An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printing of the Specimens
- -
- Dimensional relative error along x axis: Edx, according to Equation (1).
- -
- Dimensional relative error along y axis: Edy.
- -
- Dimensional relative error along z axis: Edz.
- -
- Average dimensional error Edt, according to Equation (2).
- -
- Porosity P, according to Equation (3).
2.2. Measurement of the Samples
2.3. Mathematical Models and Multiobjective Optimization
- -
- First, total dimensional error Edt was to be minimized, and a target value of 20% was defined for porosity P.
- -
- Second, dimensional error along z axis Edz was to be minimized, and a target value of 20% was considered for porosity P.
3. Results and Discussion
3.1. Dimensional Error and Porosity
3.2. Regression Models
3.3. Multi-Objective Optimization
4. Conclusions
- -
- Relative dimensional errors of up to 5.8% in the X and Y directions were found. They depend mainly on the layer height and the printing temperature.
- -
- Lower relative dimensional errors of up to 3.5% were determined in the Z direction. They are mainly influenced by the print speed and the interaction between print speed and layer height.
- -
- Porosity values ranged from 7.46% to 35.60%, depending on the 3D printing conditions selected, while the target value was 20%. This is mainly related to the layer height and temperature.
- -
- When the total relative error is minimized and a target porosity value of 20% is defined, the best solution corresponds to a low layer height of 0.1 mm, a high print speed of 40 mm/s, a low extrusion multiplier of 0.94 and a low temperature of 200 °C. On the other hand, if only the relative error along the Z axis, and porosity, are considered, a high layer height of 0.3 mm, a high extrusion multiplier of 1 and a high temperature of 220 °C are recommended.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Wang, Y.; Lin, Z.; Zhang, T. Creating metal parts by Fused Deposition Modeling and Sintering. Mater. Lett. 2020, 263, 127252. [Google Scholar] [CrossRef]
- Ramazani, H.; Kami, A. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review. Prog. Addit. Manuf. 2022, 7, 609–626. [Google Scholar] [CrossRef]
- Konieczny, J.; Rdzawski, Z. Antibacterial properties of copper and its alloys. Arch. Mater. Sci. Eng. 2012, 56, 53–60. [Google Scholar]
- Fattah-Alhosseini, A.; Imantalab, O. Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J. Alloys Compd. 2015, 632, 48–52. [Google Scholar] [CrossRef]
- Alfantazi, A.M.; Ahmed, T.M.; Tromans, D. Corrosion behavior of copper alloys in chloride media. Mater. Des. 2009, 30, 2425–2430. [Google Scholar] [CrossRef]
- Lewis, A.; Keevil, C. Antibacterial Properties of Alloys and Its Alloys in HVAC\&R Systems; International Copper Association: New York, NY, USA, 2004. [Google Scholar]
- Vidakis, N.; Petousis, M.; Michailidis, N.; Grammatikos, S.; David, C.N.; Mountakis, N.; Argyros, A.; Boura, O. Development and Optimization of Medical-Grade MultiFunctional Polyamide 12-Cuprous Oxide Nanocomposites with Superior Mechanical and Antibacterial Properties for Cost-Effective 3D Printing. Nanomaterials 2022, 12, 534. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Sanz-Fraile, H.; Ulldemolins, A.; Tejo-Otero, A.; Domínguez-Fernández, A.; Almendros, I.; Otero, J. Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications. Polymers 2022, 14, 2754. [Google Scholar] [CrossRef]
- Alam, F.; Shukla, V.R.; Varadarajan, K.M.; Kumar, S. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 103, 103576. [Google Scholar] [CrossRef]
