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Abstract

:

For the present, it is difficult to obtain thermodynamic data for binary liquid alloys by experimental measurements. In this study, the molecular dynamics processes of the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 were simulated by using the ab initio molecular dynamics (AIMD) principle, and their partial radial distribution functions (PRDF) were obtained at different simulation steps. Combined with the relevant binary parameters of the Molecular Interaction Volume Model (MIVM), Regular Solution Model (RSM), Wilson Model, and Non-Random Two-Liquid (NRTL) models. The integral terms containing the PRDF were computed using the graphical integration method to obtain the parameters of these models, thus estimating their activity and molar excess Gibbs energy. The total average relative deviations (ARD) of the activity and molar excess Gibbs energy estimates of the four models for the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 at full concentration when the PRDF is obtained by the symmetry method are MIVM: 21.59% and 59.35%; RSM: 21.63% and 60.27%; Wilson: 24.27% and 86.7%; NRTL: 23.9% and 83.24%. When the PRDF is obtained by the asymmetric method: MIVM: 22.86% and 68.08%; RSM: 32.84% and 68.66%; Wilson: 25.14% and 82.75%; NRTL: 24.49% and 85.74%. This indicates that the estimation performance of the MIVM model is superior to the other three models, and the symmetric method performs better than the asymmetric method. The present study also derives and verifies the feasibility of Sommer’s equation for estimating the molar excess Gibbs energy and activity of binary liquid alloy systems in the Miedema model by using different equations of enthalpy of mixing versus excess entropy given by Tanaka, Ding, and Sommer. The total ARD of Tanaka, Ding, and Sommer’s relational equations in the Miedema model for estimating the activities and molar excess Gibbs energies of the binary liquid alloys Pb-Sn, Al-Sn, and In-Zn are 3.07% and 8.92%, 6.09% and 17.1%, and 4.1% and 14.77%. The results indicate that the estimation performance of the Miedema model is superior to the other four models.
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1. Introduction


The thermodynamic parameters of solutions are fundamental data for the development of new processes, process optimization, and theoretical research in many fields. The study of the thermodynamic properties of solutions is essential for metallurgical preparation or the development of new materials. Among them, binary liquid alloys are characterized by simple structure and easy processing, which are widely used in aerospace, automotive, marine, and other fields [1]. Due to the complexity and accuracy limitations of actual high temperature experiments, in many cases, the experimental measurement process is difficult and the thermodynamic data results obtained are not accurate [2,3]. Therefore, it is worthwhile to seek an accurate, convenient, and reasonable method to simulate the experimental part of thermodynamic research. Since most of the actual solutions in thermodynamic experiments are non-ideal solutions, a modified concentration (activity) instead of the actual concentration must be considered to accurately analyze the thermodynamic behavior of the solution when simulating and calculating the thermodynamic parameters [4,5]. Therefore, the activity becomes one of the important research topics in the field of thermodynamic properties, and the molar excess Gibbs energy of the alloy can also be used as a more intuitive comparison and reference for the value of the alloy activity as well as the change of the alloy activity.



Until now, scientists have proposed many methods for calculating activity coefficients, such as the regular solution model (RSM) proposed by Hilderande [6,7] in 1929 and Wilson [8] in 1964, who postulated that interactions between molecules depended mainly on the “local concentration” which could be expressed as a volume fraction, and proposed the Wilson equation. The Non-Random Two-Liquid (NRTL) Model equation proposed by Renon and Prausnitz in 1968 is based on the semiempirical equation for the concept of localized concentration [9]. Miedema et al. developed a semiempirical theoretical model in 1973. Miedema et al. extended the metacellular model used by Wigner–Seitz in the theoretical description of pure metals to binary alloys and developed an empirical model after the gradual improvement ofthe Miedema model [10,11]. Tao [12] in 2000, based on statistical thermodynamics and fluid phase equilibrium theory, derived a new expression for the regular coordination partition function of liquids and their mixtures. Tao put forward the concept of local coordination number of molecules in liquid mixtures and its expression, thus establishing a new model for the thermodynamics of liquid mixtures that is the Molecular Interaction Volume Model, abbreviated as MIVM, and the above models have been widely used.



Ab initio molecular dynamics (AIMD), also known as first-principles molecular dynamics, has the basic idea of taking the electronic structure of molecules and interatomic interactions as the basis of calculations and calculating the structure and properties of materials through molecular dynamics simulations [13,14]. AIMD calculation methods have a wide range of applications, which can be used to study the structure, thermodynamic properties, kinetic properties, and electronic structure of a variety of materials [15].



Based on the predictive activity models of various binary alloy systems and the principle of AIMD, this paper uses Materials Studio software (Materials Studio 7.0-2020) to construct a binary alloy metal molecular model [16]. Next, Vienna ab initio simulation package (VASP) software (VASP-5.4.1.) is used to simulate molecular dynamics processes to obtain the thermodynamic data required for the binary liquid alloy system, and the partial radial distribution function (g(r)) is obtained by Visual Merchandising (VMD) software (VMD-1.9.4a53) [17,18,19,20]. Then, the parameters required for the MIVM, RSM, Wilson, and NRTL models are obtained by calculating the potential energy function. Two methods (the PRDF is obtained by the asymmetry method and the PRDF is obtained by the symmetry method) were used to estimate the activity and molar excess Gibbs energy of liquid mixtures of three binary positive deviation systems, Pb50 Sn50, Al50 Sn50, and In50 Zn50. Selection of binary liquid alloys with 50 percent monometallic concentration have a low melting point, good fluidity, easy processing, and low cost. Another task is to estimate the molar excess Gibbs energy and activity of the three systems in the Miedema model using three different relation equations between mixing enthalpy and excess entropy given by Tanaka [21], Ding [22], and Sommer [23,24], and to compare the estimation effects of each model and the two methods.




2. Methods and Steps of Simulation Calculation


2.1. Obtaining the Partial Radial Distribution Function by AIMD


In this work, the simulation uses the AIMD principle. Firstly, the molecular configuration of the alloy cells was established in the Materials Studio simulation software using the Packing method [16]. A total of 118 atoms consisting of 59 Pb atoms and 59 Sn atoms; 126 atoms consisting of 63 Al atoms and 63 Sn atoms; and 122 atoms consisting of 61 In atoms and 61 Zn atoms were simulated by placing them into square cubic boxes with side lengths of 15.5 Å, 15 Å, and 14 Å, respectively. The densities of the three systems of Pb0.5-Sn0.5, Al0.5-Sn0.5, and In0.5-Zn0.5 were 8.632 g/cm3 [25], 4.53 g/cm3 [26], and 6.665 g/cm3, respectively [27]. Next, AIMD simulations based on density functional theory (DFT) were performed using the VASP software [17]. The exchange-correlation function employed the Perdew–Burke–Ernzerhof (PBE) function, which is based on the generalized gradient approximation (GGA) [18]. Ultrasoft pseudopotentials [19] were used. The cutoff energy is chosen to be 1.3 times higher than the maximum cutoff energy provided in the pseudopotential files [17], and the calculation accuracy was chosen to be 10−4 eV/Å for the electron step and 10−3 eV/Å for the ion step. In simulating the kinetics, the simulation temperatures were set to 1050 K, 973 K, and 730 K, respectively, with the NVT system [20] synthesized using a Nosé–Hoover thermostat for temperature control [28]. The time step was 3 fs and the maximum number of steps for the ion motion was 5000 (15 ps). The K-point is set to the Gamma point [17]. Subsequently, the trajectory file XDATCAR was obtained as an output of the VASP kinetic simulation calculations, which includes the atomic coordinate information output at certain step intervals (i.e., all the atomic coordinate information of the 5000 steps of the performed calculations). Subsequent import into the VMD software allows the direct generation of g(r) images and g(r) coordinate data required for stepwise calculations [29].




2.2. Obtaining the First Peak of the Partial Radial Distribution Function


The partial radial distribution function is a function that describes the distribution state of matter and is used to describe the distribution of particles in space. It is defined as the product of the probability of a particle appearing on the unit sphere around a point in space and the density of the particle distribution on the sphere. The partial radial distribution function is an important manifestation of orderliness in the liquid alloy system. The typical partial radial distribution function is shown in Figure 1 [30,31]. Function in the origin of the coordinates near the existence of a clear peak, the first peak can be expressed and the central atom has interaction around the atom distribution changes [32].



In this paper, r0: represents the abscissa of the starting point of non-zero values; r1: denotes the position of the first valley of the function gij(r); rm: is the position of the first peak of the function gij(r); the following gij(r) = gji(r), gii(r), gjj(r) denotes the partial radial distribution function. In this paper, the way of describing the partial radial distribution function is divided into two kinds: one is the partial radial distribution function in the r0~rm region of the integral value of the symmetric treatment to obtain the method called symmetric method; one is to directly select the integral value of the r0~r1 region of the partial radial distribution function of the method called asymmetric method. The following gives the three systems of all the g(r) images as well as all of the key points of the data in the following Figure 2, Figure 3 and Figure 4 and Table 1, Table 2 and Table 3:




2.3. Average Pair Potential Energy Functions for Binary Liquid Alloys


The interaction potential function of molecular pairs is an important element in the study of the structure of matter and plays a decisive role in the thermodynamic properties of matter. The unknown parameters in the molar excess Gibbs energy thermodynamic model contain potential energy information. The partial radial distribution function is the result of the dynamic equilibrium of molecules under the action of the potential energy function [33].



