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Abstract: The present study aims to investigate the interaction of ratcheting and fatigue phenomena
for additively manufactured (AM) samples of SS304L and AlSi10Mg undergoing uniaxial asymmetric
stress cycles. Overall damage was accumulated through fatigue and ratcheting on AM samples
prepared from three-dimensional-printed plates along vertical and horizontal directions. Fatigue
damage was evaluated based on the strain energy density fatigue approach and ratcheting damage
was calculated through use of an isotropic–kinematic hardening framework. The isotropic description
through the Lee–Zavrel (L–Z) model formed the initial and concentric expansion of yield surfaces
while the Ahmadzadeh–Varvani (A–V) kinematic hardening rule translated yield surfaces into the
deviatoric stress space. Ratcheting of AM samples was simulated using finite element analysis
through use of triangular and quadrilateral elements. Ratcheting values of the AM samples were
simulated on the basis of Chaboche’s materials model. The predicted and simulated ratcheting
damage curves placed above the experimental fatigue–ratcheting experimental data while predicted
fatigue damage curves collapsed below the measured values. The overall damage was formulated to
partition damage weights due to fatigue and ratcheting phenomena.

Keywords: additive manufacturing; overall damage; fatigue–ratcheting interaction; backstress evolution;
hardening framework; finite element analysis

1. Introduction

Additive manufacturing (AM) techniques, as compared to conventional manufac-
turing methods, offer ease of fabricating complex geometries and diversity in materials
characteristics. Three-dimensional-printed AM samples are vastly employed in construc-
tion, aerospace, medical science, electronic, and transportation industries to optimize
production lead time, operational costs, and lightweight parts. AM techniques are reported
to be more environmentally sound as compared with conventional methods [1–3]. Over
the last two decades, more of intension has been focused to improve the load-bearing
capability of AM machinery components and structures. Layer-by-layer construction in
these components, method of additive manufacturing, speed of processing and residual
stresses induced within layers, as well as surface roughness and pores formed during
heat transfer were noted as challenges in AM metallic parts undergoing severe loading
conditions [4–6].

Selective laser manufactured AlSi10Mg samples demonstrated a 40% reduction in
rotating bending fatigue strength compared to conventional material [7]. Surface porosity
largely explained this reduction, while surface roughness of additively manufactured
AlSi10Mg specimens was four times greater than that of conventional material. According
to Siddique et al. [8], sub-surface pores combined with surface roughness play a major role
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in crack nucleation and fatigue strength reduction for AlSi10Mg specimens. To increase the
fatigue performance of fatigue-loaded components, Avanzini et al. [9] studied the fatigue
behavior of AlSi10Mg samples produced with DMLS and sandblasted. In comparison
with other surface treatments, they found SB to be a positive process for fatigue properties.
Aboulkhair et al. [10] recommended remelting contour zones as a scan strategy. They
reported the existence of un-melted particles and the gas porosity as the reasons for the
pores in AlSi10Mg samples and, to minimize the appearance of pores, they suggested a
slower scanning speed.

