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Abstract: Improving the damping capacity of metal matrix composites is crucial, especially for
applications in the aerospace industry where reliable performance against vibrations and shocks
is mandatory. The main objective of the present study is the numerical prediction of the damping
behavior of alpha titanium matrix nanocomposites reinforced with hollow carbon nano-onions at
various volume fractions. According to the proposed numerical scheme, a structural transient analysis
is implemented using the implicit finite element method (FEM). The metal matrix nanocomposites
are modeled via the utilization of appropriate representative volume elements. To estimate the
mechanical and damping behavior of the nanocomposite representative volume elements, axial
sinusoidally time-varying loads are applied to them. The damping capacity of the metal matrix
nanocomposites is then estimated by the arisen loss factor, or equivalently the tan delta, which
is computed by the time delay between the input stress and output strain. The analysis shows
that the loss factor of alpha titanium may be improved up to 60% at 100 Hz by adding 5 wt%
carbon nano-onions. The numerical outcome regarding the dynamic properties of the carbon nano-
onions/alpha titanium nanocomposites is used in a second-level analysis to numerically predict
their damping performance when they are additionally reinforced with unidirectional carbon fibers,
using corresponding representative volume elements and time-varying loadings along the effective
direction. Good agreement between the proposed computational and other experimental predictions
are observed regarding the stiffness behavior of the investigated metal matrix nanocomposites with
respect to the mass fraction of the carbon-onion nanofillers in the titanium matrix.

Keywords: titanium; nanomaterial; nanoparticle; fullerene; multilayer; damping ratio; storage
modulus; loss modulus; vibration; finite element

1. Introduction

Nearly every industrial field has been significantly impacted by nanotechnology and
its discoveries. The industry of metal matrix composites (MMCs) is not an exception.
Recently, a significant amount of research effort has been undertaken in the field of MMCs
to adopt the advantages offered by carbon nanomaterials [1]. With their distinctive electri-
cal, mechanical, and thermal characteristics, carbon nanotubes and graphene nanosheets
are desirable reinforcement materials for making lightweight, highly durable, and high-
performing MMCs for applications in functional and structural engineering [1,2]. Due
to their extraordinary properties, carbon nanomaterials [1] as well as other nanoparticles
such as boron nitride nanotubes, boron nitride nanosheets, MXene, and metal dichalco-
genides [2] have become useful nanoscale fillers for creating metal matrix nanocomposites
(MMNCs), which are being used to circumvent the performance restrictions of conven-
tional MMCs. However, MMNCs, which utilize fullerenes as reinforcement, are less well
recognized, despite the fact that these spherical nanomaterials share analogous structural
and physical characteristics with graphene. Fullerenes are hollow molecular structures that
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are made of hexagonal and pentagonal carbon rings [3]. A fullerene may be imagined as
a single-layer graphene sheet, folded into a spherical shape. Similarly, the wrapping of
multilayer graphene sheets, i.e., monocrystal graphite sheets, into spherical shapes leads to
a new family of carbon nanomaterials named carbon nano-onions (CNOs) [4]. These carbon
nanoparticles due to their hollow spherical molecular structure may become intriguing
substitutes for single-walled carbon nanotubes (CNTs) and graphene since they are more
plentiful in a purified state and considerably more affordable. Additionally, single-layer
and multilayer fullerenes may provide a high level of purity and keep their quality even af-
ter several reproduction cycles. Moreover, due to their shape, they may be easily dispersed
into a metallic matrix without being damaged due to severe mechanical processes [5].