According to the equation for the intermolecular pair potential energy as a function of radial distribution in a highly dilute pure gas [34]:


  g ( r ) = exp [ − ε ( r ) / k T ]  



(1)







k is the Boltzmann constant 1.38 × 10−23 J/K and T is the temperature. Assume that this equation can be approximated for i-j binary liquid alloys in order to calculate their interatomic pair potential functions. According to the probability density distribution function and the expectation principle, the expressions for the molecular pair potentials, εii, εjj, and εij of the binary liquid alloy can be obtained as [35,36]:


     ε  i i     k T   =    ∫   r 0     r 1        ε  i i    r   g  i i   ( r )      ∫   r 0     r 1     4 π  g  i i   ( r )  r 2  d r      d V    = −      ∫   r 0     r 1     ln  g  i i   ( r )  g  i i   ( r )  r 2  d r         ∫   r 0     r 1      g  i i   ( r )  r 2  d r       



(2)






     ε  i j     k T   = −      ∫   r 0     r 1     ln  g  i j   ( r )  g  i j   ( r )  r 2  d r         ∫   r 0     r 1      g  i j   ( r )  r 2  d r                     ε  j j     k T   = −      ∫   r 0     r 1     ln  g  j j   ( r )  g  j j   ( r )  r 2  d r         ∫   r 0     r 1      g  j j   ( r )  r 2  d r      ,  



(3)







Thus, under the condition that g(r) is known, then the values of εii, εjj, and εij = εji can be calculated from Equations (2) and (3).





3. Thermodynamic Model


3.1. Molecular Interaction Volume Model (MIVM)


The MIVM possesses characteristics such as inclusivity, diffusion stability, and thermodynamic consistency. The model satisfies the Gibbs–Duhem equation [37], so it can also be used to describe the thermodynamic properties of partially mutually soluble systems. Tao used statistical thermodynamics in the derivation process to obtain configurational partition functions that include both volume and energy terms. The model is suitable for different temperature system transformations and has a wide range of applications with relatively mature physical significance.



For the i-j binary alloy system MIVM the molar excess Gibbs energy is expressed as [12]:


     G m E    R T   =  x i  ln      V  m i      x i   V  m i   +  x j   V  m j    B  j i       +  x j  ln      V  m j      x j   V  m j   +  x i   V  m i    B  i j       −    x i   x j   2       Z i   B  j i   ln  B  j i      x i  +  x j   B  j i     +    Z j   B  i j   ln  B  i j      x j  +  x i   B  i j        



(4)







The molar excess Gibbs energy (GmE) measures the overall energy change, and fluid phase equilibrium studies also require knowledge of the component activities (a). The expression for the activity coefficient of component i is [12]:


  ln  γ i  = ln      V  m i      x i   V  m i   +  x j   V  m j    B  j i       +  x j  (    V  m j    B  j i      x i   V  m i   +  x j   V  m j    B  j i     −    V  m i    B  i j      x j   V  m j   +  x i   V  m i    B  i j     ) −    x j 2   2       Z i   B  j i  2  ln  B  j i       (  x i  +  x j   B  j i   )  2    +    Z j   B  i j   ln  B  i j       (  x j  +  x i   B  i j   )  2       



(5)







γi, γj are the activity coefficients of compositions i, j,    a i  =  γ i   x i       a j  =  γ j   x j    are the respective activities. Where R is the ideal gas constant of 8.314 J/(K.mol). T is the absolute temperature. Vmi, Vmj denote the molar volume of group elements i, j at the temperature of the system to be solved, respectively. xi, xj denote the local mole fractions of the group elements i, j, and Zi, Zj denote the first coordination numbers of pure substances i, j. Bij and Bji are the parameters of molecular pair energy interactions, define Bij, Bji [12]:


   B  i j   = exp   −    ε  i j   −  ε  j j     k T      B  j i   = exp   −    ε  j i   −  ε  i i     k T      



(6)








3.2. Regular Solution Model (RSM)


The RSM was proposed by Hildebrand in 1929 [6,7]. This model assumes that the mixture enthalpy of the solution is non-zero, while the mixture entropy is equal to that of an ideal solution. In other words, this model considers the interactions between solvent molecules but neglects the influence of volume.



For the i-j binary alloy system RSM the molar excess Gibbs energy is expressed as [6,7]:


     G m E    R T   =  w  k T    x i   x j   



(7)







The expression for the activity coefficient of component i is [6,7]:


  ln  γ i  =  w  k T    x j 2   



(8)




where w is the interaction parameter. The    w  k T     expression obtained from Guggenheim’s lattice-like theory is used here [38]:


   w  k T   = Z      ε  i j     k T   −  1 2       ε  i i     k T   +    ε  j j     k T        



(9)







Z is the average coordination number. For i-j binary liquid mixtures, the empirical formula for the local coordination number can be replaced by the expression containing the partial radial distribution function given by Hill [34]:


     Z  i i   =  x i   ρ 0  4 π    ∫ 0 ∞    r 2   g  i j   ( r ) d r                 Z  i j   =  x j   ρ 0  4 π    ∫ 0 ∞    r 2   g  i j   ( r ) d r         Z  j j   =  x j   ρ 0  4 π    ∫ 0 ∞    r 2   g  j j   ( r ) d r                 Z  j i   =  x i   ρ 0  4 π    ∫ 0 ∞    r 2   g  j i   ( r ) d r       



(10)







ρ0 denotes the corresponding mean density for the corresponding alloy composition. Dorini gives the expression for the average coordination number Z based on the local coordination number of the liquid alloy used here [39]:


  Z =  x i  (  Z  i i   +  Z  i j   ) +  x j  (  Z  j i   +  Z  j j   )  



(11)








3.3. Wilson Model


The Wilson model was proposed by Wilson in 1964 [8]. Wilson used the ratio of the Boltzmann distribution to define the “local concentration”, in which the local volume fraction was defined. The disadvantage is that it cannot be used in systems where the liquid phase is partially miscible. For the i-j binary alloy system Wilson Model the molar excess Gibbs energy is expressed as [8]:


     G m E    R T   = −  x i  ln    x i  +  A  j i    x j    −  x j  ln    x j  +  A  i j    x i     



(12)







The expression for the activity coefficient of component i is [8]:


  ln  γ i  = − ln    x i  +  A  j i    x j    +  x j       A  j i      x i  +  A  j i    x j    −    A  i j      x j  +  A  i j    x i       



(13)




where, the parameters Aij and Aji are defined as [8]:


   A  i j    =     V i     V j    exp   −    ε  i j   −  ε  j j     k T      A  j i   =    V j     V i    exp   −    ε  i j   −  ε  i i     k T      



(14)








3.4. Non-Random Two-Liquid Model (NRTL)


The NRTL model was proposed by Renon and Prausnitz in 1968 [9]. This model was derived by combining a local composition equation, based on the non-random assumption, with a potential energy expression for liquid mixtures from the two-liquid theory. It overcomes the disadvantage that Wilson’s equation cannot be used for systems in which the liquid phase is partially miscible. This model is often considered the most balanced model in the organic field in terms of simplicity, accuracy, and rationality. Their molar excess Gibbs energy expression [9]:


     G m E    R T   =  x i   x j       τ  j i   exp   − α  τ  j i        x i  +  x j  exp   − α  τ  j i       +    τ  i j   exp   − α  τ  i j        x j  +  x i  exp   − α  τ  i j          



(15)







The expression for the activity coefficient of component i is [9]:


  ln  γ i  =  x j 2       τ  j i       exp   − 2  α  i j    τ  j i        2           x i  +  x j  exp ( −  α  i j    τ  j i   )      2    +    τ  i j   exp   − 2  α  i j    τ  i j              x j  +  x i  exp ( −  α  i j    τ  i j   )      2       



(16)




where, the model parameters τij and τji are defined as [9]:


   τ  i j   =    ε  i j   −  ε  j j     k T    τ  j i   =    ε  j i   −  ε  i i     k T    



(17)







The meaning of α is related to the stochasticity of the mixtures, and the value ranges from 0.2 to 0.47, in this paper, we take 0.3; αij = αji, τij, τji can be expressed as the pair potential.




3.5. Miedema Model


The Miedema model is a semi-empirical theoretical model developed by Miedema in 1973 [10,11]. This model assumes that the Wigner–Seitz cell theory can be extended from pure metals to binary alloys, and they believe that the concept of cells in alloys is still valid. The Miedema model generation heat calculation is an important achievement in alloying theory in recent years, with wide practical application. The heat of generation of any binary alloy other than O, S, Se, and Te can be calculated by using the basic properties of the components. The relationship between the partial molar excess free energy       G   i   E    ¯    of component i and its activity coefficient in a binary alloy system consisting of component i and component j are expressed as:


     G i E   ¯  = R T ln  γ i   



(18)







The partial molar excess free energy of component i       G   i    ¯    and the Gibbs excess free energy of the i-j binary alloy system are related by:


      G   i   E    ¯  =   G   i j   E   + ( 1 +   x   i   )   ∂   G   i j   E     ∂   x   i      



(19)







In the binary system i-j, the molar excess Gibbs energy     G   i j   E     and excess entropy     S   i j   E     and the enthalpy change of   Δ   H   i j     are related by:


    G   i j   E   = Δ   H   i j   − T   S   i j   E    



(20)







T is the absolute temperature, in binary system alloys, the heat of generation can be obtained from the Miedema model, and the heat of generation in the formation of liquid solution or solid solution is derived as [10,11]:


  Δ  H  i j   =  f  i j      x i    1 +  u i   x j     ϕ i  −  ϕ j       x j    1 +  u j   x i     ϕ j  −  ϕ i         x i   V i   2 / 3      1 +  u i   x j     ϕ i  −  ϕ j      +  x j   V j   2 / 3      1 +  u j   x i     ϕ j  −  ϕ i         