Fatigue behavior of AM Ti-6Al-4V under uniaxial cyclic loading for different manufac-
turing processes of E-beam powder bed fusion (E-PBF), L-PBF, and wired-feed directed
energy deposition (DED) was studied by Li et al. [11]. They reported internal defects,
surface roughness, and residual stresses as the main factors that influenced the fatigue
behavior of AM materials. The level of ductility of AM materials determined the impact
of these factors on the fatigue response. Depending on the process of manufacturing, the
effect of surface roughness of ∼200 µm on the fatigue strength of AM Ti-6Al-4V was found
to be detrimental by 20–25% [12]. Additively manufactured samples consist of smaller
dendritic grains which offer greater hardness as compared to conventionally fabricated
components. Jeyaprakash et al. [13] investigated mechanical characteristics of additively
and conventionally casted manufactured SS304 samples and evidenced that AM samples
achieved higher strength as a result of precipitation strengthening and grain refinement.
Shrestha et al. [14] studied the impact of fabrication orientation on fatigue properties of
high- and low-cycle regimes for as-built and polished surfaces of LB-PBF 316L stainless
steel. They revealed that, despite the desirable fatigue properties achieved under all condi-
tions, cyclic behavior depended more on build orientations in high-cycle fatigue. Samples
with horizontal directions established with respect to the loading path demonstrated better
fatigue resistance, while diagonal samples possessed the lowest resistance. Zhang et al. [15]
investigated the influence of different process parameters on fatigue behavior of AM SS316L
in the horizontal direction. They found that employing optimal process parameters through
fabrication resulted in cracks formation from microstructural levels. It revealed to be within
a ±30% tolerance band, which is a safe processing region, as high-cycle fatigue properties
are independent of crack initiation from microstructural features. Beyond the designated
region of processing, the cracks created by over-melting and under-melting led to a drop
in fatigue resistance. Defects initiated closer to the surface exposed to large local stresses
and caused them to have greater impacts on fatigue resistance [16]. Hot isostatic pressing
(HIP) post-processing technique was employed to lessen pores and defects in AM samples
at high temperatures. Leuders et al. [17] employed an HIP process and treated the AM
samples made of Ti-6Al-4V under pressure of 14.5 ksi at 920 ◦C for 2 h. They reported
that titanium samples achieved a higher ductility and fatigue limit as compared with their
counterpart conventional material [17]. HIP-processed AM samples of Ti-6Al-4V were
surface-machined and their fatigue behavior was tested by Molaei et al. [18]. They reported
that as-built HIP samples with no surface-machining process demonstrated considerably
smaller fatigue lives as compared with those of surfacefinished [18]. In addition to the
AM technique, technical issues including specimen direction, speed of manufacturing,
post-processing treatment, and the loading spectrum can accelerate the process of damage
and failure in AM samples. Some researchers studied the influence of ratcheting strain
on mechanical properties of AM materials [19,20]. Wang et al. [19] and Dong et al. [20]
performed cyclic tests on AM samples made of Al 4043 alloy with various stress ratios to
study the ratcheting response of materials at different stress levels. AM aluminum samples
possessed a higher tensile yield strength, while the materials’ elongation was reduced.
The effect of heat treatment on the cyclic behavior of AM specimens was investigated by
Ghosh et al. [21] and Servatan et al. [22]. According to Ghosh et al. [21], as-built additively
manufactured samples showed a 50% lower fatigue life when compared with heat-treated
samples. Servatan et al. [22] demonstrated that the initial and translated yield surfaces of
the heat-treated AM Ti–6Al–4V sample were modified due to the impact of the thermal
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process on material properties. When heat-treated titanium samples were compared to
their as-built counterparts, heat treatment suppressed yield magnitude and promoted
ratcheting strain twice as much. Zang et al. [23] explored the impact of different building
orientations on the ratcheting response of AM 316L stainless steel samples. They found that
the ratcheting rate of vertical specimens is slower than horizontal AM samples in the same
loading condition. The ratcheting behavior of various AM materials of Al 4043, SS316L,
and Ti–6Al–4V alloy was examined through the use of a combined isotropic–kinematic
hardening rules and finite element method (FEM) [22,24]. The Chaboche hardening rule
employed in the FEM model demonstrated ratcheting results with a deviation of less than
10% with predicted results achieved by the combined framework.

Several studies were conducted on the damage evaluation of conventional wrought
metallic materials [25–27]. They demonstrated that an excess of damage generated due
to the ratcheting phenomenon over asymmetric loading cycles noticeably reduced the
fatigue life of conventional materials. The concurrent fatigue–ratcheting damage of ASTM
A-516 Gr.70 and 42CrMo samples was modelled in a recent study by Ahmadzadeh and
Varvani [28]. They defined overall damage through phenomenological parameters in-
volving stress amplitude, mean stress, and cyclic softening/hardening terms integrating
damages due to ratcheting and fatigue. By combining the CDM theory and ML models,
Zhan et al. [29] proposed a new method for predicting the fatigue life of AM aerospace
alloys. As well as the predicted accuracy of fatigue life, the performance of ANN and RF
models was also discussed. The predicted results were verified and almost all fell within
the three-error band when compared to experimental results. They concluded that it is
appropriate to employ this approach based on elastoplastic fatigue damage and ML models
for predicting life. As the literature lacks the cyclic plasticity and ratcheting assessment
of AM materials, the present study intends to implement an earlier developed damage
model [28] to define overall damage due to the ratcheting–fatigue interaction in AM SS304L
and AlSi10Mg samples. An isotropic–kinematic hardening framework was employed
along a fatigue damage approach to evaluate ratcheting and fatigue damages, respectively.
Simulated ratcheting damage curves were determined through finite element analysis and
based on Chaboche’s materials model. The predicted and simulated fatigue and ratcheting
damage curves were defined as, respectively, lower and upper curves with respect to
experimental values. Partitioning overall damage to fatigue and ratcheting curves makes it
possible to control influential variables and design durable components undergoing severe
loading spectra.