Due to the unique structural and chemical characteristics of CNOs, research in the
relevant domain is continuously increasing. Mykhailiv et al. [4] presented a very interesting
review of all the freshly established knowledge concerning CNOs. They evaluated the most
relevant literature reports regarding the fabrication methods, the remarkable physical and
chemical properties, and the possible applications of these fascinating carbon allotropes.
Regarding the potential innovative applications of CNOs, Zeiger et al. [6] discussed the use
of multiple concentric fullerene-like carbon shells as electrode materials for supercapacitors
plus as conductive additives and for redox-active species. On the other hand, significant
experimental effort was made to establish reliable processes for manufacturing CNOs. In
a notable attempt, He et al. [7] provided a practical method to produce CNOs on a large
scale over a Ni/Al catalyst by chemical vapor deposition (CVD) with diameters ranging
from 5 to 50 nm. More recently, Klose et al. [8] established a simple synthesis approach
for obtaining structured hollow CNOs with hierarchical porosities from the metal–organic
framework Basolite F300, made up of several graphitic shells forming a hierarchical micro-
and mesoporous carbon material. Based on a fast CVD technique at 700 ◦C with magnesium
oxide-supported cobalt as a catalyst, Ruan et al. [9] managed to produce gram-scale hollow
CNOs. They provided images from scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) showing that the produced nanomaterials were made up of
hollow polyhedral particles with diameters ranging from 10 to 50 nm. On the other
hand, Fan et al. [10] annealed nanodiamonds in a spark plasma sintering (SPS) furnace to
synthesize onion-like carbon powder, which was used as reinforcement in a titanium (Ti)
matrix at a mass fraction of 0.1 to 1.0%. Then, they measured the tensile properties of the
arisen nanocomposites, observing significant improvements. Very recently, Aissou et al. [11]
demonstrated a fast and efficient process for the synthesis of graphitic nanocapsules, i.e.,
onion-like carbon structures consisting of concentric polyhedral multilayer shells, with
diameters between 70 and 300 nm. Performing thermal decomposition of methane using
a plasma torch, they achieved a progressive evolution of the morphology from graphene
nanoflakes to carbon nano-onions with increasing pressure or methane flow rate. In the
field of theoretical modeling of the structural behavior of CNOs, little has been carried out.
Characteristically, Bowan et al. [12] adopted the Lennard-Jones potential in conjunction with
the continuum approximation to describe the interaction energy between adjacent shells
for both spherical and spheroidal carbon onions, assuming structures of either concentric
spherical or ellipsoidal fullerenes with n-layers. Using a similar theoretical technique,
Todt et al. [13] simulated the growth of CNOs by utilizing continuum mechanical shell
models. Using a molecular dynamic (MD)-based method, Izadi et al. [14] predicted the
elastic properties of polymer nanocomposites reinforced with a C60@C240 carbon onion.
Very recently, Pereira Júnior et al. [15] performed MD simulations based on the ReaxFF
potential model to study the dynamical behavior and the structural transformations of
CNOs under high-velocity impacts against rigid substrates.