(21)






   f  i j   =   2 p  V i   2 / 3     V j   2 / 3       q /  p      n  w s i    1 / 3    −  n  w s j    1 / 3       2  −      ϕ i  −  ϕ j     2  − a    r / p               n  w s    1 / 3       i  − 1   +      n  w s    1 / 3       j  − 1      



(22)







In Equations (21) and (22), xi and xj are the molar fractions of i and j, respectively; Vi and Vj are the molar volumes of group elements i and j, respectively;         n   w s       i     and         n   w s       j     are the electron densities of group elements i and j, respectively;     ϕ   i     and     ϕ   j     are the electronegativities of group elements i and j; p, q, µi, µj, b, r/p are constants and p/q = 9.4 for all alloys;



3.5.1. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Tanaka


Kubaschewiski and Alcock [40] examined the relationship between the enthalpy of mixing and excess entropy of binary alloys and concluded that there was an approximately linear relationship. After more careful study, Tanaka concluded that the ratio coefficient of     S   i j   E     and   Δ   H   i j     is related to the melting point of pure metals, which can be given by the relation [21]:


    S   i j   E   =   Δ   H   i j         1     T   m i       +     1     T   m j           14    



(23)







Tmi and Tmj are monometallic melting points, the same applies below. Order:


  β = 1 −   T       1     T   m i       +     1     T   m j           14    



(24)







Then one can obtain:


    G   i j   E   =   β   i j   Δ   H   i j    



(25)







Combined with the Miedema model Equations (21) and (22), the relationship between the activity coefficients of i as a function of component xi is obtained:


  ln  γ i  =  1  R T    β  i j   Δ  H  i j     1 +  x j       1   x i    −  1   x j    −    u i     ϕ i  −  ϕ j        1 +  u i   x j     ϕ i  −  ϕ j        +    u j     ϕ j  −  ϕ i        1 +  u j   x i     ϕ j  −  ϕ i            −    V i   2 / 3      1 +  u i    1 − 2  x i       ϕ i  −  ϕ j      +  V j   2 / 3      − 1 +  u j    1 − 2  x i       ϕ j  −  ϕ i         x i   V i   2 / 3      1 +  u i   x j     ϕ i  −  ϕ j      +  x j   V j   2 / 3      1 +  u j   x i     ϕ j  −  ϕ i               



(26)








3.5.2. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Ding


Ding Xueyong gives different empirical constants based on     S   i j     E     and   Δ   H   i j     relationship of [22]:


    S   i j   E   = 0.1 × Δ   H   i j       1 /   T   m i     + ( 1 /   T   m j   )    



(27)







Order:


    α   i j   = 1 − 0.1 T     1 /   T   m i     +   1 /   T   m j        



(28)







Then it is available:


    G   i j   E   =   α   i j   Δ   H   i j    



(29)







Next, in combined with the Miedema model Equations (21) and (22), the relationship between the activity coefficients of i as a function of component xi is obtained:


  ln  γ i  =  1  R T    α  i j   Δ  H  i j     1 +  x j       1   x i    −  1   x j    −    u i     ϕ i  −  ϕ j        1 +  u i   x j     ϕ i  −  ϕ j        +    u j     ϕ j  −  ϕ i        1 +  u j   x i     ϕ j  −  ϕ i            −    V i   2 / 3      1 +  u i    1 − 2  x i       ϕ i  −  ϕ j      +  V j   2 / 3      − 1 +  u j    1 − 2  x i       ϕ j  −  ϕ i         x i   V i   2 / 3      1 +  u i   x j     ϕ i  −  ϕ j      +  x j   V j   2 / 3      1 +  u j   x i     ϕ j  −  ϕ i               



(30)








3.5.3. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Sommer


For the relationship between the enthalpy of mixing and excess entropy, Sommer, Germany, gave the following new expression based on the formula of V.T. Witusiewicz [41] in combination with binary system alloys [23,24]:


   S  i j  E  = Ω     Δ H  T  +  x i   x j  R  P T     



(31)







Among them [23,24]:


  Ω =   1   2 π             T  ¯    m         T  ¯    b     + 1     ℮    



(32)






    P   T   =   1   2   +     4   T  ¯    m     3 T   + 2 l n   T       T  ¯    b   −     T  ¯    m      



(33)







Tbi and Tbj are monometallic boiling points, respectively.       T  ¯    m   = (   T   m i   +   T   m j   ) / 2  ;       T  ¯    b   = (   T   b i   +   T   b j   ) / 2  , e is a natural constant.



Combining Equations (18), (19) and (29),     ln      γ   i       can be expressed as:


    ln      γ   i     =     α   i j     H   i j     R T   +     α   i j   ( 1 +   x   i   )   ∂ Δ   H   i j     ∂   x   i       R T    



(34)







Associative formulations (30) and (34) are available for the Miedema model:


    ∂ Δ  H  i j     ∂  x i    = Δ  H  i j   (   1 −  x i    1 +  x i    )      1   x i    −  1  1 −  x i    −    μ i  (  φ i  −  φ j  )     1 +  μ i  ( 1 −  x i  ) (  φ i  −  φ j  )     +    μ i  (  φ j  −  φ i  )     1 +  μ j   x i  (  φ j  −  φ i  )         −    V i  2 / 3     1 +  μ i  ( 1 − 2  x i  ) (  φ i  −  φ j  )   +  V j  2 / 3     − 1 +  μ j  ( 1 − 2  x i  ) (  φ j  −  φ i  )      x i   V i  2 / 3     1 +  μ i   x j  (  φ i  −  φ j  )   +  x j   V j  2 / 3     1 +  μ j   x i  (  φ j  −  φ i  )          



(35)







The Sommer enthalpy change and entropy change relation combining Equations (18)–(20), (31)–(33) and (35) can ultimately lead to the derivation of expressions for the molar excess Gibbs energy and activity:


   G  i j  E  = ( 1 − Ω ) Δ  H  i j   −  x i  ( 1 −  x i  ) T Ω R  P T   



(36)






    ln  γ i  =   ( 1 − Ω ) Δ  H  i j   −  x i  ( 1 −  x i  ) T Ω R  P T    R T   +   ( 1 +  x i  )   ( 1 − Ω )   ∂ Δ  H  i j     ∂  x i    − ( 1 − 2  x i  ) T Ω R  P T      R T       =   ( 1 − Ω ) Δ  H  i j   −  x i  ( 1 −  x i  ) T Ω R  P T    R T       +   ( 1 −  x i  ) ( 1 − Ω ) Δ  H  i j        1   x i    −  1  1 −  x i    −    μ i  (  φ i  −  φ j  )     1 +  μ i  ( 1 −  x i  ) (  φ i  −  φ j  )     +    μ i  (  φ j  −  φ i  )     1 +  μ j   x i  (  φ j  −  φ i  )         −    V i  2 / 3     1 +  μ i  ( 1 − 2  x i  ) (  φ i  −  φ j  )   +  V j  2 / 3     − 1 +  μ j  ( 1 − 2  x i  ) (  φ j  −  φ i  )      x i   V i  2 / 3     1 +  μ i   x j  (  φ i  −  φ j  )   +  x j   V j  2 / 3     1 +  μ j   x i  (  φ j  −  φ i  )         − ( 1 +  x i  ) ( 1 − 2  x i  ) T Ω R  P T    R T      



(37)







For the Miedema model parameters are shown in Table 4. where the r/p value is only relevant for transition metal and non-transition metal alloys, and for two non-transition metals the p value is 10.6.






4. Results and Discussion


4.1. Parameters of Four Models


The expressions (2) and (3) for the average atom pair potential of the binary liquid alloy containing g(r) are substituted into the model parameter expressions (6), (9), (14), and (17) for MIVM, RSM, Wilson, and NRTL, respectively, and the values of the integral terms are calculated by using the graphical integration method with trapezoidal integration as the basic principle [43]. This method divides the integration region into several small trapezoids and sums their areas to obtain the integral value. Obviously, this method is different from the mathematical form of L-PPDF fitted with the Gaussian function by Chunlong Wang et al. [31], which depends on the fitting parameters u and v. Therefore, in this work, no fitting parameters are introduced in the process of solving each model parameter.



The parameter values of each model are calculated by using the asymmetric method and the symmetric method, as shown in Table 5. For the parameters of the symmetry method, the table presents the data calculated by multiplying by two the integral values of r0~rm in the selected g(r).



In order to visualize the difference between the fitted values and the experimental values more intuitive, the standard deviation SD and the average relative deviation ARD of the calculated results are denoted as:


  SD =      ∑       a  e s t   −  a  exp      2     N     ,   ARD  =  1 N   ∑       a  e s t   −  a  exp      a  exp         × 100 %  








aest is the estimated value of activity and aexp [43,44,45] is the experimental value of activity.


  SD =      ∑       G m E    e s t   −  G m E    exp      2     N    ,    ARD  =  1 N   ∑       G m E    e s t   −  G m E    exp      G m E    exp         × 100 %  








GmE(est) is the estimated value of the molar excess Gibbs energy and GmE(exp) [44,45,46] is the experimental value of the molar excess Gibbs energy.




4.2. Miedema Model Estimation of Molar Excess Gibbs Energy and Activity


The Miedema model is an empirical theoretical model. The molar excess Gibbs energy and activity of a binary alloy system can be estimated by the Miedema formula in combination with the basic properties of the group elements and the relevant parameters, simply by knowing the equation of the corresponding enthalpy of mixing of the alloy system in relation to the excess entropy. The experimental values of full concentration molar excess Gibbs energy (GEm), activity (a) of Pb-Sn, Al-Sn, and In-Zn alloys under the Miedema model are given below with the comparison and deviation of the calculated values in Table 6, Table 7 and Table 8 and Figure 5, Figure 6 and Figure 7.