2. Materials and Methods
2.1. Fatigue Damage Assessment

Fatigue damage was evaluated through use of an energy-based critical plane approach
developed earlier by Varvani–Farahani [30]. Stress and strain components in the damage
model were defined on the most damaging plane at which both stress and strain Mohr’s
circles were largest during loading and unloading reversals. The normal energy was defined
from the product of normal stress and strain ranges acting on the critical plane and the
shear energy was calculated from shear stress and shear strain ranges acting on the critical
plane. The general form of fatigue damage approach is expressed by Equation (1). Both
normal and shear energy components in the left-hand side of this equation are normalized
by the product of fatigue strength and ductility coefficients to achieve a unitless damage
and weight the contribution of normal and shear energies [30].

D f =
1

σ,
f ε
′
f
(∆σn∆εn) +

(
1 + σm

n
σ
′
f

)
(

τ,
f γ
′
f

) (
∆τmax∆

(γmax

2

))
= A.Nα + B.Nβ (1)

Terms ∆τmax and ∆
( γmax

2
)

correspond to the range of maximum shear stress and shear
strain, respectively, which were determined during the first and the second reversals of



Metals 2023, 13, 1534 4 of 16

a cycle from the largest stress and strain Mohr’s circles. The normal stress range and the
normal strain range acting on the critical plane are denoted, respectively, by ∆σn and ∆εn in
the damage model. The right-hand side of Equation (1) is defined by a power law equation
as function of number of cycles to failure N and material constants A, α, β, and B.

2.2. Ratcheting Damage Assessment

Ratcheting damage was formulated conforming to fatigue damage equation. Equation (2)
describes ratcheting damage through the product of normal stress range ∆σn and ratcheting
strain just before failure εr f . Ratcheting damage was expressed by Equation (2). The left-hand
side of this equation is normalized by fatigue strength and ductility coefficients.

Dr =
∆σnεr f

σ
′
f ε
′
f

= Cr + Kr.NX (2)

Coefficients Cr, Kr, and x on the right-hand side of Equation (2) are material-dependent.
The range of stress level is shown by ∆σn=σmax for fully reversed loading condition (stress
ratio r = −1). The ratcheting strain value at failure εr f for various asymmetric stress levels
was predicted and simulated as an input value in Equation (2).

2.2.1. Isotropic Hardening Description

Karvan and Varvani [31] extensively evaluated various isotropic descriptions and
their influential parameters in the ratcheting response of metallic alloys over the first few
stress cycles (stage I). They reported that the Lee and Zavrel (L–Z) isotropic model [32]
with less complex description and variables offered a closer agreement with experimental
data when it was employed along the A–V kinematic hardening rule. The Lee–Zavrel
isotropic hardening rule was employed to evaluate the expansion of yield surface and the
evolution of concentric yield surfaces was determined through the superposition of initial
yield surface, σy

0, and isotropic hardening variable R.

σy = σy
0 + R(p) (3)

The isotropic internal variable is defined based on accumulated plastic strain and is
shown as:

R = Q
(

1− e−bp
)

(4)

Terms Q and b in Equation (4) are material constants. These constants are determined
by the saturated value of variable R and the evolution rate of R obtained through re-
gression of the applied maximum stress plotted versus accumulated plastic strain p. The
accumulated plastic strain p increases dramatically over the initial few stress cycles and
the exponential term approaches zero. The drag stress R is stabilized at Q. The number of
cycles to saturated state of R is dependent on the magnitude of plastic strain.

2.2.2. Ahmadzadeh–Varvani (A–V) Kinematic Hardening Rule

Ahmadzadeh–Varvani (A–V) [33,34] developed a kinematic hardening rule to control
yield surface translation in the deviatoric stress space. The A–V model governed the
movement of yield surface through increments of backstress. The backstress increments in
the hardening rule consist of linear and non-linear terms. Backstress increments controlled
the evolution of yield surfaces for loading beyond elastic limit. Beyond the elastic limit,
the dynamic recovery term of the A–V rule controls the yield surface translation through
its parameters and an internal variable b. Term (a− δb) in the dynamic recovery enables a
progressive decay and gradual evolution of backstress a through the loading process. The
general form of the A–V model is defined as:

da = Cdεp − γ1

(
a− δb

)
dp

db = γ2

(
a− b

)
dp

(5)
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In uniaxial loading condition, coefficient δ is expressed as
( a

k
)m

, in which constant k
is defined as C

γ1
. The exponent m is a material constant and falls between zero and unity.

Equation (5) is rewritten as:

da = Cdεp − γ1

(
a−

(
a
k

)m
b
)

dp (6)

The material-dependent coefficients C and γ1 are found from uniaxial stress-strain
hysteresis loop obtained through a stress-controlled test. Coefficient γ2 is determined from
experimental ratcheting data plotted versus the number of stress cycles.