- León-Patiño, C.A.; Rodriguez-Ortiz, G.; Aguilar-Reyes, E.A. Fabrication and thermal properties of copper-based composites. In Proceedings of the Materials Science and Technology Conference and Exhibition 2009, MS and T’09, Pittsburgh, PA, USA, 25–29 October 2009; Volume 3, pp. 1848–1855. [Google Scholar]
- Timbs, K.; Khatamifar, M.; Antunes, E.; Lin, W. Experimental study on the heat dissipation performance of straight and oblique fin heat sinks made of thermal conductive composite polymers. Therm. Sci. Eng. Prog. 2021, 22, 100848. [Google Scholar] [CrossRef]
- Hwang, S.; Reyes, E.I.; Moon, K.-s.; Rumpf, R.C.; Kim, N.S. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 2015, 44, 771–777. [Google Scholar] [CrossRef]
- Nikzad, M.; Masood, S.H.; Sbarski, I. Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater. Des. 2011, 32, 3448–3456. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Papadakis, V.M.; Mountakis, N. Multifunctional Medical Grade Resin with Enhanced Mechanical and Antibacterial Properties: The Effect of Copper Nano-Inclusions in Vat Polymerization (VPP) Additive Manufacturing. J. Funct. Biomater. 2022, 13, 258. [Google Scholar] [CrossRef]
- Rane, K.; Strano, M. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Adv. Manuf. 2019, 7, 155–173. [Google Scholar] [CrossRef]
- Wu, G.; Langrana, N.A.; Sadanji, R.; Danforth, S. Solid freeform fabrication of metal components using fused deposition of metals. Mater. Des. 2002, 23, 97–105. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Chohan, J.S.; Singh, S.; Pruncu, C.I.; Scutaru, M.L.; Muntean, R. Investigations on melt flow rate and tensile behaviour of single, double and triple-sized copper reinforced thermoplastic composites. Materials 2021, 14, 3504. [Google Scholar] [CrossRef]
- Phani Babu, V.V.; GB, V.K. A review on 3D printing process on metals and their surface roughness and dimensional accuracy. Mater. Today Proc. 2022, 64, 523–530. [Google Scholar] [CrossRef]
- Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017, 10, 1199. [Google Scholar] [CrossRef]
- Kottasamy, A.; Samykano, M.; Kadirgama, K.; Rahman, M.; Noor, M.M. Experimental investigation and prediction model for mechanical properties of copper-reinforced polylactic acid composites (Cu-PLA) using FDM-based 3D printing technique. Int. J. Adv. Manuf. Technol. 2022, 119, 5211–5232. [Google Scholar] [CrossRef]
- Balamurugan, K.; Venkata Pavan, M.; Ahamad Ali, S.K.; Kalusuraman, G. Compression and flexural study on PLA-Cu composite filament using FDM. Mater. Today Proc. 2021, 44, 1687–1691. [Google Scholar] [CrossRef]
- Prajapati, A.R.; Rajpurohit, S.R.; Patadiya, N.H.; Dave, H.K. Analysis of Compressive Strength of 3D Printed PLA Part. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 295–304. ISBN 9789811591167. [Google Scholar]
- Sa’ude, N.; Masood, S.H.; Nikzad, M.; Ibrahim, M. Dynamic Mechanical Properties of Copper-ABS Composites for FDM Feedstock. Int. J. Eng. Res. Appl. 2013, 3, 1257–1263. [Google Scholar]
- Sa’ude, N.; Ibrahim, M.; Ibrahim, M.H.I.; Wahab, M.S.; Haq, R.; Marwah, O.M.F.; Khirotdin, R.K. Additive manufacturing of copper-ABS filament by fused deposition modeling (FDM). J. Mech. Eng. 2018, 5, 23–32. [Google Scholar]
- Petousis, M.; Vidakis, N.; Mountakis, N.; Papadakis, V.; Kanellopoulou, S.; Gaganatsiou, A.; Stefanoudakis, N.; Kechagias, J. Multifunctional Material Extrusion 3D-Printed Antibacterial Polylactic Acid (PLA) with Binary Inclusions: The Effect of Cuprous Oxide and Cellulose Nanofibers. Fibers 2022, 10, 52. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Sivatte-Adroer, M. Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes. Machines 2022, 10, 83. [Google Scholar] [CrossRef]