In this work, given the above-mentioned observations, a finite element procedure
is formulated with the main aim of approximating the damping behavior and other me-
chanical characteristics of titanium filled with CNOs. The idea lies in the fact that the
characteristic multilayer hollow structure of CNOs could contribute to the enhancement
of the damping of titanium and its alloys, which is a very important requirement for
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applications where vibrational and impact loadings are present [16–19]. The CNOs are
practically spherical formations of multilayer graphene whose good damping capacity
at a low-frequency regime has already been demonstrated [20]. In addition, it has been
already proven that the existence of porosity and voids within a metallic material may lead
to an increase in its damping capacity [21,22]. Thus, the addition of hollow CNOs in Ti is
expected to additionally contribute to its energy dissipation ability in an indirect manner.
Among various types of available Ti materials, a single-phase alpha-Ti (α-Ti) is chosen as a
matrix material. Such titanium alloys are usually used in high-temperature applications
such as in compressor discs and blades in aero-engines [23], which exhibit shock vibrations.
Specifically, the material properties of the standardized α-Ti alloy VT0-1 are adopted [24,25],
which has recently been used successfully in additive manufacturing [26]. The proposed
finite element (FE) numerical scheme for the simulation of CNOs/α-Ti nanocomposites
under dynamic mechanical loadings is realized by utilizing the ANSYS workbench [27,28].
ANSYS Workbench is a commercial platform used to execute numerous kinds of structural,
thermal, and other analyses. The entire simulation process is tied together by a project
schematic, permitting interaction with ANSYS applications that are developed using basi-
cally C and C++, including CAD programs, meshing modules, optimization algorithms,
finite element method (FEM) solvers, and other computational tools. The use of FEM for
simulating titanium-based nanocomposites provides the advantage of low cost and time
requirements for estimating their damping properties, which would require substantial,
long-term, and laborious experimental efforts to be measured. Nonetheless, it is worth
noting that the adoption of continuum mechanics numerical methods may lead to the
misrepresentation of some nanoscale phenomena that atomistic methods could incorporate
with an enormous, however, computational cost. Small displacement theory is assumed
while the interface between the CNOs and the α-Ti is considered to be strong with neg-
ligible sliding and consequent energy dissipation due to friction. Appropriate periodic
two-phase RVEs are created and discretized using three-dimensional (3D) solid FEs for the
modeling of the α-Ti filled with CNOs. The RVEs are simulated, using structural implicit
transient analysis, under sinusoidally time-varying axial loads. The input stresses, the
output strains, and the phase shift between them are used to compute the loss factor and
other mechanical properties of the investigated nanocomposites. Long as well as short
carbon fibers (CFs) are commonly used to reinforce matrices that are already filled with
carbon nanomaterials [29]. On the other hand, in an effort to improve the functionality
of 3D printing components [30,31], CFs are now largely used in addictive manufacturing
processes, opening new technological paths [32]. Therefore, in the present work, the pre-
diction of the damping capacity of the previously analyzed CNOs/α-Ti nanocomposites
which are extra reinforced with carbon fibers (CFs) [33–37], is also numerically estimated.
It is found that the damping capacity enhancement of the investigated material systems
due to the addition of the hollow carbon nanoparticles originates from the higher internal
friction of the multilayer graphene-like walls of the CNOs as well as the arisen porosity.
The present computational results regarding the elastic stiffness of the tested CNOs/α-Ti
nanocomposites are compared with analogous experimental ones where possible. In the
present work, for the first time, the damping behavior of a titanium matrix nanocomposite
is explored via an FEM-based computational scheme. Moreover, the evaluation of damping
enhancement accomplished by the addition of CNOs in a metal matrix, as well as the
mechanisms behind such a phenomenon, which is the main target we aimed to achieve
here via FEM simulations, has not been presented elsewhere.

The rest of the paper is organized as follows: Section 2 refers to the FE modeling of
the investigated nanocomposites and their constituents. The specific section also presents
the adopted computational scheme and formulations for the calculation of the dynamic
properties of the MMNCs. The numerical results concerning the mechanical and damping
performance of the proposed MMNCs are demonstrated in Section 3, while the conclusions
and directions for future work are pointed out in Section 4.
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2. Materials and Methods
2.1. Numerical Treatment of Basic Phases
2.1.1. Alphα Titanium Alloy

A single-phase titanium alloy that is commercially known as VT0-1 was used as the basic
matrix phase. Practically, it is an α-Ti commercial alloy that contains, by weight, up to 0.18%
Fe, up to 0.07% C, up to 0.04% N, up to 0.1% Si, up to 0.12% O, up to 0.004 H%, and 0.3%
other impurities [25]. The microstructure of the specific commercial metal is characterized
by crystal grains, which are formed by α-Ti phase [25]. The α-Ti matrix is assumed to
act as an isotropic continuum medium having the typical mechanical properties indicated
in Table 1 [24]. Considering the requirements of the present study, a crucial aspect is the
proper representation energy dissipation capability of the adopted α-Ti matrix. Therefore,
the damping behavior of the specific material is defined on the basis of the well-known loss
factor. The “loss factor” is a dimensionless coefficient characterizing how oscillations in a
system diminish after being under a disturbance. It is equivalent to the “loss tangent” or
“internal friction” and is usually represented by the symbol tanδ. It should also be noted that
the damping ratio ζ of a material or system is equal to half of the loss factor, i.e., ζ = tanδ/2.
The loss factor of the α-Ti was chosen in accordance with some very recent experimental
measurements obtained for the specific Ti phase, by applying micro-harmonic vibrations
close to the room temperature and at a frequency of f = 100 Hz [19].