The increment of equivalent plastic strain, dp, is determined by

dp =

√
2
3

dεP.dεP (7)

where the term dεP is related to the increment of plastic strain and is expressed as:

dεP =
1

Hp
〈ds.n〉n (8)

The normal vector n to the yield surface is defined as:

n =
(s− a)
|(s− a)| (9)

In Equation (9), term s denotes the deviatoric stress tensor which corresponds to the
amount of loading beyond the elastic domain:

s = σ− 1
3
(σ.I)I (10)

2.2.3. Chaboche Hardening Rule

Chaboche and co-workers [35] presented a model consisting of three backstress com-
ponents, α1, α2, and α3, which result from decomposing the nonlinear kinematic hardening
rule. Initially, a high modulus of plasticity was defined by α1, while the second and third
backstress components, α2 and α3, were to control, respectively, the transient part of the
hysteresis loop and the linear hardening part of the loop. The Chaboche hardening rule in
its general form was defined as:

dα = ∑M
i=1 dαi, dαi =

2
3

CidεP − γ
′
i αidp (11)

where Ci and γ
′
i are the Chaboche material coefficients determined from the strain-controlled

hysteresis loop of materials.

2.3. Fatigue–Ratcheting Interaction

The overall damage was determined from the accumulation of fatigue and ratcheting
damages. These damage values were weighted through the weighting factor ξ. This
factor made it possible to partition damage contributions due to ratcheting and fatigue
phenomena. The total damage Dtotal is composed of fatigue and ratcheting damage and
formulated as [28]:

Dtotal = ξD f + (1− ξ)Dr (12)

where the weighting factor ξ is calculated through interpolation from the upper-bound
ratcheting curve (Dr − N) and the lower-bound damage curve

(
D f − N

)
constructed

based on fatigue damage at a fully reversed loading condition (R = −1). The measured
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damage data
(

Dexp − N
)

of the tested samples fall between these bounds. At the given life,
the factor ξ is defined as:

ξ =
Dr − Dexp

Dr − D f
(13)

The upper ratcheting damage curve is highly influenced by stress level over the
asymmetric loading cycles. This elevates the damage weighting factor induced due to the
ratcheting phenomenon.

Overall damage due to fatigue–ratcheting is then defined through the integration of
lower and upper damage curves defined, respectively, through Equations (1) and (2) and
substituting it in Equation (12) as:

∆σn(εr f +ξ(∆εn−εr f ))
σ,

f ε
′
f

+

ξ

(
1+ σm

n
σ
′
f

)
(

τ,
f γ
′
f

) (
∆τmax∆

( γmax
2
))

=

ξ
(

A.Nα + B.Nβ
)
+ (1− ξ)

(
Cr + Kr.NX) (14)

3. Results and Discussion
3.1. Materials, Tests, and Ratcheting Data

Additively manufactured (AM) samples of SS304L [36,37] and AlSi10Mg alloy [38]
were cyclically tested at different uniaxial stress levels and non-zero mean stress values.
Both AlSi10Mg and SS304L alloys have been used to manufacture load-bearing components
in a variety of industries including automotive, aerospace, defense, machinery, and con-
struction [39,40]. The aluminum alloy AlSi10Mg possesses a greater strength and hardness
than other aluminum alloys through its silicon and magnesium contents. The SS304L
alloy, with 18% chromium and 8% nickel, offers great corrosion resistance and weldability.
These alloys offer superior physical and mechanical properties such as excellent corrosion
resistance, high ductility, high electrical and thermal conductivity, and great materials
for additive manufacturing techniques. AM samples of SS304L were prepared from a 3D
baseplate fabricated through gas metal arc welding (GMAW) [36,37]. The layer-by-layer
fabrication process was continued along vertical and horizontal printing directions. A
few-seconds pause was introduced between two subsequent layers to allow for the cooling
process and in order to drop the temperature to 200 ◦C. The 3D fabrication was operated
with a voltage of 22 V, travel speed of 15.24 cm/min, and wire feed of 55.8 cm/min to
produce a wall with a total length of 67.31 cm, height of 17.47 cm, and thickness of 6.35 mm.
To prepare flat dog-bone fatigue specimens, the wall was machined according to ASTM
E466-15. Samples were then divided into horizontal and vertical orientations. AlSi10Mg
samples were also additively manufactured through the laser powder bed fusion and
BLT-S310 equipment in the form of a 3D block of 110× 55× 120 mm [38]. The fabrication
process was controlled through a scanning speed of ~1200–1500 mm/s, hatch spacing of
~0.13–0.16 mm, and laser power of ~360–400 W. The thickness and angle of each layer
was optimized to be, respectively, 50 µm and 67

◦
when scanning the successive layers.

