | |
3rd | 800 | 2.65 | 113.21 | 16.79 | 17.87 | |||
4th | 600 | 2.70 | 37.04 | |||||
B-2 | 1st | 1350 | 1.44 | 590.28 | 6.19 | 88.85 | 15.86 | 18.92 |
2nd | 1000 | 1.93 | 259.61 | 4.48 | 44.68 | 16.18 | 18.54 | |
3rd | 800 | 3.00 | 100.00 | 18.24 | 16.45 | |||
4th | 600 | 3.48 | 28.74 | |||||
A-2 | 1st | 1350 | 1.67 | 508.98 | 7.33 | 75.04 | 17.06 | 17.58 |
2nd | 1000 | 1.93 | 259.61 | 5.49 | 36.43 | 17.48 | 17.16 | |
3rd | 800 | 3.18 | 94.34 | 20.12 | 14.91 | |||
4th | 600 | 4.39 | 22.78 | |||||
E-4 | 1st | 1350 | 2.05 | 414.63 | 7.55 | 72.85 | 20.00 | 15.00 |
2nd | 1000 | 3.50 | 142.86 | 6.40 | 31.25 | 20.80 | 14.42 | |
3rd | 800 | 4.40 | 68.18 | 26.30 | 11.41 | |||
4th | 600 | 4.90 | 20.41 | |||||
E-5 | 1st | 1350 | 2.30 | 369.57 | 8.00 | 68.75 | 23.00 | 13.04 |
2nd | 1000 | 4.00 | 125.00 | 7.90 | 25.32 | 24.50 | 12.24 | |
3rd | 800 | 5.60 | 53.57 | 32.20 | 9.32 | |||
4th | 600 | 5.10 | 19.61 | |||||
E-6 | 1st | 1350 | 2.39 | 355.65 | 8.25 | 66.67 | 24.30 | 12.35 |
2nd | 1000 | 4.30 | 116.28 | 8.30 | 24.10 | 26.80 | 11.19 | |
3rd | 800 | 5.80 | 51.72 | 36.00 | 8.33 | |||
4th | 600 | 5.30 | 18.87 | |||||
E-8 | 1st | 1350 | 3.30 | 257.58 | 8.60 | 63.95 | 39.00 | 7.69 |
2nd | 1000 | 5.80 | 86.21 | 9.00 | 22.22 | 44.00 | 6.82 | |
3rd | 800 | 6.00 | 50.00 | 59.50 | 5.04 | |||
4th | 600 | 8.90 | 11.24 |
Austenitising (Heating) | Transformation (Cooling) | ||||
---|---|---|---|---|---|
Specimen | CR8-5 of 3rd Cycle (°C/s) | Start Temp (°C) | End Temp (°C) | Start Temp (°C) | End Temp (°C) |
C-3 (reduced) | 35.0 | 711 | 803 | 564 | 320 |
C-2 (reduced) | 17.7 | 714 | 805 | 583 | 283 |
C-1 | 16.5 | 724 | 810 | 557 | 297 |
B-2 | 15.0 | 715 | 801 | 561 | 315 |
A-2 | 14.3 | 699 | 800 | 557 | 298 |
E-4 | 13.0 | 708 | 803 | 569 | 291 |
E-5 | 11.5 | 713 | 807 | 547 | 281 |
E-6 | 10.0 | 710 | 805 | 569 | 279 |
E-8 | 4.6 | 565 | 278 |
Heating & Cooling Rates | Austenitising (Heating) | Transformation (Cooling) | |||||||
---|---|---|---|---|---|---|---|---|---|
Specimen | Remarks | Cycle Order | Peak Temp (°C) | 500-Peak (°C/s) | 800–500 (°C/s) | Start Temp (°C) | End Temp (°C) | Start Temp (°C) | End Temp (°C) |
A-2 (1 cycle) | A3 (only 1st cycle) | 1 | 1352 | 465.6 | 16.0 | 721 | 838 | 505 | 339 |
A-2 (2 cycles) | A4 (1st + 2nd cycle) | 1 | 1351 | 472.8 | 17.5 | 727 | 843 | 508 | 339 |
2 | 1002 | 251.0 | 17.0 | 708 | 869 | 512 | 313 | ||
A-2 (3 cycles) | A5 (1st + 2nd + 3rd cycle) | 1 | 1345 | 515.2 | 15.3 | 739 | 820 | 508 | 339 |
2 | 1003 | 251.5 | 18.8 | 729 | 861 | 507 | 284 | ||
3 | 801 | 100.3 | 15.8 | 716 | 802 | 560 | 312 | ||
A-2 | A2 (1st + 2nd + 3rd + 4th cycle) | 1 | 1342 | 498.2 | 17.4 | 712 | 860 | 506 | 307 |
2 | 1011 | 176.8 | 15.0 | 695 | 867 | 502 | 292 | ||
3 | 802 | 65.2 | 13.0 | 699 | 800 | 550 | 290 | ||
4 | 609 | 27.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Högström, M.; Fadaei, A.; Rahimi, A.; Li, P.; Igestrand, M.; Andersson, J.; Scotti, A. Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls. Metals 2023, 13, 1533. https://doi.org/10.3390/met13091533
Högström M, Fadaei A, Rahimi A, Li P, Igestrand M, Andersson J, Scotti A. Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls. Metals. 2023; 13(9):1533. https://doi.org/10.3390/met13091533
Chicago/Turabian StyleHögström, Mats, Amirhosein Fadaei, Amin Rahimi, Peigang Li, Mattias Igestrand, Joel Andersson, and Americo Scotti. 2023. "Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls" Metals 13, no. 9: 1533. https://doi.org/10.3390/met13091533
APA StyleHögström, M., Fadaei, A., Rahimi, A., Li, P., Igestrand, M., Andersson, J., & Scotti, A. (2023). Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls. Metals, 13(9), 1533. https://doi.org/10.3390/met13091533