Table 1. Utilized material properties for each basic phase in the FEM models.

Material/
Phase Behavior

Density
(kg/m3)

Elastic Constant
(GPa)

Poisson’s Ratio
(−)

Loss Factor
(−)

ρ Exx Eyy Ezz Gxy Gyz Gxz νxy νyz νxz tanδ

α-Ti Isotropic 4505 117 117 177 43.985 43.985 43.985 0.33 0.33 0.33 0.0278
CNOs Isotropic 2267 387 1050 1050 442.66 442.66 442.66 0.186 0.186 0.186 0.518

CFs Orthotropic 2150 17.24 17.24 17.24 7.1 7.1 7.1 0.214 0.214 0.214 0.000159

2.1.2. Carbon Nano-Onions

The CNOs, which were used to achieve the primary reinforcement of the α-Ti, were
treated as continuum isotopic nanoparticles. Each CNO was computationally represented
by utilizing a 3D hollow nanosphere of an external diameter d and a wall thickness t, as
Figure 1a illustrates. The wall thickness t corresponds to the total thickness of the multilayer
graphene shell along the radial direction governed by the van der Waals (vdW) interlayer
interactions. Moreover, for a more realistic representation of the hollow CNOs and in order
to follow typical experimental observations, their diameter d was assumed to follow a
uniform variation in the range [10 nm, 50 nm] [9], while their thickness was taken equal
to t = 3.4 nm, which, by considering the typical graphitic interlayer distance of 0.34 nm,
corresponds to the thickness of a 10-layer graphene sheet. In addition, it was considered that
the mechanical behavior of the CNOs was governed by typical elastic properties of curved
multilayer graphene-based nanostructures [13]. According to a noticeable experimental
study by Lahiri et al. [20], the loss factor of a 10-layer graphene nanomembrane at a
vibrating frequency of 100 Hz was measured around tanδ = 0.518. This representative value
was selected here for modeling the damping behavior of the CNOs wall. Table 1 provides
a summary of the physical and mechanical properties used for the hollow multilayer
graphene spheres. The geometry of each CNO was discretized by using 3D quadratic solid
Fes, as shown in Figure 1b.

2.1.3. Carbon Fibers

In the second stage of the FEM simulation, it was assumed that the CNOs/α-Ti was
additionally reinforced by continuous and almost unidirectionally oriented T300 CFs having
a diameter D of 7 µm. The specific polyacrylonitrile-based CFs were used to reinforce a
matrix material made of α-Ti, which was uniformly filled with the above-described CNOs
at a variety of volume fractions. The density and the material properties used for modeling
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the T300 fibers [38] are mentioned in Table 1. Note that orthotropic elastic constants were
applied to the fibers, with respect to their local coordinate system (χ, ψ, ζ) depicted in
Figure 2a. Based on extensive experimental observations, reported by Lesieutre et al. [39]
regarding the damping capacity of a single polyacrylonitrile-based fiber for frequencies
above 80 Hz, it was assumed that the loss factor of each CF was represented by an average
value of about 0.000159. A typical 3D FE mesh model of an individual T300 CF may be
observed in Figure 2b.
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2.2. Numerical Treatment of α-Ti Filled with CNOs

First, it was assumed that the CNOs were randomly distributed in the α-Ti nanocomposite.
The volume fraction Vf of the CNO nanofillers in the α-Ti matrix was defined by:

Vf =
VCNO

VCNO + Vα−Ti
(1)

where VCNO and Vα-Ti are the total volumes of the CNO nanofillers and the α-Ti matrix,
respectively.