- Islam, M.N.; Boswell, B.; Pramanik, A. An investigation of dimensional accuracy of parts produced by three-dimensional printing. In Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2013. 1 WCE 2013. [Google Scholar]
- Vidakis, N.; David, C.; Petousis, M.; Sagris, D.; Mountakis, N.; Moutsopoulou, A. The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: Prediction models and optimization supported by robust design analysis. Adv. Ind. Manuf. Eng. 2022, 5, 100104. [Google Scholar] [CrossRef]
- Vidakis, N.; David, C.; Petousis, M.; Sagris, D.; Mountakis, N. Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Mater. Today Commun. 2023, 34, 105171. [Google Scholar] [CrossRef]
- Luis-Pérez, C.J.; Buj-Corral, I.; Sánchez-Casas, X. Modeling of the influence of input am parameters on dimensional error and form errors in pla parts printed with fff technology. Polymers 2021, 13, 4152. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; John, T.D.; Sivadasan, M.; Singh, N.K. Investigation on the Scale Factor applicable to ABS based FDM Additive Manufacturing. Mater. Today Proc. 2018, 5, 1640–1648. [Google Scholar] [CrossRef]
- Ceretti, E.; Ginestra, P.; Neto, P.I.; Fiorentino, A.; Da Silva, J.V.L. Multi-layered Scaffolds Production via Fused Deposition Modeling (FDM) Using an Open Source 3D Printer: Process Parameters Optimization for Dimensional Accuracy and Design Reproducibility. Procedia CIRP 2017, 65, 13–18. [Google Scholar] [CrossRef]
- Nancharaiah, T.; Raju, D.R.; Raju, V.R. An experimental investigation on surface quality and dimensional accuracy of FDM components. Int. J. Emerg. Technol. 2010, 1, 106–111. [Google Scholar]
- Pennington, R.C.; Hoekstra, N.L.; Newcomer, J.L. Significant factors in the dimensional accuracy of fused deposition modelling. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2005, 219, 89–92. [Google Scholar] [CrossRef]
- Caminero, M.Á.; Chacón, J.M.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers 2019, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Egan, P.F.; Shea, K.A.; Ferguson, S.J. Simulated tissue growth for 3D printed scaffolds. Biomech. Model. Mechanobiol. 2018, 17, 1481–1495. [Google Scholar] [CrossRef] [PubMed]
- Too, M.H.; Leong, K.F.; Chua, C.K.; Du, Z.H.; Yang, S.F.; Cheah, C.M.; Ho, S.L. Investigation of 3D non-random porous structures by fused deposition modelling. Int. J. Adv. Manuf. Technol. 2002, 19, 217–223. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Bagheri, A.; Domínguez-Fernández, A.; Casado-López, R. Influence of infill and nozzle diameter on porosity of FDM printed parts with rectilinear grid pattern. Procedia Manuf. 2019, 41, 288–295. [Google Scholar] [CrossRef]
- Ben Ali, N.; Khlif, M.; Hammami, D.; Bradai, C. Mechanical and morphological characterization of spherical cell porous structures manufactured using FDM process. Eng. Fract. Mech. 2019, 216, 106527. [Google Scholar] [CrossRef]
- Karimi, M.; Asadi-Eydivand, M.; Abolfathi, N.; Chehrehsaz, Y.; Solati-Hashjin, M. The effect of pore size and layout on mechanical and biological properties of 3D-printed bone scaffolds with gradient porosity. Polym. Compos. 2023, 44, 1343–1359. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Bagheri, A.; Sivatte-Adroer, M. Effect of Printing Parameters on Dimensional Error, Surface Roughness and Porosity of FFF Printed Parts with Grid Structure. Polymers 2021, 13, 1213. [Google Scholar] [CrossRef]
- Colorfabb Technical Datasheet of Copperfill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_CopperFill.pdf (accessed on 20 August 2023).