Figure 5 and Table 6 show that for Pb-Sn alloys Tanaka Ding, and Sommer’s improved mixing enthalpy versus excess entropy relationship equation in the Miedema model to estimate the activity effect ARD is less than 10%. However, since the experimental values of the activity of Pb-Sn alloys are consistent with symmetry and are the effect of the presentation of very small deviations, so there is a possibility of chance in the estimation results



Figure 6 and Table 7 show that the estimation effect of the three methods for Al-Sn alloys is obvious. The activity ARD of the three methods is less than 5%, and the ARD of the estimated molar excess Gibbs energy is less than 10%, the estimation effect can be said to be accurate. The Sommer’s improved mixing enthalpy versus excess entropy relationship equation in the Miedema model has a better estimation effect.



Figure 7 and Table 8 show that for In-Zn alloys, Sommer’s formula is slightly less effective than the first two in estimating activity, with an ARD of 11.75%, while the ARD of the other two is less than 5%. This shows that all three methods give relatively good estimation results for different systems. The relation between the enthalpy of mixing and excess entropy given by Sommer is based on the application of the Miedema model to binary alloys in order to estimate the activity and molar excess Gibbs energy is reasonable and feasible. The total average relative deviations of Tanaka, Ding, and Sommer’s relational equations in the Miedema model for estimating the activities and molar excess Gibbs energies of the binary liquid alloys Pb-Sn, Al-Sn, and In-Zn are 3.07% and 8.92%, 6.09% and 17.1%, and 4.1% and 14.77%, respectively.




4.3. Estimation of the Molar Excess Gibbs Energy and Activity of Pb0.5-Sn0.5, Al0.5-Sn0.5, and In0.5-Zn0.5 Alloys at Full Concentration Using Partial Radial Distribution Functions


Table 9, Table 10, Table 11, Table 12, Table 13 and Table 14 show the results of stepwise calculations for the three systems using the symmetric and asymmetric methods in the four models, respectively. The ARD comparison images of all the activity distributions calculated for the three binary alloy systems under the asymmetric and symmetric methods are given, where the x-axis represents the four models. The two small bars for each model represent the asymmetric and symmetric methods under each model, the different colors of each bar represent the different ranges of the ARD values, and the scale of the bar is the number of data accounted for by the calculations of the nine sets of distributions, see Figure 8, Figure 9 and Figure 10.



Through Figure 8 it can be seen that the MIVM model in Pb-Sn alloy has the best overall estimation effect. The ARD less than 10% accounts for five of the nine sets of stepwise calculation data under the two methods. The symmetric method under the MIVM model has a better estimation performance. The RSM model has the second-best estimation performance, and the asymmetric method under the RSM model has a better estimation effect. The estimation effect of the Wilson and the NRTL models is poorer compared with the former two, there is no data of ARD less than 10%.



Through Figure 9 it can be seen in Al-Sn alloys in the RSM model the two methods ARD less than 20% of the data in the two methods under the nine groups of stepwise calculation data accounted for eight groups. Among the asymmetric methods, there were two groups with ARDs less than 10% and four groups with ARDs greater than 30%. The Figure 9 can only show that for the RSM model for Al-Sn alloys, the asymmetric method estimation of the precision of the higher degree of data is greater. The data with a high estimation degree of the MIVM model is second only to the RSM model and the asymmetric method is better under the MIVM model. Wilson model and NRTL model estimation of activity ARD has no data less than 20%, but there is more data with ARD between 20–30%, so it is necessary to calculate the average value to compare the estimation effect.



Figure 10 shows that the overall estimation effect of the MIVM model in In-Zn alloys is better. The ARD less than 30% accounts for seven of the nine sets of stepwise calculation data in the two methods, in which the symmetric method has a better estimation effect. The estimation effect of the RSM model is second to that of the MIVM model, in which the asymmetric method has a better estimation effect. The estimation effect of the Wilson model and the NRTL model is poorer compared to the former two, and the ARD does not have any data of less than 30%.



According to the data in Table 9, Table 10, Table 11, Table 12, Table 13 and Table 14, it can be calculated that the total average relative deviations of the activity estimates of the four models for the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 at the full concentrations. When the PRDF is obtained by the symmetry method are MIVM: 21.59%; RSM: 21.63%; Wilson: 24.27%; and NRTL: 23.9%. When the PRDF is obtained by the symmetry method are MIVM: 22.86%; RSM: 32.84%; Wilson: 25.14%; NRTL: 24.49%. Combined with Figure 8, Figure 9 and Figure 10, it can be concluded that the symmetric method of estimation is better than the asymmetric method in the three binary alloy systems. Among the four models, the MIVM model has a better estimation effect. The estimation results of the MIVM and RSM models fluctuate greatly with the number of steps, and the data distribution is not uniform. However, because of the high sensitivity of the estimation effect to the change in the number of steps, the estimation results are more consistent with the experimental values. The Wilson and NRTL models estimate the activity data with less variation as the number of steps changes, and the estimation effect is not good. The data obtained from Table 9, Table 10, Table 11, Table 12, Table 13 and Table 14 also reflect that not all systems are best estimated at 0–5000 steps (at full steps size).





5. Conclusions


For the calculation results and comparison of estimating the molar excess Gibbs energy and activity of binary alloys under the Miedema model using the relationship between mixing enthalpy and excess entropy given by Tanaka, Ding, and Sommer (the total ARD of the molar excess Gibbs energy and activity of the three binary liquid alloys under the Miedema model are Tanaka: 3.07% and 8.92%; Ding: 6.09% and 17.1%; Sommer: 4.1% and 14.77%). Preliminary validation of the rationality and feasibility of the Sommer relation for estimating the molar excess Gibbs energy and activity method for binary liquid alloys under the Miedema model. We hope that it can provide a reference for selecting appropriate models and methods to estimate thermodynamic data such as activity and excess Gibbs energy of binary liquid alloys.



Based on the AIMD principle, the kinetic process was simulated by VASP software to obtain the partial radial distribution function of the alloy at different step sizes, and the parameters of MIVM, RSM, Wilson, and NRTL models are calculated by the given pair of the potential energy function and two methods (asymmetric and symmetric methods) to estimate the molar excess Gibbs energy and activity of binary liquid alloys with good rationality and feasibility. The total ARD of the molar excess Gibbs energy and activity of the three binary liquid alloys at full concentration when the PRDF is obtained by the symmetry method are MIVM: 21.59% and 59.35%; RSM: 21.63% and 60.27%; Wilson: 24.27% and 86.7%; NRTL: 23.9% and 83.24%. When the PRDF is obtained by the asymmetric method: MIVM: 22.86% and 68.08%; RSM: 32.84% and 68.66%; Wilson: 25.14% and 82.75%; NRTL: 24.49% and 85.74%. These calculation results show that the ARD for the estimated activity is within reasonable limits, and it is reasonable and feasible to show that this given assumption can be used for the pair potential energy equation for binary liquid alloys. The results also show that the MIVM model performs better than the RSM, Wilson, and NRTL models, and the asymmetric method performs better than the symmetric method. Not all systems are best estimated at the simulation steps from 0 to 5000. This result hopefully provides a research direction for interested researchers (i.e., based on the AIMD principle, the PRDFs obtained from the simulation stepwise calculations by using the VASP software are best fit to the experimental values at which steps).
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Figure 1. The first valley and first peak of partial radial distribution function. 
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Figure 2. gIn-In(r), gIn-Zn(r), and gZn-Zn(r) of the Pb50Sn50-1050 K system based on 5000 step PRDF data. 
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Figure 3. gAl-Al(r), gAl-Sn(r), and gSn-Sn(r) of the Al50Sn50-973 K system based on 5000 step PRDF data. 
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Figure 4. gIn-In(r), gIn-Zn(r), and gZn-Zn(r) of the In50Zn50-730 K system based on 5000 step PRDF data. 
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Figure 5. (a) The experimental and calculated values of molar excess Gibbs energy for the full concentration of Pb-Sn alloys in the Miedema model at 1050 K, (b) The experimental and calculated values of activity for the full concentration of Pb-Sn alloys in the Miedema model at 1050 K. 
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Figure 6. (a) The experimental and calculated values of molar excess Gibbs energy for the full concentration of Al-Sn alloys in the Miedema model at 973 K, (b) The experimental and calculated values of activity for the full concentration of Al-Sn alloys in the Miedema model at 973 K. 
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Figure 7. (a) The experimental and calculated values of molar excess Gibbs energy for the full concentration of In-Zn alloys in the Miedema model at 730 K, (b) The experimental and calculated values of activity for the full concentration of In-Zn alloys in the Miedema model at 730 K. 
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Figure 8. Images of asymmetric and symmetric method activity ARD calculations for Pb50-Sn50 alloys in four models at 1050 K. 
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Figure 9. Images of asymmetric and symmetric method activity ARD calculations for Al50-Sn50 alloys in four models at 973 K. 
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Figure 10. Images of asymmetric and symmetric method activity ARD calculations for In50-Zn50 alloys in four models at 730 K. 
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Table 1. The three key coordinate points of gPb-Pb(r), gPb-Sn(r), and gSn-Sn(r) in the Pb50Sn50-1050 K system.
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Parameters

	
Step of Pb50-Sn50 (1050 K)