The investigation was performed for various volume fractions up to 25%. The α-Ti
was used as a matrix, while pristine CNOs with dimensions of d = [10 nm, 50 nm] and
t = 3.4 nm were placed randomly as nanofillers in cubic RVEs with a side length of l. The
overall mechanical behavior of the nanocomposite RVEs remained essentially isotropic due
to the random dispersion of the nanofillers. As shown in Figure 3a,c, the problem domain
was specified in a global Cartesian coordinate system (x, y, z). To create proper FE models
like illustrated in Figure 3b,d, the adaptive mesh option was adopted, while large deflection
effects were neglected [27,28]. A small sinusoidally time-varying axial normal stress of the
type σ = σ0sin(2πft), where f is the frequency set to 100 Hz and t is the time, was applied to
the front vertical plane x = l of the RVE. An appropriate frictionless support condition was
applied to the behind boundary x = 0 of the RVE. To ensure that the periodic symmetry of
the RVE was satisfied (zero shear stresses should appear on these surfaces at all times), the
vertical planes y = 0, y = l, z = 0, and z = l were restricted to remain parallel to their original
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shape. Transient structural analysis was used to simulate the modeled MMNCs until the
time instant t = 1.1T was reached, where T = 1/f = 0.01 s is the period of the external load.
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2.3. Numerical Treatment of CNOs/α-Ti Nanocomposite Reinforced with CFs

Having computed the dynamic material properties of the CNOs/α-Ti nanocomposites,
the second stage of the present FEM-based study could be realized. At this second stage,
the damping characterization of triple-phase materials composed of α-Ti, CNOs, and
T300 CFs was achieved by introducing new RVEs. The investigated material system was
composed of a matrix made of CNOs/α-Ti nanocomposite at various volume fractions and
reinforcements of continuous and almost unidirectionally aligned T300 fibers, having a
small mean misalignment angle up to 2 degrees. The volume fraction of the CFs in the
MMNC matrix may be expressed as:

VfCF =
VCF

VCF + VMMNC
(2)

where VCF and VMMNC are the total volumes of the CF reinforcements and the CNOs/α-Ti
MMNC matrix, respectively.
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As Figure 4a,c show, the continuous fibers in the periodic RVEs were nearly perfectly
aligned with the x-axis of the global coordinate system. It should be noted that a double side
length was utilized along the effective direction (x-axis) of the RVE models. Two different
volume fraction values of the CFs in the CNOs/α-Ti MMNC matrix were numerically tested
(VfCF = 0.05, 0.10). The FEM models of the developed RVEs, depicted in Figure 4b,d, were
axially loaded with a sinusoidally time-varying normal stress along the effective x-axis of the
CF-reinforced MMNCs to extract the dynamic properties governing the specific direction of
the composite systems. For each investigated case, corresponding proper boundary conditions
of periodic symmetry were imposed on the externally nonloaded RVE faces.
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It should be mentioned that the FE discretizations of the RVEs illustrated in Figure 3b,d
and Figure 4b,d as well as any other utilized model were chosen after performing cor-
responding parametric studies to find the lowest mesh density above which numerical
solutions tend to stabilize.

2.4. Computation of Dynamic Properties

The MMNC and the CF-reinforced MMNC models were discretized using quadratic 3D
solid FEs and appropriate material properties were assigned to each different phase according
to the values presented in Table 1. The MMNCs were examined in a first-level analysis using a
variety of RVEs such as those shown in Figure 3. In a second-level analysis, the CF-reinforced
MMNCs were simulated by utilizing the FE models that are illustrated in Figure 4. For the
case of CF-reinforced MMNCs, the CNOs/α-Ti matrix was treated as a continuum medium
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using the dynamic properties that were computed from the first-level analysis. The equation
of motion for a given RVE may be written in the below matrix form [27,28]:

[M]{
..
U}+ [C]{

.
U}+ [K]{U} = {F} (3)

where [M], [C], and [K] are the structural mass, damping, and stiffness matrix, respectively,
while {

..
U}, {

.
U}, {U}, and {F} are the nodal acceleration, velocity, displacement, and

applied load vector, respectively.
To define the damping matrix [C] appearing in Equation (3), the Rayleigh approxima-

tion [27,28,40] was utilized. According to Rayleigh formulation, the damping matrix [C]
may be written as a linear combination of mass and stiffness matrices [27,28,41]:

[C] = α[M] + β[K] (4)

where α and β are the multiplier coefficients of the mass and stiffness matrices.
The values of the α and β multipliers should produce the desired damping ratio ζ at some

circular frequency ω = 2πf. In order for this to be satisfied, it may be proved that the damping
ratio ζ should be linearly dependent on the coefficients α and β as follows [18,27,40]:

ζ =
α

2ω
+

βω

2
(5)

Here, it is hypothesized that the energy dissipation ability of each material phase is
expressed by a separate viscous mechanical damping. Furthermore, it is considered that
the loss of energy derived by the material constituents is independent of the inertia effects.
Subsequently, the β multiplier of each phase may be defined with respect to the damping
ratio ζ, expressing the corresponding energy dissipation and the most dominant circular
frequency ω appearing on the system, according to the following relationship:

β =
2ζ

ω
=

ζ

π f
(6)

Following the aforementioned numerical approach, a full implicit transient analysis was
performed by utilizing a constant small time step equal to ∆t = 0.01f. The use of smaller time
steps led to negligibly different numerical outputs, meaning that the chosen time increment
was fine enough to lead to convergent solutions. Most of the numerical predictions could be
achieved by comparing the time variation in the average nodal normal strain on the loaded
RVE face ε(t) with the time variation in the applied normal stress σ(t) on the same face. In
contrast, characteristic time variations in the input stress and the output strain, under the
influence of damping and consequent energy dissipation phenomena, are depicted in Figure 5.

According to the input stress and output strain time variations and the time lag ∆τ
which was observed between them, several dynamic properties may be computed. First of
all, the phase shift, denoted as δ, between input stress and output strain may be estimated
by using the time lag ∆τ from Figure 5 via the following relationship:

δ = 2π f ∆τ (7)

Then, the loss factor tanδ, the storage modulus E′, and the loss modulus E′′ may be
evaluated, respectively, by [41]:

tan δ = tan(2π f ∆τ) (8)

E′ =
σ0

ε0
cos δ (9)

E′′ =
σ0

ε0
sin δ (10)
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where σ0 and ε0 are the maximum of the input normal stress and the maximum (average
nodal) of the output normal strain on the loaded boundary of the RVE models, respectively.
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Figure 5. The time lag between input stress and output strain, which was caused by the overall
damping of the nanocomposite.

The ratio of the maximum stress to the maximum average nodal strain σ0/ε0 represents
the elastic modulus or, equivalently, the stiffness of the MMNCs. The Poisson ratio of a
given nanocomposite RVE may be calculated by the ratio of the average nodal normal strain
on an externally nonloaded RVE face to the average nodal normal strain at the externally
loaded RVE face.

3. Numerical Results and Discussion

The current computational results, as previously mentioned, were obtained in two
levels of analysis, which are visually summarized in Figure 6.
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Figure 6. The two-level analysis proposed for the characterization of the mechanical and damping
behavior of different types of MMNCs filled with CNOs.

During the first level of analysis, the CNOs/α-Ti nanocomposite FE models were sim-
ulated using transient implicit analysis for various volume fractions Vf. All computations
were performed for an indicative load frequency of f = 100 Hz. The time variations in the
average nodal normal strain on the loaded face of the RVEs are shown in Figure 7 for five
different values of volume fractions Vf. It may be observed that the higher the volume
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fraction Vf of the CNOs within the pure metallic matrix, the lower the maximum output
strain ε0 and the longer the time lag ∆τ, indicating a higher MMNC stiffness σ0/ε0 and loss
factor tanδ, respectively.
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volume fractions.

Figure 8a–d present the volume fraction variations in the MMNCs stiffness σ0/ε0,
Poisson’s ratio v, loss factor tanδ, and density ρ, respectively. For a better understanding of
the CNOs’ influence, the axis of the independent variable in the material property diagrams
was scaled not only according to the volume fraction Vf but also to the mass fraction Mf,
which is defined as follows:

Mf =
ρCNOVCNO

ρCNOVCNO + ρα−TiVα−Ti
(11)

where ρCNO and ρα-Ti are the densities of the CNO nanofillers and the α-Ti matrix, respec-
tively, given in Table 1.