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 2018, 12, 214–219. [Google Scholar] [CrossRef]
- Frunzaverde, D.; Cojocaru, V.; Bacescu, N.; Ciubotariu, C.R.; Miclosina, C.O.; Turiac, R.R.; Marginean, G. The Influence of the Layer Height and the Filament Color on the Dimensional Accuracy and the Tensile Strength of FDM-Printed PLA Specimens. Polymers 2023, 15, 2377. [Google Scholar] [CrossRef]
- Zharylkassyn, B.; Perveen, A.; Talamona, D. Effect of process parameters and materials on the dimensional accuracy of FDM parts. Mater. Today Proc. 2021, 44, 1307–1311. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R.; Mohaghegh, V. Analysing the effects of layer heights and line widths on FFF-printed thermoplastics. Int. J. Adv. Manuf. Technol. 2022, 121, 7383–7411. [Google Scholar] [CrossRef]
- Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M. Investigation on the effects of process parameters in CNC assisted pellet based fused layer modeling process. J. Manuf. Process. 2018, 35, 428–436. [Google Scholar] [CrossRef]
- Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf. Ser. Mater. Sci. Eng. 2017, 227, 012033. [Google Scholar] [CrossRef]
- Geng, P.; Zhao, J.; Wu, W.; Ye, W.; Wang, Y.; Wang, S.; Zhang, S. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J. Manuf. Process. 2019, 37, 266–273. [Google Scholar] [CrossRef]
- Stojković, J.R.; Turudija, R.; Vitković, N.; Sanfilippo, F.; Păcurar, A.; Pleşa, A.; Ianoşi-Andreeva-Dimitrova, A.; Păcurar, R. An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts. Materials 2023, 16, 4574. [Google Scholar] [CrossRef]
- Brackett, J.; Cauthen, D.; Condon, J.; Smith, T.; Gallego, N.; Kunc, V.; Duty, C. The impact of infill percentage and layer height in small-scale material extrusion on porosity and tensile properties. Addit. Manuf. 2022, 58, 103063. [Google Scholar] [CrossRef]
- Dave, H.K.; Rajpurohit, S.R.; Patadiya, N.H.; Dave, S.J.; Sharma, K.S.; Thambad, S.S.; Srinivasn, V.P.; Sheth, K. V Compressive strength of PLA based scaffolds: Effect of layer height, infill density and print speed. Int. J. Mod. Manuf. Technol. 2019, 11, 21–27. [Google Scholar]
- Buj-Corral, I.; Petit-Rojo, O.; Bagheri, A.; Minguella-Canela, J. Modelling of porosity of 3D printed ceramic prostheses with grid structure. Procedia Manuf. 2017, 13, 770–777. [Google Scholar] [CrossRef]
- Garzon-Hernandez, S.; Arias, A.; Garcia-Gonzalez, D. A continuum constitutive model for FDM 3D printed thermoplastics. Compos. Part B Eng. 2020, 201, 108373. [Google Scholar] [CrossRef]
- Darsin, M.; Mahardika, N.A.; Jatisukamto, G.; Ramadhan, M.E.; Fachri, B.A.; Hussin, M.S. Effect of 3D Printing Parameters on Dimensional Accuracy Using eSteel Filaments. J. 3D Print. Addit. Manuf. 2022, 1–7. [Google Scholar] [CrossRef]
- Lambiase, F.; Scipioni, S.I.; Paoletti, A. Mechanical characterization of FDM parts through instrumented flat indentation. Int. J. Adv. Manuf. Technol. 2023, 125, 4201–4211. [Google Scholar] [CrossRef]
- Colorfabb Technical Datasheet of Bronzefill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_BronzeFill.pdf (accessed on 20 August 2023).
- Colorfabb Technical Datasheet of Steelfill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_SteelFill.pdf (accessed on 20 August 2023).
- Isa, N.M.A.; Sa’ude, N.; Ibrahim, M.; Hamid, S.M.; Kamarudin, K. A Study on Melt Flow Index on Copper-ABS for Fused Deposition Modeling (FDM) Feedstock. Appl. Mech. Mater. 2015, 773–774, 8–12. [Google Scholar] [CrossRef]