The printed block was post-heat-treated at 300 C for two hours and was then allowed to
naturally age for two weeks. These relieved residual stresses were induced during the
laser powder bed fusion technique. The 3D-printed block was then machined according to
ISO 1099:2017 standards. Tensile tests were conducted on flat AM samples of SS304L and
AlSi10Mg and stress–strain curves for both vertical and horizontal samples were achieved
and plotted in Figure 1. The stress–strain curves presented in this figure for samples taken
from the horizontal direction show slightly higher strengths than those prepared from the
vertical direction.
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Figure 1. Stress–strain curves for additively manufactured (a) SS304L and (b) AlSi10Mg alloys. 
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Figure 2. Stress range versus number of cycles to failure for horizontal (H) and vertical (V) AM 

samples of (a) SS304L and (b) AlSi10Mg. 
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was ±1.25%. At constant strains controlled through mounted extensometers, stress values 

were determined, resulting in strain-based hysteresis loops for these alloys. The con-

structed loops in Figure 3 have been used to determine Chaboche’s materials model coef-

ficients as input values to simulate the ratcheting response of steel and aluminum samples 

through finite element analysis. A proper choice of these coefficients results in a stress–

strain hysteresis loop to coincide with the loop constructed based on measured data 

Figure 1. Stress–strain curves for additively manufactured (a) SS304L and (b) AlSi10Mg alloys.

Fatigue life data for AM samples of SS304L and AlSi10Mg are presented in Figure 2.
In this figure, triangle symbols represent AM samples cut from the horizontal direction of
the 3D plates while the circular data represent samples taken from the vertical direction.
Samples of SS304L were cyclically tested through the use of an MTS servo-hydraulic testing
frame with a frequency of 10 Hz and stress ratio of r = 0. Fatigue tests on AlSi10Mg
samples were conducted by a high-frequency testing machine at 85 Hz and stress ratio of
r = 0.1. The closeness of vertical and horizontal AM samples of SS304L may be attributed
to the controlled fabrication operation and cooling-down process for each deposited layer.
Stress-life data for AM samples of AlSi10Mg, however, show more scatter and noticeable
difference in the fatigue strength of horizontal and vertical samples.
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Figure 2. Stress range versus number of cycles to failure for horizontal (H) and vertical (V) AM
samples of (a) SS304L and (b) AlSi10Mg.

Strain-based cyclic tests for SS304L and AlSi10Mg resulted in the hysteresis loops
presented in Figure 3. Figure 3 presents the best-fitted curve of cyclic tests conducted at
constant cyclic strain values. For SS304L, cyclic tests were conducted at constant maximum
and minimum strains of ±2.5%, while this limit for AlSi10Mg strain-controlled tests was
±1.25%. At constant strains controlled through mounted extensometers, stress values were
determined, resulting in strain-based hysteresis loops for these alloys. The constructed
loops in Figure 3 have been used to determine Chaboche’s materials model coefficients as
input values to simulate the ratcheting response of steel and aluminum samples through
finite element analysis. A proper choice of these coefficients results in a stress–strain
hysteresis loop to coincide with the loop constructed based on measured data [41,42]. The
coefficients of Chaboche’s hardening rule consisting of C1−3 and γ′1−3 are listed in Table 1.
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Figure 3. Predicted strain-based hysteresis loops through the Chaboche model closely agreed with
those measured values reported in references [41,42] for SS304L and AlSi10Mg alloys.

Table 1. Hardening rule and fatigue coefficients for SS304L and AlSi10Mg alloys.