	
0–1000

	
1000–2000

	
2000–3000

	
3000–4000

	
4000–5000

	
0–2000

	
0–3000

	
0–4000

	
0–5000






	
r0 i-i

	
2.650

	
2.650

	
2.650

	
2.650

	
2.650

	
2.650

	
2.650

	
2.650

	
2.650




	
g(r0)i-i

	
0.004

	
0.004

	
0.004

	
0.004

	
0.005

	
0.004

	
0.004

	
0.004

	
0.004




	
rm i-i

	
3.450

	
3.350

	
3.350

	
3.350

	
3.350

	
3.350

	
3.350

	
3.350

	
3.350




	
g(rm)i-i

	
2.751

	
2.671

	
2.634

	
2.628

	
2.521

	
2.645

	
2.641

	
2.638

	
2.615




	
r1 i-i

	
4.750

	
4.850

	
4.850

	
4.550

	
4.850

	
4.750

	
4.850

	
4.850

	
4.850




	
g(r1)i-i

	
0.577

	
0.581

	
0.594

	
0.680

	
0.646

	
0.590

	
0.595

	
0.604

	
0.613




	
r0 i-j

	
2.550

	
2.650

	
2.550

	
2.650

	
2.550

	
2.550

	
2.550

	
2.550

	
2.550




	
g(r0)i-j

	
0.002

	
0.011

	
0.001

	
0.007

	
0.001

	
0.001

	
0.001

	
0.001

	
0.001




	
rm i-j

	
3.250

	
3.250

	
3.250

	
3.250

	
3.250

	
3.250

	
3.250

	
3.250

	
3.250




	
g(rm)i-j

	
2.748

	
2.601

	
2.614

	
2.547

	
2.508

	
2.675

	
2.654

	
2.627

	
2.603




	
r1 i-j

	
4.750

	
4.950

	
4.450

	
4.450

	
4.550

	
4.750

	
4.750

	
4.750

	
4.750




	
g(r1)i-j

	
0.699

	
0.671

	
0.704

	
0.669

	
0.677

	
0.688

	
0.700

	
0.696

	
0.700




	
r0 j-j

	
2.550

	
2.550

	
2.550

	
2.450

	
2.550

	
2.550

	
2.550

	
2.450

	
2.450




	
g(r0)j-j

	
0.003

	
0.002

	
0.013

	
0.001

	
0.001

	
0.002

	
0.006

	
0.001

	
0.001




	
rm j-j

	
3.150

	
3.050

	
3.150

	
3.150

	
3.050

	
3.150

	
3.150

	
3.150

	
3.150




	
g(rm)j-j

	
2.874

	
2.632

	
2.647

	
2.807

	
2.667

	
2.712

	
2.690

	
2.719

	
2.706




	
r1 j-j

	
4.150

	
4.150

	
4.150

	
4.650

	
4.350

	
4.350

	
4.150

	
4.550

	
4.550




	
g(r1)j-j

	
0.790

	
0.801

	
0.756

	
0.673

	
0.697

	
0.748

	
0.783

	
0.729

	
0.724











 





Table 2. The three key coordinate points of gAl-Al(r), gAl-Sn(r), and gSn-Sn(r) in the Al50Sn50-973 K system.






Table 2. The three key coordinate points of gAl-Al(r), gAl-Sn(r), and gSn-Sn(r) in the Al50Sn50-973 K system.





	
Parameters

	
Step of Al50-Sn50 (973 K)




	
0–1000

	
1000–2000

	
2000–3000

	
3000–4000

	
4000–5000

	
0–2000

	
0–3000

	
0–4000

	
0–5000






	
r0 i-i

	
1.850

	
2.150

	
2.250

	
2.250

	
2.250

	
1.850

	
1.850

	
1.850

	
1.850




	
g(r0)i-i

	
0.002

	
0.001

	
0.001

	
0.004

	
0.005

	
0.001

	
0.001

	
0.001

	
0.001




	
rm i-i

	
2.750

	
2.750

	
2.750

	
2.750

	
2.750

	
2.750

	
2.750

	
2.750

	
2.750




	
g(rm)i-i

	
4.165

	
3.629

	
3.686

	
3.843

	
3.850

	
3.897

	
3.827

	
3.831

	
3.834




	
r1 i-i

	
3.750

	
3.850

	
3.850

	
3.650

	
3.850

	
3.850

	
3.850

	
3.850

	
3.850




	
g(r1)i-i

	
0.612

	
0.708

	
0.722

	
0.676

	
0.717

	
0.669

	
0.687

	
0.691

	
0.697




	
r0 i-j

	
1.750

	
2.350

	
2.350

	
2.250

	
2.350

	
1.750

	
1.750

	
1.750

	
1.750




	
g(r0)i-j

	
0.001

	
0.002

	
0.001

	
0.001

	
0.002

	
0.001

	
0.001

	
0.001

	
0.001




	
rm i-j

	
2.950

	
2.950

	
2.950

	
2.950

	
2.950

	
2.950

	
2.950

	
2.950

	
2.950




	
g(rm)i-j

	
2.634

	
2.219

	
2.149

	
2.134

	
2.094

	
2.426

	
2.334

	
2.284

	
2.246




	
r1 i-j

	
3.750

	
4.150

	
4.050

	
4.050

	
3.850

	
3.750

	
3.750

	
3.750

	
3.750




	
g(r1)i-j

	
0.713

	
0.667

	
0.728

	
0.712

	
0.770

	
0.754

	
0.767

	
0.777

	
0.776




	
r0 j-j

	
2.450

	
2.550

	
2.550

	
2.550

	
2.550

	
2.450

	
2.450

	
2.450

	
2.450




	
g(r0)j-j

	
0.003

	
0.003

	
0.005

	
0.004

	
0.001

	
0.001

	
0.001

	
0.001

	
0.001




	
rm j-j

	
3.150

	
3.150

	
3.150

	
3.150

	
3.150

	
3.150

	
3.150

	
3.150

	
3.150




	
g(rm)j-j

	
2.324

	
2.383

	
2.319

	
2.286

	
2.381

	
2.354

	
2.342

	
2.328

	
2.339




	
r1 j-j

	
4.450

	
4.450

	
4.450

	
4.450

	
4.550

	
4.450

	
4.450

	
4.450

	
4.450




	
g(r1)j-j

	
0.824

	
0.838

	
0.829

	
0.783

	
0.866

	
0.831

	
0.830

	
0.818

	
0.833











 





Table 3. The three key coordinate points of gIn-In(r), gIn-Zn(r), and gZn-Zn(r) in the In50Zn50-730 K system.






Table 3. The three key coordinate points of gIn-In(r), gIn-Zn(r), and gZn-Zn(r) in the In50Zn50-730 K system.





	
Parameters

	
Step of In50-Zn50 (730 K)




	
0–1000

	
1000–2000

	
2000–3000

	
3000–4000

	
4000–5000

	
0–2000

	
0–3000

	
0–4000

	
0–5000






	
r0 i-i

	
2.250

	
2.550

	
2.450

	
2.550

	
2.550

	
2.250

	
2.250

	
2.250

	
2.250




	
g(r0)i-i

	
0.003

	
0.010

	
0.001

	
0.011

	
0.005

	
0.002

	
0.001

	
0.001

	
0.001




	
rm i-i

	
3.250

	
3.150

	
3.150

	
3.150

	
3.150

	
3.250

	
3.150

	
3.150

	
3.150




	
g(rm)i-i

	
2.368

	
2.424

	
2.505

	
2.429

	
2.651

	
2.370

	
2.397

	
2.405

	
2.454




	
r1 i-i

	
4.150

	
4.250

	
3.950

	
4.450

	
4.250

	
4.150

	
4.150

	
4.150

	
4.150




	
g(r1)i-i

	
0.777

	
0.680

	
0.861

	
0.680

	
0.704

	
0.744

	
0.757

	
0.771

	
0.775




	
r0 i-j

	
2.150

	
2.350

	
2.350

	
2.350

	
2.350

	
2.150

	
2.150

	
2.150

	
2.150




	
g(r0)i-j

	
0.001

	
0.010

	
0.011

	
0.004

	
0.006

	
0.001

	
0.001

	
0.001

	
0.001




	
rm i-j

	
2.850

	
2.850

	
2.850

	
2.850

	
2.850

	
2.850

	
2.850

	
2.850

	
2.850




	
g(rm)i-j

	
3.045

	
2.760

	
2.640

	
2.654

	
2.536

	
2.903

	
2.815

	
2.775

	
2.727




	
r1 i-j

	
3.950

	
3.950

	
3.950

	
3.950

	
3.950

	
3.950

	
3.950

	
3.950

	
3.950




	
g(r1)i-j

	
0.695

	
0.725

	
0.648

	
0.630

	
0.603

	
0.710

	
0.689

	
0.675

	
0.660




	
r0 j-j

	
2.050

	
2.050

	
2.150

	
2.150

	
2.150

	
2.050

	
2.050

	
2.050

	
2.050




	
g(r0)j-j

	
0.001

	
0.001

	
0.012

	
0.009

	
0.011

	
0.001

	
0.001

	
0.001

	
0.001




	
rm j-j

	
2.650

	
2.550

	
2.550

	
2.650

	
2.550

	
2.650

	
2.650

	
2.650

	
2.550




	
g(rm)j-j

	
3.455

	
3.307

	
3.452

	
3.353

	
3.605

	
3.340

	
3.371

	
3.366

	
3.404




	
r1 j-j

	
3.550

	
3.650

	
3.650

	
3.850

	
3.550

	
3.550

	
3.550

	
3.650

	
3.650




	
g(r1)j-j

	
0.455

	
0.457

	
0.505

	
0.574

	
0.542

	
0.470

	
0.486

	
0.521

	
0.527











 





Table 4. Parameters for Miedema model calculation of Pb-Sn, Al-Sn, In-Zn systerms [42].






Table 4. Parameters for Miedema model calculation of Pb-Sn, Al-Sn, In-Zn systerms [42].