The volume fraction variations, especially in Figure 8a,b, are characterized by small
fluctuations. This is due to the fact that the FE models were created by applying a random
distribution of the CNO nanofillers in a finite box space. However, the overall trend in
all variations becomes more clear when fitted with second-order polynomial functions
represented by solid lines. According to Figure 8a, a significant increase in the nanocom-
posite stiffness was observed as the volume fraction of the CNOs attains higher values.
However, the slope of increase is slightly reduced for higher volume fractions. Figure 8a
includes some experimental data [10] concerning a Ti matrix nanocomposite reinforced
with onion-like carbon nanoparticles at mass fractions of about 0.1 to 1.0%. Generally, the
maximum relative difference between the present numerical predictions and the specific
measurements was about 8%. Unfortunately, due to the novelty of the present investigation
apart from the experimental data points regarding the MMNC elastic modulus, illustrated
in Figure 8a, no further relevant comparable results may be found elsewhere for the investi-
gated MMNC including its damping properties. The Poisson ratio, depicted in Figure 8b,
initially shows a decreasing linear dependency on the volume fraction, whereas it presents
a stabilization tendency for higher nanofiller concentrations. According to Figure 8c, the
loss factor of the MMNC was almost linearly increased up to the volume fraction of 25%.
For this maximum tested volume fraction and the vibrating frequency of 100 Hz, a great
increase in the loss factor of α-Ti was achieved due to the addition of the CNOs. Finally,
as expected, the density of the MMNC filled with CNOs shown in Figure 8d reduced
significantly and linearly as the reinforcing content was increased, due to the fact that
graphitic materials are much lighter than Ti.
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Figure 8. Volume fraction variations in (a) the stiffness σ0/ε0, (b) Poisson’s ratio ν, (c) the loss factor 
tanδ, and (d) the density ρ of the CNOs/α-Ti nanocomposites. 
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tanδ, and (d) the density ρ of the CNOs/α-Ti nanocomposites.

Substituting the fitting curves included in Figure 8a,c into Equations (9) and (10) allows
the prediction of the volume fraction variations in the storage and loss moduli shown in
Figure 9a,b, respectively. The volume fraction variation in the storage modulus E′ of the
MMNC followed the overall corresponding behavior of the stiffness. On the other hand,
the loss modulus E′′ showed an almost increasing linear behavior which, however, was
characterized by a slight slope increase as the volume fraction rose. This phenomenon is
perhaps explained by the increased porosity that the MMNC exhibited as the number of
hollow nanofillers within the matrix was augmented. Figure 10 presents some indicative
contour maps regarding the equivalent von Mises stress, σvM, regarding two of the investi-
gated RVEs at a volume fraction of 10% (Figure 10a) and 25% (Figure 10b) and at the time
instant t = 0.8T = 0.08 s, i.e., near the peak of the observed stress concentrations. Note that
the von Mises stress values σvM at the scale bars are nondimensionalized by dividing them
with the maximum applied stress σ0. It may be noticed that the maximum equivalent stresses
were observed within the graphene-based nanoparticles relieving the matrix component. As
the volume fraction was increased, the stresses were distributed to more nanoparticles. As a
result, the maximum von Mises stress was lower for the case Vf = 0.25.
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To continue to the second-level analysis concerning the characterization of energy
dissipation of the CNOs/α-Ti nanocomposite reinforced with the T300 CFs at f = 100 Hz,
the predicted properties from Figure 8a–d were used as the input. The aim was to develop
RVEs in which the MMNC matrix was modeled as a continuum solid phase using the
macroscopic properties defined by these figures. The MMNC matrix made of CNOs/α-Ti
was tested at the volume fractions Vf = 0, 0.10, 0.15, 0.20, and 0.25. On the other hand,
two different cases regarding the volume fraction of the CFs in the CNO/α-Ti matrix were
investigated, i.e., VfCF = 0.05, 0.10. Figure 11a–d present the variation in the stiffness σ0/ε0,
the loss factor tanδ, the storage modulus E′, and the loss modulus E′′ of the CF-reinforced
MMNCs, respectively, with regard to the CNO volume fraction Vf and the CF volume
faction VfCF.
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Figure 11. The variation in (a) the stiffness σ0/ε0, (b) the loss factor tanδ, (c) the storage modulus E′,
and (d) the loss modulus E′′ of the CNOs/α-Ti nanocomposites reinforced with CFs versus the CNOs
volume fraction and for two CF volume fractions.