Material Fatigue Coefficients Models Parameters and Coefficients

σ,
f = 4000 Isotropic Q (MPa) = 90, b = 13.5

304L Stainless Steel (Horizontal samples)
ε,

f = 0.016 A–V C (GPa) = 16, γ1 = 195, γ2 = 20

b = −0.06
c = −0.3 Chaboche C1−3 (GPa) = 44, 37, 25, γ′1−3 = 110, 115, 0

σ,
f = 4200 Isotropic Q (MPa) = 79, b = 12.5

304L Stainless Steel (Vertical samples)
ε,

f = 0.026 A–V C (GPa) = 17, γ1 = 187.5, γ2 = 10

b = −0.184
c = −0.2 Chaboche C1−3 (GPa) = 50, 35, 25, γ′1−3 = 100, 120, 0

σ,
f = 330 Isotropic Q (MPa) = 260, b = 3.5

AlSi10Mg (Horizontal samples)
ε,

f = 0.024 A–V C (GPa) = 15, γ1 = 90, γ2 = 40

b = −0.005
−0.2 Chaboche C1−3 (GPa) = 180, 120, 33,

γ′1−3 = 1200, 600, 0

σ,
f = 320 Isotropic Q (GPa) = 250, b = 2.5

AlSi10Mg (Vertical samples)
ε,

f = 0.01 A–V C (GPa) = 12, γ1 = 96, γ2 = 30

b = −0.005
c = −0.2 Chaboche C1−3 (GPa) = 140, 100, 28,

γ′1−3 = 1500, 800, 0

AM samples of SS304L and AlSi10Mg were tested under asymmetric loading cycles
under stress-controlled conditions, resulting in a progressive plastic strain accumulation.
To predict the ratcheting response of AM samples through the A–V kinematic hardening
rule, material-dependent coefficients of C, γ1, and γ2 have to first be determined. The
choice of coefficients C and γ1 results in stress-based loops agreeable with measured
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loops. Any deviation in these coefficients results from measured values contravening
the consistency condition and will result in the overshooting of loops in an irregular
manner [24]. Coefficient γ2 was obtained via uniaxial ratcheting strain plotted versus the
number of asymmetric stress cycles. Figure 4 presents stress-controlled loops for SS304L
and AlSi10Mg samples at the first stress cycle, satisfying the consistency condition. The
predicted and measured hysteresis loops presented in this figure closely agree with a small
deviation. The measured loop was constructed through the applied stress-controlled tests
for SS304L and AlSi10Mg samples with given stress levels and stress ratios. The average of
maximum and minimum strains measured through clip gauges for SS304L and AlSi10Mg
were 0.037145 and 0.007135, respectively. The loading paths of this hysteresis loop were
determined through the Ramberg–Osgood equation [43]. As the predicted hysteresis loop
fell closely to the loop constructed based on the experimental data, the corresponding
coefficients of γ1 and C were determined. Strain-based coefficients of Chaboche’s rule
and stress-based coefficients based on the A–V hardening rule for different vertical and
horizontal AM samples are tabulated in Table 1. This table also presents fatigue constants
for steel and aluminum samples.
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ent material characteristics in both sample directions. In AM samples prepared from the 

horizontal direction, loading orientation coincides with the lay-by-layer building direc-

tion of the 3D block. In vertically cut samples, building and loading directions are orthog-
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Figure 4. Measured and predicted stress-controlled stress–strain hysteresis loops for (a) SS304L and
(b) AlSi10Mg alloys.

3.2. Backstress and Yield Surface Translation

Backstress increments controlled the evolution of yield surfaces for loading beyond the
elastic limit. The dynamic recovery term of the A–V model holds terms and coefficients to
gradually translate yield surfaces into the deviatoric stress space as backstress increments
evolve nonlinearly. The layer-by-layer formation of AM samples resulted in different
material characteristics in both sample directions. In AM samples prepared from the
horizontal direction, loading orientation coincides with the lay-by-layer building direction
of the 3D block. In vertically cut samples, building and loading directions are orthogonal,
leading to a noticeable difference in yield surfaces in V and H samples. Figure 5 presents
the difference in the yield surface evolution of AlSi10Mg samples taken in the vertical (V)
direction and horizontal (H) directions. The initial yield surfaces of the AlSi10Mg alloy
samples are plotted with solid lines in this figure. The stress–strain curves of both vertical
and horizontal samples were demonstrated through top horizontal and right vertical axes.
Beyond the elastic limit, initial yield surfaces are translated, resulting in the movement
of center O to center O∗. The yield surfaces of vertical and horizontal samples shift over
the stress–strain curves, which are shown partially by dot lines and intercept the curves
at points P and P∗, respectively. The direction of evolution is almost the same for both
samples at the same stress level. But the amount of translation for the horizontal sample is
larger than for the vertical sample.
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Figure 5. Yield surface evolution of vertical (V) and horizontal (H) samples made of AlSi10Mg alloy. 
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Figure 5. Yield surface evolution of vertical (V) and horizontal (H) samples made of AlSi10Mg alloy.