	Metal
	Φ
	nws1/3
	V2/3
	μ
	α
	Tm/K
	Tb/K
	r/p





	Pb
	4.1
	1.15
	6.9
	0.04
	0.73
	1050
	2022
	2.1



	Al
	4.2
	1.39
	4.6
	0.07
	0.73
	933
	2793
	1.9



	Sn
	4.15
	1.24
	6.4
	0.04
	0.73
	505
	2875
	2.1



	In
	3.9
	1.17
	6.3
	0.07
	0.73
	430
	2345
	1.9



	Zn
	4.1
	1.32
	4.4
	0.1
	0.73
	693
	1181
	1.4










 





Table 5. Parameters of four models were calculated for Pb-Sn, Al-Sn, and In-Zn systems by asymmetric and symmetric methods.






Table 5. Parameters of four models were calculated for Pb-Sn, Al-Sn, and In-Zn systems by asymmetric and symmetric methods.





	
System

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
Asym

	
Sym

	
Asym

	
Sym

	
Asym

	
Sym

	
Asym

	
Sym




	
Bij

	
Bji

	
Bij

	
Bji

	
w/kT

	
w/kT

	
Aij

	
Aji

	
Aij

	
Aji

	
τij

	
τji

	
τij

	
τji






	
Pb50-Sn50 (1050 K)

	
0–1000

	
0.87

	
0.97

	
0.98

	
0.94

	
1.08

	
0.25

	
0.85

	
1.00

	
0.83

	
1.12

	
0.03

	
0.14

	
0.06

	
0.02




	
1000–2000

	
0.84

	
0.96

	
1.01

	
0.98

	
1.49

	
0.04

	
0.84

	
0.96

	
0.86

	
1.16

	
0.05

	
0.18

	
0.02

	
−0.01




	
2000–3000

	
0.94

	
1.09

	
0.96

	
1.02

	
0.14

	
0.06

	
0.95

	
1.08

	
0.90

	
1.09

	
−0.08

	
0.06

	
−0.02

	
0.04




	
3000–4000

	
1.09

	
0.98

	
0.92

	
1.02

	
0.37

	
0.15

	
0.86

	
1.24

	
0.90

	
1.05

	
0.02

	
−0.08

	
−0.02

	
0.09




	
4000–5000

	
0.94

	
1.05

	
1.01

	
0.98

	
0.09

	
0.05

	
0.92

	
1.08

	
0.86

	
1.15

	
−0.05

	
0.06

	
0.02

	
−0.01




	
0–2000

	
0.95

	
0.98

	
0.95

	
1.02

	
0.51

	
0.11

	
0.85

	
1.08

	
0.89

	
1.09

	
0.03

	
0.05

	
−0.02

	
0.05




	
0–3000

	
0.87

	
1.00

	
0.96

	
1.02

	
0.86

	
0.09

	
0.88

	
1.00

	
0.89

	
1.09

	
0.00

	
0.13

	
−0.02

	
0.05




	
0–4000

	
0.99

	
1.00

	
0.95

	
1.02

	
0.11

	
0.10

	
0.87

	
1.13

	
0.89

	
1.08

	
0.01

	
0.01

	
−0.02

	
0.06




	
0–5000

	
0.98

	
0.99

	
0.94

	
1.01

	
0.18

	
0.16

	
0.87

	
1.12

	
0.89

	
1.07

	
0.01

	
0.02

	
−0.01

	
0.07




	
Al50-Sn50 (973 K)

	
0–1000

	
1.14

	
0.79

	
1.18

	
0.70

	
0.54

	
0.50

	
1.19

	
0.76

	
1.06

	
0.78

	
0.24

	
−0.13

	
0.36

	
−0.17




	
1000–2000

	
0.89

	
0.64

	
0.98

	
0.64

	
3.50

	
1.18

	
0.97

	
0.59

	
0.96

	
0.65

	
0.44

	
0.12

	
0.45

	
0.02




	
2000–3000

	
0.90

	
0.68

	
0.93

	
0.60

	
3.01

	
1.48

	
1.02

	
0.60

	
0.90

	
0.62

	
0.39

	
0.10

	
0.51

	
0.07




	
3000–4000

	
0.88

	
0.59

	
0.95

	
0.59

	
3.93

	
1.46

	
0.89

	
0.58

	
0.89

	
0.63

	
0.53

	
0.13

	
0.53

	
0.05




	
4000–5000

	
0.93

	
0.66

	
0.89

	
0.56

	
2.90

	
1.76

	
0.99

	
0.62

	
0.85

	
0.59

	
0.42

	
0.07

	
0.58

	
0.12




	
0–2000

	
1.08

	
0.79

	
1.08

	
0.67

	
0.89

	
0.83

	
1.18

	
0.72

	
1.01

	
0.72

	
0.24

	
−0.08

	
0.40

	
−0.08




	
0–3000

	
1.05

	
0.78

	
1.03

	
0.65

	
1.11

	
1.05

	
1.17

	
0.70

	
0.98

	
0.68

	
0.26

	
−0.05

	
0.43

	
−0.03




	
0–4000

	
1.03

	
0.76

	
1.01

	
0.63

	
1.32

	
1.15

	
1.15

	
0.69

	
0.95

	
0.67

	
0.27

	
−0.03

	
0.46

	
−0.01




	
0–5000

	
1.01

	
0.75

	
0.98

	
0.62

	
1.55

	
1.27

	
1.12

	
0.67

	
0.93

	
0.65

	
0.29

	
−0.01

	
0.48

	
0.02




	
In50-Zn50 (730 K)

	
0–1000

	
0.95

	
1.08

	
0.81

	
1.22

	
0.17

	
0.24

	
0.66

	
1.56

	
0.74

	
1.33

	
−0.08

	
0.05

	
−0.20

	
0.21




	
1000–2000

	
0.93

	
1.05

	
0.86

	
1.14

	
0.16

	
0.00

	
0.64

	
1.53

	
0.69

	
1.41

	
−0.05

	
0.07

	
−0.13

	
0.15




	
2000–3000

	
0.85

	
0.89

	
0.79

	
1.04

	
1.61

	
0.42

	
0.54

	
1.39

	
0.64

	
1.29

	
0.12

	
0.16

	
−0.04

	
0.24




	
3000–4000

	
0.93

	
1.06

	
0.73

	
1.04

	
0.09

	
0.94

	
0.65

	
1.52

	
0.63

	
1.20

	
−0.06

	
0.08

	
−0.04

	
0.32




	
4000–5000

	
0.76

	
0.96

	
0.74

	
0.96

	
1.88

	
0.78

	
0.58

	
1.25

	
0.58

	
1.22

	
0.05

	
0.27

	
0.04

	
0.30




	
0–2000

	
0.92

	
1.04

	
0.79

	
1.13

	
0.24

	
0.58

	
0.64

	
1.51

	
0.69

	
1.30

	
−0.04

	
0.09

	
−0.13

	
0.23




	
0–3000

	
0.88

	
1.01

	
0.76

	
1.17

	
0.66

	
0.47

	
0.62

	
1.44

	
0.71

	
1.25

	
−0.01

	
0.13

	
−0.16

	
0.28




	
0–4000

	
0.91

	
1.00

	
0.75

	
1.14

	
0.58

	
0.59

	
0.61

	
1.49

	
0.69

	
1.23

	
0.00

	
0.10

	
−0.13

	
0.29




	
0–5000

	
0.88

	
0.98

	
0.83

	
1.10

	
0.82

	
0.16

	
0.60

	
1.45

	
0.67

	
1.36

	
0.02

	
0.12

	
−0.09

	
0.18











 





Table 6. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for Pb-Sn alloys all at full concentration in the Miedema model at 1050 K.






Table 6. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for Pb-Sn alloys all at full concentration in the Miedema model at 1050 K.





	
Molar Excess Gibbs Energy (J/mol)




	
xi

	
Exp

	
Ding

	
Tanaka

	
Sommer






	
0.9

	
436

	
334

	
393

	
387




	
0.8

	
801

	
598

	
704

	
693




	
0.7

	
1085

	
791

	
931

	
916




	
0.6

	
1279

	
910

	
1071

	
1054




	
0.5

	
1373

	
955

	
1124

	
1106




	
0.4

	
1356

	
923

	
1087

	
1069




	
0.3

	
1221

	
814

	
958

	
942




	
0.2

	
956

	
624

	
735

	
723




	
0.1

	
552

	
354

	
416

	
410




	
ARD%

	
30.11%

	
17.73%

	
19.05%




	
SD

	
325

	
197

	
210




	
Activity




	
xi

	
ai-Exp

	
aj-Exp

	
ai-Ding

	
aj-Ding

	
ai-Tanaka

	
aj-Tanaka

	
ai-Sommer

	
aj-Sommer




	
0.9

	
0.904

	
0.159

	
0.904

	
0.141

	
0.904

	
0.150

	
0.904

	
0.149




	
0.8

	
0.814

	
0.296

	
0.813

	
0.264

	
0.815

	
0.277

	
0.815

	
0.276




	
0.7

	
0.730

	
0.412

	
0.726

	
0.372

	
0.731

	
0.387

	
0.731

	
0.385




	
0.6

	
0.650

	
0.512

	
0.641

	
0.470

	
0.649

	
0.483

	
0.648

	
0.482




	
0.5

	
0.572

	
0.599

	
0.556

	
0.560

	
0.566

	
0.571

	
0.565

	
0.570




	
0.4

	
0.492

	
0.677

	
0.467

	
0.646

	
0.480

	
0.654

	
0.478

	
0.653




	
0.3

	
0.405

	
0.752

	
0.371

	
0.730

	
0.385

	
0.735

	
0.384

	
0.735




	
0.2

	
0.303

	
0.827

	
0.265

	
0.815

	
0.279

	
0.818

	
0.277

	
0.818




	
0.1

	
0.174

	
0.908

	
0.144

	
0.904

	
0.153

	
0.905

	
0.152

	
0.905




	
ARD% of Single Component

	
5.37%

	
6.18%

	
3.22%

	
3.89%

	
3.43%

	
4.13%




	
SD of Single Component

	
0.022

	
0.029

	
0.013

	
0.02

	
0.014

	
0.021




	
ARD%

	
5.77%

	
3.55%

	
3.78%




	
SD

	
0.026

	
0.017

	
0.018











 





Table 7. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for Al-Sn alloys all at full concentration in the Miedema model at 973 K.