- Garg, H.; Singh, R. Investigations for melt flow index of Nylon6-Fe composite based hybrid FDM filament. Rapid Prototyp. J. 2016, 22, 338–343. [Google Scholar] [CrossRef]
Variable | Acronym | Lower Limit | Upper Limit |
---|---|---|---|
Layer height (mm) | LH | 0.1 | 0.3 |
Print speed (mm/s) | PS | 30 | 40 |
Extrusion multiplier | EM | 0.94 | 1 |
Printing temperature (°C) | PT | 200 | 220 |
Experiment | LH (mm) | PS (mm/s) | EM | PT (°C) | Edx (%) | Edy (%) | Edz (%) | Edt (%) | Mass (g) | P (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.1 | 20 | 0.94 | 200 | 0.00 | 0.90 | 1.25 | 0.72 | 6.14 | 16.99 |
2 | 0.3 | 20 | 0.94 | 200 | 2.20 | 3.30 | 3.25 | 2.92 | 5.90 | 26.20 |
3 | 0.1 | 40 | 0.94 | 200 | 0.20 | 1.30 | 1.25 | 0.92 | 6.13 | 19.07 |
4 | 0.3 | 40 | 0.94 | 200 | 2.80 | 3.60 | 1.05 | 2.48 | 5.20 | 35.60 |
5 | 0.1 | 20 | 1 | 200 | 0.20 | 1.10 | 1.50 | 0.93 | 6.44 | 15.25 |
6 | 0.3 | 20 | 1 | 200 | 2.50 | 3.50 | 1.80 | 2.60 | 5.69 | 29.24 |
7 | 0.1 | 40 | 1 | 200 | 0.50 | 1.60 | 1.15 | 1.08 | 6.23 | 18.85 |
8 | 0.3 | 40 | 1 | 200 | 3.30 | 4.30 | 1.00 | 2.87 | 5.48 | 33.68 |
9 | 0.1 | 20 | 0.94 | 220 | 0.10 | 1.20 | 1.45 | 0.92 | 6.62 | 10.61 |
10 | 0.3 | 20 | 0.94 | 220 | 3.00 | 4.30 | 2.15 | 3.15 | 6.37 | 21.88 |
11 | 0.1 | 40 | 0.94 | 220 | 0.80 | 1.90 | 1.45 | 1.38 | 6.37 | 18.32 |
12 | 0.3 | 40 | 0.94 | 220 | 4.20 | 5.50 | 1.05 | 3.58 | 6.23 | 24.56 |
13 | 0.1 | 20 | 1 | 220 | 0.20 | 1.40 | 1.45 | 1.02 | 6.99 | 7.46 |
14 | 0.3 | 20 | 1 | 220 | 3.80 | 5.30 | 1.95 | 3.68 | 6.72 | 17.06 |
15 | 0.1 | 40 | 1 | 220 | 0.90 | 1.50 | 1.45 | 1.28 | 6.93 | 8.34 |
16 | 0.3 | 40 | 1 | 220 | 5.20 | 5.80 | 1.10 | 4.03 | 6.78 | 18.96 |
17-1 | 0.2 | 30 | 0.97 | 210 | 1.70 | 3.10 | 1.70 | 2.17 | 6.28 | 20.60 |
17-2 | 0.2 | 30 | 0.97 | 210 | 1.70 | 3.3 | 1.75 | 2.25 | 6.21 | 22.28 |
17-3 | 0.2 | 30 | 0.97 | 210 | 1.70 | 3.2 | 1.75 | 2.22 | 6.23 | 24.13 |
Response | R2 (adj) (%) | Variable | Effect |
---|---|---|---|
Edx | 99.39 | LH | 3.01 |
TE | 0.81 | ||
PS | 0.74 | ||
LH·TE | 0.54 | ||
Edy | 97.69 | LH | 3.09 |
TE | 0.91 | ||
LH·TE | 0.64 | ||
PS | 0.56 | ||
Edz | 69.10 | PS | 0.66 |
LH·PS | 0.58 | ||
Edt | 96.86 | LH | 2.31 |
TE | 0.57 | ||
LH·PS | 0.33 | ||
P | 93.38 | LH | 11.53 |
PS | 4.09 | ||
LH·PS | 0.52 | ||
AC·EM | 0.73 |
Importance | LH (mm) | PS (mm/s) | ME | PT (°C) | Composite Desirability |
---|---|---|---|---|---|
Equal | 0.1 | 40 | 0.94 | 200 | 0.942 |
Higher for Edt | 0.1 | 40 | 0.94 | 200 | 0.941 |
Higher for P | 0.1 | 40 | 0.94 | 200 | 0.943 |
Importance | LH (mm) | PS (mm/s) | ME | PT (°C) | Composite Desirability |
---|---|---|---|---|---|
Equal | 0.3 | 40 | 1 | 220 | 0.959 |
Higher for Edz | 0.3 | 40 | 1 | 220 | 0.943 |
Higher for P | 0.3 | 40 | 1 | 220 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buj-Corral, I.; Sivatte-Adroer, M. An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts. Metals 2023, 13, 1608. https://doi.org/10.3390/met13091608
Buj-Corral I, Sivatte-Adroer M. An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts. Metals. 2023; 13(9):1608. https://doi.org/10.3390/met13091608
Chicago/Turabian StyleBuj-Corral, Irene, and Maurici Sivatte-Adroer. 2023. "An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts" Metals 13, no. 9: 1608. https://doi.org/10.3390/met13091608
APA StyleBuj-Corral, I., & Sivatte-Adroer, M. (2023). An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts. Metals, 13(9), 1608. https://doi.org/10.3390/met13091608