Backstress evolution through the A–V analytical approach and FE numerical approach
are presented for AM samples in vertical and horizontal directions. Figure 6 presents the
gradual evolution of backstress term (a− δb) in the dynamic recovery of A–V model and
Chaboche’s postulation ∑M

i=1 dαi. The former controls the trend and magnitude of backstress
a by means of an internal variable b and the latter integrates backstress increments dαi
through the loading process up a unit to a steady condition. The evolution of backstress in
Figure 6 presents similar trends through the A–V and FE models. Horizontally prepared
samples show slightly higher values for backstress terms as compared with vertical samples.
The predicted backstress through the A–V model collapses below that determined by FE
analysis. Larger backstress in horizontal samples is also attributed to the larger translation
of initial yield surface of this sample, as depicted in Figure 5.
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3.3. Finite Element Analysis

The test samples were studied using the finite element model through the use of Ansys
2022 R1 [44]. SS304L samples with the flat shape geometry had a thickness of 3.81 mm
and AlSi10Mg samples with the cylindrical shape were modeled as shown in Figure 7.
Volumetric elements were created by the sweeping mesh method through the entire body of
samples. With sweep meshing, a body face was meshed and then swept through the body
to mesh the volume with solid elements. For flat SS304L samples, quadrilateral elements
were used on the exterior face, while for the cylindrical specimen, both triangular and
quadrilateral elements were employed. The chosen elements were quadratic in shape and
each element consisted of mid-side nodes. The fine elements were adapted to accurately
assess maximum and minimum strain values within the gauge length (mid-section area) of
samples. Convergence was achieved for SS304L and AlSi10Mg samples, respectively, for
135 and 527 elements. Test samples were fixed at one end by imposing constraints along
the x, y, and z directions. Samples were then cycled from the other end along the y-axis of
samples. The Chaboche materials model in the finite element software [44] was employed
to assess plastic strain accumulation over the asymmetric loading cycles.
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Figure 7. Meshed samples of SS304L and AlSi10Mg through Ansys software.

3.4. Ratcheting–Fatigue Damage Curves

The concurrent fatigue–ratcheting damage of additively manufactured steel and alu-
minum samples prepared from 3D-printed plates was studied. Asymmetric loading cycles
applied on vertical AM samples resulted in noticeably different ratcheting and damage
values from those of horizontal samples. Ratcheting strains predicted and simulated, re-
spectively based on hardening framework and FE analysis, were used to construct the
upper bound of damage and an energy-based critical plane fatigue damage approach was
employed to form the lower bound damage curve. The measured values fell between
the upper and lower damage curves and partitioned damage values due to fatigue and
ratcheting phenomena at given life cycles. Figure 8 maps fatigue and ratcheting dam-
age curves for SS304L and AlSi10Mg samples versus fatigue lives. The damage curves
showed a gradual decay as life cycles increased. The lower damage curve was constructed
through the energy-based critical plane fatigue damage approach through Equation (1)
for fully reversed loading conditions (r = −1) in the absence of ratcheting. The upper
damage curve quantifies damage due to asymmetric loading cycles, leading to ratcheting
through Equation (2). The lower and upper damage curves, respectively expressed by
Equations (1) and (2), operate as a function of fatigue life N.
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Figure 8. Predicted and simulated damage upper curves and predicted fatigue damage lower curve 

for vertical and horizontal samples of (a,b) SS304L and (c,d) AlSi10Mg. 
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Figure 8. Predicted and simulated damage upper curves and predicted fatigue damage lower curve
for vertical and horizontal samples of (a,b) SS304L and (c,d) AlSi10Mg.

Ratcheting damage values predicted through the A–V model and simulated through
the FE analysis closely agreed with one another and formed the upper damage curves with
a small deviation as low as 10%. Cyclic test data positioned between the upper and lower
damage curves consisted of partitions of damage induced from ratcheting and fatigue
phenomena. Figure 8a,b present damage curves for vertical and horizontal samples made
of SS304L alloy. The stress ratio in these figures is zero (r = 0) where stress cycles fluctuate
between zero and maximum applied stress. AM samples of AlSi10Mg similarly held
upper and lower damage bounds in Figure 8c,d. To determine overall damage data falling
between these bounds, Varvani’s fatigue damage model (Equation (1)) was employed,
wherein the mean stress effect was taken into account through σm

n . Experimental data
presented in Figure 8 show a closer distance to the lower bound damage, wherein the
damage curve solely implies fatigue phenomenon at r = −1, in the absence of ratcheting.
The closer data point to lower curve verifies the fact that severe damage in the tested
samples is dominantly due to fatigue and ratcheting, resulting in a smaller weight of
damage. The weighting factor ξ for such data possesses larger value for fatigue damage
and smaller values of (1− ξ) as a contribution of ratcheting damage.