Table 7. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for Al-Sn alloys all at full concentration in the Miedema model at 973 K.





	
Molar Excess Gibbs Energy (J/mol)




	
xi

	
Exp

	
Ding

	
Tanaka

	
Sommer






	
0.9

	
1318

	
1130

	
1266

	
1149




	
0.8

	
2194

	
1937

	
2171

	
1970




	
0.7

	
2703

	
2454

	
2750

	
2498




	
0.6

	
2911

	
2711

	
3039

	
2761




	
0.5

	
2870

	
2733

	
3063

	
2784




	
0.4

	
2624

	
2542

	
2849

	
2591




	
0.3

	
2200

	
2158

	
2418

	
2200




	
0.2

	
1619

	
1596

	
1788

	
1628




	
0.1

	
887

	
872

	
977

	
890




	
ARD%

	
6.11%

	
6.34%

	
4.55%




	
SD

	
160

	
147

	
130




	
Activity




	
xi

	
ai-Exp

	
aj-Exp

	
ai-Ding

	
aj-Ding

	
ai-Tanaka

	
aj-Tanaka

	
ai-Sommer

	
aj-Sommer




	
0.9

	
0.927

	
0.393

	
0.919

	
0.335

	
0.921

	
0.388

	
0.919

	
0.343




	
0.8

	
0.887

	
0.514

	
0.864

	
0.487

	
0.872

	
0.542

	
0.865

	
0.495




	
0.7

	
0.859

	
0.567

	
0.823

	
0.566

	
0.839

	
0.611

	
0.825

	
0.573




	
0.6

	
0.828

	
0.606

	
0.784

	
0.618

	
0.810

	
0.652

	
0.788

	
0.624




	
0.5

	
0.782

	
0.650

	
0.740

	
0.664

	
0.776

	
0.687

	
0.745

	
0.668




	
0.4

	
0.711

	
0.702

	
0.680

	
0.711

	
0.725

	
0.726

	
0.686

	
0.714




	
0.3

	
0.609

	
0.762

	
0.591

	
0.766

	
0.642

	
0.774

	
0.599

	
0.768




	
0.2

	
0.468

	
0.831

	
0.461

	
0.831

	
0.510

	
0.835

	
0.468

	
0.832




	
0.1

	
0.274

	
0.909

	
0.271

	
0.908

	
0.306

	
0.909

	
0.277

	
0.908




	
ARD% of Single Component

	
3.12%

	
2.93%

	
3.94%

	
3.68%

	
2.58%

	
2.89%




	
SD of Single Component

	
0.028

	
0.022

	
0.024

	
0.028

	
0.025

	
0.021




	
ARD%

	
3.03%

	
3.81%

	
2.74%




	
SD

	
0.025

	
0.026

	
0.023











 





Table 8. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for In-Zn alloys all at full concentration in the Miedema model at 730 K.






Table 8. Comparison of experimental and calculated values of molar excess Gibbs energy and activity for In-Zn alloys all at full concentration in the Miedema model at 730 K.





	
Molar Excess Gibbs Energy (J/mol)




	
xi

	
Exp

	
Ding

	
Tanaka

	
Sommer






	
0.9

	
726

	
679

	
752

	
523




	
0.8

	
1321

	
1241

	
1375

	
961




	
0.7

	
1785

	
1677

	
1859

	
1305




	
0.6

	
2112

	
1975

	
2190

	
1546




	
0.5

	
2288

	
2124

	
2354

	
1670




	
0.4

	
2295

	
2107

	
2335

	
1666




	
0.3

	
2105

	
1907

	
2114

	
1516




	
0.2

	
1686

	
1506

	
1669

	
1203




	
0.1

	
1000

	
879

	
974

	
706




	
ARD%

	
8.08%

	
2.68%

	
27.71%




	
SD

	
144

	
50

	
491




	
Activity




	
xi

	
ai-Exp

	
aj-Exp

	
ai-Ding

	
aj-Ding

	
ai-Tanaka

	
aj-Tanaka

	
ai-Sommer

	
aj-Sommer




	
0.9

	
0.910

	
0.300

	
0.908

	
0.281

	
0.909

	
0.315

	
0.906

	
0.223




	
0.8

	
0.835

	
0.500

	
0.832

	
0.475

	
0.836

	
0.522

	
0.823

	
0.393




	
0.7

	
0.772

	
0.636

	
0.769

	
0.606

	
0.777

	
0.653

	
0.750

	
0.522




	
0.6

	
0.719

	
0.728

	
0.716

	
0.692

	
0.730

	
0.735

	
0.685

	
0.619




	
0.5

	
0.674

	
0.788

	
0.671

	
0.750

	
0.692

	
0.784

	
0.625

	
0.693




	
0.4

	
0.636

	
0.827

	
0.628

	
0.792

	
0.659

	
0.816

	
0.567

	
0.752




	
0.3

	
0.598

	
0.854

	
0.578

	
0.828

	
0.621

	
0.843

	
0.501

	
0.803




	
0.2

	
0.542

	
0.882

	
0.502

	
0.867

	
0.555

	
0.874

	
0.414

	
0.855




	
0.1

	
0.407

	
0.925

	
0.350

	
0.920

	
0.401

	
0.922

	
0.272

	
0.916




	
ARD% of Single Component

	
3.07%

	
3.93%

	
1.81%

	
1.91%

	
11.16%

	
12.34%




	
SD of Single Component

	
0.024

	
0.027

	
0.014

	
0.012

	
0.077

	
0.082




	
ARD%

	
3.50%

	
1.86%

	
11.75%




	
SD

	
0.026

	
0.013

	
0.079











 





Table 9. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were estimated by asymmetric method at 1050 K.






Table 9. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were estimated by asymmetric method at 1050 K.





	
GEm and a

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD






	
GEm (J/mol)

	
0~1000

	
61.4%

	
642

	
72.4%

	
760

	
74.2%

	
787

	
73.7%

	
782




	
1000~2000

	
107.9%

	
1131

	
137.0%

	
1441

	
66.2%

	
704

	
65.9%

	
701




	
2000~3000

	
131.5%

	
1390

	
121.8%

	
1288

	
104.0%

	
1100

	
103.3%

	
1093




	
3000~4000

	
166.8%

	
1758

	
159.8%

	
1685

	
112.5%

	
1190

	
109.8%

	
1161




	
4000~5000

	
91.2%

	
965

	
86.0%

	
911

	
98.3%

	
1040

	
97.7%

	
1034




	
0~2000

	
25.4%

	
265

	
37.0%

	
388

	
79.4%

	
939

	
87.6%

	
928




	
0~3000

	
22.7%

	
250

	
18.1%

	
199

	
88.7%

	
842

	
79.2%

	
839




	
0~4000

	
85.1%

	
902

	
82.6%

	
876

	
98.8%

	
1045

	
97.4%

	
1031




	
0~5000

	
74.7%

	
793

	
71.6%

	
760

	
97.1%

	
1027

	
95.8%

	
1014




	
Average

	
85.2%

	
899

	
87.4%

	
923

	
91.0%

	
964

	
90.0%

	
954




	
a

	
0~1000

	
13.4%

	
0.057

	
16.2%

	
0.069

	
13.1%

	
0.058

	
13.0%

	
0.057




	
1000~2000

	
25.8%

	
0.108

	
34.8%

	
0.144

	
11.9%

	
0.052

	
11.8%

	
0.052




	
2000~3000

	
21.2%

	
0.094

	
20.0%

	
0.088

	
17.5%

	
0.077

	
17.5%

	
0.077




	
3000~4000

	
25.6%

	
0.114

	
24.7%

	
0.11

	
18.7%

	
0.083

	
18.4%

	
0.081




	
4000~5000

	
15.7%

	
0.069

	
14.9%

	
0.066

	
16.7%

	
0.074

	
16.7%

	
0.074




	
0~2000

	
5.2%

	
0.022

	
7.8%

	
0.034

	
15.3%

	
0.068

	
15.1%

	
0.067




	
0~3000

	
4.5%

	
0.021

	
3.7%

	
0.017

	
13.9%

	
0.061

	
13.9%

	
0.061




	
0~4000

	
14.8%

	
0.065

	
14.4%

	
0.064

	
16.8%

	
0.074

	
16.6%

	
0.073




	
0~5000

	
13.2%

	
0.058

	
12.7%

	
0.056

	
16.5%

	
0.073

	
16.4%

	
0.072




	
Average

	
15.5%

	
0.068

	
16.6%

	
0.072

	
15.6%

	
0.069

	
15.5%

	
0.068











 





Table 10. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were estimated by symmetric method at 1050 K.






Table 10. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were estimated by symmetric method at 1050 K.