Generally, all presented properties increased as the volume fraction Vf rose. Never-
theless, the slope of the increase in the curves that correspond to the stiffness and storage
modulus seems to reduce as Vf reaches 25%. Instead, the loss factor and loss modulus
curves have an almost linear ascending behavior. As in the case of simple MMNCs, and per-
haps due to the impact of porosity, their slope shows a marginal increase as the Vf increases.
It becomes clear that the damping capacity, expressed by the loss factor, of the MMNC
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becomes lower with the addition of the CFs. In contrast, the higher the fiber volume fraction
VfCF, the higher the stiffness of the CF-reinforced nanocomposite. In any case, the α-Ti
offered better energy dissipation properties when reinforced with CNOs. However, most
of the positive influence of the CNOs on the loss factor of the titanium matrix was not lost
due to the addition of fiber reinforcements, which simultaneously provided a significant
stiffness enhancement to the material system. An important observation is the fact that the
addition of carbon fibers in an α-Ti matrix filled with CNO leads to an improvement in
the storage modulus but to a reduction in the loss factor due to the inherent high effective
elastic modulus and low loss factor of the carbon fibers, respectively. Some contour plots of
the dimensionless equivalent von Mises stress σ0/σvM for two CF-reinforced MMNC RVEs
at a VfCF equal to 0.05 and 0.10 are illustrated in Figure 12a,b, respectively. The contours
correspond to the highest tested CNO volume fraction Vf = 0.25 and to the time point
t = 0.0077 s around which stress peaks occur. As illustrated, for both the CF volume fraction
cases, the maximum equivalent stress was detected in the fibers. In addition, the increase
in the CF concentration led to a significant decrease in the level of von Mises stresses.
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4. Conclusions

A 3D FEM procedure was developed to evaluate the damping characteristics of
nanocomposites made of α-titanium filled with hollow CNOs. A structural implicit tran-
sient FE analysis was performed for RVEs that contained hollow CNOs, using correspond-
ing material properties for the nanofillers, to approximate the loss factor and the stiffness
behavior of the CNO/α-Ti nanocomposites at a variety of volume fractions. Using the



Metals 2023, 13, 1577 15 of 17

numerical results of the CNOs/α-Ti nanocomposites, consequential CF-reinforced MMNCs
were investigated via the use of appropriate RVEs. It was proved that the loss factor of
the titanium was greatly increased when filled with CNOs due to the high internal friction
of multilayer graphene-like walls of the CNOs as well as the internal voids of the CNOs
leading, indirectly, to the presence of porosity. According to the investigation, the addition
of 5 weight percent of CNOs improved the damping capacity of α-Ti at 100 Hz by up
to 60%. In addition, the tested CF-reinforced MMNCs demonstrated a slightly reduced
damping capacity compared to simple CNOs/α-Ti nanocomposites; however, they also
presented a better overall stiffness performance. Independent experimental evidence from
tensile tests conducted in equivalent nanocomposite material systems was used for qualita-
tive comparisons. Overall, both theoretical and experimental analyses revealed the same
stiffness behavior of the MMNCs. The main outcome is that CNOs seem to be excellent
filler candidates for improving the damping behavior of titanium alloys, which is very
important for the automotive and aerospace industry. Inspired by the present findings,
further experimental research is required regarding the damping characterization of the
proposed MMNC systems, which ought to be made in the near future. Future work may
also include the validation of the present findings by using atomistic-based computational
methods such as molecular dynamics.
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