Contribution of Fatigue and Ratcheting Damage

The contribution of fatigue and ratcheting in the overall damage of material was found
to differ in various stress levels. Experimental data positioning closer to the bottom curve
in Figure 8 imply the larger contribution of fatigue damage and smaller damage weight due
to ratcheting in the failure of AM samples. The damage weights of fatigue and ratcheting
are presented in Figure 9 in the form of bar charts. This figure exhibits the weight of fatigue
and ratcheting phenomena in the overall damage of AM samples for vertical and horizontal
directions. Aluminum samples were tested with a larger stress ratio of 0.1 as compared with
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those steel samples tested with a ratio of zero. As the stress ratio increased in magnitude,
the ratcheting damage in AM samples was further promoted. The contribution of fatigue
damage for the cyclically tested samples of SS304L and AlSi10Mg stayed higher than the
weight of ratcheting damage. Through interpolation and partitioning the weight of damage
due to both phenomena, the failed samples underwent over 70% fatigue damage and the
remaining 20–30% damage resulted from ratcheting. The bar charts presented in Figure 9
clearly partition damage weights for several vertical and horizontal samples tested at
various stress levels.
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Figure 9. Bar charts to partition fatigue and ratcheting damage values at different stress levels and 

AM specimen directions for (a,b) SS304L and (c,d) AlSi10Mg. 

The interaction of fatigue and ratcheting in additively manufactured steel and alumi-

num samples undergoing uniaxial loading cycles necessitated the use of a hardening 

framework along with a fatigue damage model. The former enabled ratcheting assess-

ment and the latter evaluated cycle-by-cycle damage accumulated in the materials plane 

during loading cycles. The coupled fatigue and ratcheting severely promoted damage 

over loading cycles and resulted in accelerated failure in AM samples. To better quantify 
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The interaction of fatigue and ratcheting in additively manufactured steel and alu-
minum samples undergoing uniaxial loading cycles necessitated the use of a hardening
framework along with a fatigue damage model. The former enabled ratcheting assess-
ment and the latter evaluated cycle-by-cycle damage accumulated in the materials plane
during loading cycles. The coupled fatigue and ratcheting severely promoted damage
over loading cycles and resulted in accelerated failure in AM samples. To better quantify
overall damage, both phenomena were formulated in an analogous format and damage
values were integrated. A weighting factor was employed to partition damage quantities
through the interpolation of measured values based on upper and lower damage curves.
Several variables and parameters influenced overall damage as the fatigue and ratcheting
of SS304L and AlSi10Mg were investigated. The orientation of the AM sample prepared
from the 3D-printed sample influenced the ratcheting and fatigue data. Samples with
the horizontal direction experienced loading cycles along the layer-by-layer fabrication
direction, resulting in better material characteristics in the H-samples. The horizontal
samples improved the initial yield surface and corresponded to a larger yield surface
translation as loading progressed beyond the elastic limit. A higher level of backstress
in this direction improved its resistance against fatigue and ratcheting as compared with
those AM samples prepared along the vertical direction. While the present study involved
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several hardening and fatigue parameters and variables to assess the overall damage, the
concurrent ratcheting–fatigue phenomenon is yet a challenging research subject, particu-
larly in additively manufactured components. Besides influential theoretical parameters in
cyclic plasticity, the ratcheting and fatigue of load-bearing AM parts, some major technical
issues including AM sample orientation, post-processing, layer-by-layer fabrication speed,
interval time and temperature between subsequent layers, as well as surface roughness
and porosity between deposited layers require an intensive research investigation. As
the next research step, the authors believe that more research should be conducted to
develop theories and run experiments on AM samples to achieve more reliable solutions
for complex geometries and fatigue–ratcheting interactions.

4. Conclusions

The ratcheting–fatigue interaction of SS304L and AlSi10Mg samples was studied
through analytical and numerical approaches. Under uniaxial loading cycles, upper and
lower damage bounds were developed through a hardening framework and a fatigue
damage approach, respectively. The upper curve (ratcheting damage curve) was formu-
lated through the product of the applied stress range and ratcheting strain just before
failure. Ratcheting strain was predicted through a combined isotropic–kinematic hardening
framework. The lower curve (fatigue damage curve) was mapped through the use of an
energy-based critical plane damage approach involving the product of stress and strain
ranges acting on the most damaging plane in materials. The simulated ratcheting dam-
age curve was structured based on Chaboche’s materials model in finite element Ansys
software. Overall damage was partitioned through an interpolation from the upper and
lower damage curves for experimental data falling between the curves. A weighting factor
was adapted to evaluate damage weights due to ratcheting and fatigue phenomena. The
choice of partitioning overall damage into fatigue damage and ratcheting damage enables
a reliable design of additively manufactured samples through proper applied stress levels,
mean stress, operating temperature, post-processing techniques, and technical control
process to minimize the risk of severe damage in load-bearing AM components.
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