	
GEm and a

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD






	
GEm (J/mol)

	
0~1000

	
14.2%

	
171

	
59.7%

	
632

	
88.7%

	
939

	
85.9%

	
911




	
1000~2000

	
117.3%

	
1239

	
106.0%

	
1122

	
104.6%

	
1106

	
102.4%

	
1083




	
2000~3000

	
83.3%

	
883

	
90.8%

	
962

	
97.5%

	
1032

	
96.8%

	
1024




	
3000~4000

	
53.1%

	
565

	
76.7%

	
813

	
92.1%

	
976

	
91.7%

	
971




	
4000~5000

	
123.7%

	
1306

	
108.5%

	
1148

	
105.7%

	
1118

	
103.3%

	
1092




	
0~2000

	
62.3%

	
662

	
82.5%

	
874

	
94.3%

	
998

	
93.5%

	
990




	
0~3000

	
71.7%

	
761

	
86.2%

	
914

	
95.8%

	
1014

	
95.0%

	
1006




	
0~4000

	
66.8%

	
710

	
83.9%

	
889

	
94.9%

	
1004

	
94.2%

	
997




	
0~5000

	
45.3%

	
483

	
74.3%

	
788

	
91.5%

	
969

	
90.8%

	
962




	
Average

	
70.8%

	
753

	
85.4%

	
905

	
96.1%

	
1017

	
94.8%

	
1004




	
a

	
0~1000

	
3.2%

	
0.016

	
13.7%

	
0.06

	
15.3%

	
0.068

	
15.0%

	
0.066




	
1000~2000

	
19.4%

	
0.086

	
17.4%

	
0.077

	
17.6%

	
0.078

	
17.3%

	
0.076




	
2000~3000

	
14.5%

	
0.064

	
16.3%

	
0.072

	
16.6%

	
0.073

	
16.5%

	
0.073




	
3000~4000

	
9.7%

	
0.043

	
15.2%

	
0.067

	
15.8%

	
0.07

	
15.8%

	
0.07




	
4000~5000

	
20.2%

	
0.09

	
17.5%

	
0.077

	
17.8%

	
0.079

	
17.4%

	
0.077




	
0~2000

	
11.2%

	
0.049

	
15.7%

	
0.069

	
16.1%

	
0.071

	
16.0%

	
0.071




	
0~3000

	
12.7%

	
0.056

	
16.0%

	
0.07

	
16.3%

	
0.072

	
16.3%

	
0.072




	
0~4000

	
12.0%

	
0.053

	
15.8%

	
0.07

	
16.2%

	
0.072

	
16.1%

	
0.071




	
0~5000

	
8.4%

	
0.037

	
15.0%

	
0.066

	
15.7%

	
0.069

	
15.6%

	
0.069




	
Average

	
12.4%

	
0.055

	
15.8%

	
0.07

	
16.4%

	
0.072

	
16.2%

	
0.072











 





Table 11. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were estimated by asymmetric method at 973 K.






Table 11. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were estimated by asymmetric method at 973 K.





	
GEm and a

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD






	
GEm (J/mol)

	
0~1000

	
60.4%

	
1359

	
43.6%

	
986

	
94.9%

	
2139

	
92.0%

	
2075




	
1000~2000

	
71.1%

	
1600

	
100.0%

	
2242

	
65.5%

	
1481

	
60.0%

	
1361




	
2000~3000

	
56.5%

	
1270

	
76.4%

	
1715

	
69.8%

	
1577

	
64.7%

	
1467




	
3000~4000

	
89.5%

	
2017

	
120.7%

	
2716

	
59.1%

	
1338

	
52.6%

	
1197




	
4000~5000

	
51.1%

	
1154

	
70.5%

	
1587

	
69.7%

	
1574

	
64.6%

	
1464




	
0~2000

	
55.6%

	
1249

	
38.5%

	
881

	
91.3%

	
2057

	
88.0%

	
1985




	
0~3000

	
38.1%

	
858

	
23.3%

	
550

	
88.8%

	
2001

	
85.3%

	
1925




	
0~4000

	
22.4%

	
506

	
9.1%

	
253

	
86.3%

	
1946

	
82.6%

	
1866




	
0~5000

	
6.0%

	
148

	
10.5%

	
227

	
83.6%

	
1885

	
79.7%

	
1801




	
Average

	
50.1%

	
1129

	
54.7%

	
1240

	
78.8%

	
1778

	
74.4%

	
1682




	
a

	
0~1000

	
20.2%

	
0.132

	
15.7%

	
0.104

	
30.9%

	
0.202

	
30.7%

	
0.201




	
1000~2000

	
50.8%

	
0.33

	
88.8%

	
0.565

	
23.2%

	
0.156

	
22.6%

	
0.15




	
2000~3000

	
36.6%

	
0.236

	
57.4%

	
0.365

	
24.5%

	
0.164

	
23.8%

	
0.157




	
3000~4000

	
72.9%

	
0.483

	
126.6%

	
0.809

	
21.4%

	
0.145

	
20.9%

	
0.139




	
4000~5000

	
32.1%

	
0.209

	
51.1%

	
0.325

	
24.4%

	
0.163

	
24.0%

	
0.158




	
0~2000

	
20.4%

	
0.134

	
14.8%

	
0.104

	
30.0%

	
0.197

	
29.7%

	
0.194




	
0~3000

	
14.8%

	
0.098

	
9.9%

	
0.074

	
29.4%

	
0.193

	
29.0%

	
0.19




	
0~4000

	
9.1%

	
0.061

	
6.6%

	
0.051

	
28.8%

	
0.19

	
28.4%

	
0.186




	
0~5000

	
2.8%

	
0.022

	
8.3%

	
0.054

	
28.1%

	
0.186

	
27.7%

	
0.182




	
Average

	
28.8%

	
0.256

	
58.3%

	
0.376

	
26.7%

	
0.177

	
26.3%

	
0.173











 





Table 12. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were estimated by symmetric method at 973 K.






Table 12. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were estimated by symmetric method at 973 K.





	
GEm and a

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD






	
GEm (J/mol)

	
0~1000

	
45.1%

	
1008

	
65.2%

	
1484

	
87.9%

	
1982

	
84.5%

	
1906




	
1000~2000

	
37.9%

	
862

	
17.8%

	
466

	
71.1%

	
1606

	
66.0%

	
1495




	
2000~3000

	
67.9%

	
1536

	
12.3%

	
236

	
63.6%

	
1439

	
57.6%

	
1308




	
3000~4000

	
63.0%

	
1428

	
12.2%

	
233

	
63.7%

	
1443

	
57.6%

	
1307




	
4000~5000

	
106.1%

	
2095

	
23.4%

	
546

	
56.9%

	
1290

	
49.9%

	
1136




	
0~2000

	
4.4%

	
87

	
41.8%

	
970

	
79.5%

	
1795

	
75.4%

	
1703




	
0~3000

	
29.8%

	
685

	
27.1%

	
655

	
74.3%

	
1678

	
69.6%

	
1574




	
0~4000

	
44.9%

	
1026

	
19.9%

	
508

	
71.7%

	
1620

	
66.6%

	
1508




	
0~5000

	
63.1%

	
1435

	
12.9%

	
349

	
68.7%

	
1553

	
63.3%

	
1434




	
Average

	
51.4%

	
1129

	
25.8%

	
605

	
70.8%

	
1601

	
65.6%

	
1486




	
a

	
0~1000

	
16.2%

	
0.104

	
27.8%

	
0.183

	
29.2%

	
0.192

	
29.4%

	
0.192




	
1000~2000

	
22.0%

	
0.145

	
20.4%

	
0.137

	
24.8%

	
0.165

	
24.6%

	
0.162




	
2000~3000

	
47.7%

	
0.315

	
16.1%

	
0.112

	
22.7%

	
0.153

	
22.4%

	
0.148




	
3000~4000

	
42.9%

	
0.285

	
16.5%

	
0.114

	
22.8%

	
0.153

	
22.6%

	
0.149




	
4000~5000

	
77.8%

	
0.521

	
12.1%

	
0.089

	
20.7%

	
0.141

	
20.3%

	
0.135




	
0~2000

	
1.6%

	
0.01

	
24.4%

	
0.162

	
27.1%

	
0.179

	
27.1%

	
0.178




	
0~3000

	
15.8%

	
0.105

	
22.0%

	
0.147

	
25.7%

	
0.171

	
25.6%

	
0.169




	
0~4000

	
25.2%

	
0.167

	
20.7%

	
0.139

	
25.0%

	
0.166

	
24.9%

	
0.164




	
0~5000

	
38.1%

	
0.252

	
19.2%

	
0.13

	
24.2%

	
0.161

	
24.0%

	
0.158




	
Average

	
31.9%

	
0.212

	
19.9%

	
0.135

	
24.7%

	
0.165

	
24.6%

	
0.162











 





Table 13. The SD and ARD of molar excess Gibbs energy and activity of In50Zn50 alloys were estimated by asymmetric method at 730 K.






Table 13. The SD and ARD of molar excess Gibbs energy and activity of In50Zn50 alloys were estimated by asymmetric method at 730 K.





	
GEm and a

	
Step

	
MIVM

	
RSM

	
Wilson

	
NRTL




	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD

	
ARD%

	
SD






	
GEm (J/mol)

	
0~1000

	
123.0%

	
2197

	
111.2%

	
1986

	
108.0%

	
1929

	
101.8%

	
1818




	
1000~2000

	
98.4%

	
1757

	
89.5%

	
1598

	
104.4%

	
1865

	
98.2%

	
1753




	
2000~3000

	
8.4%

	
140

	
8.4%

	
143

	
89.2%

	
1591

	
81.8%

	
1463




	
3000~4000

	
103.8%

	
1855

	
93.8%

	
1675

	
105.0%

	
1874

	
98.9%

	
1767




	
4000~5000

	
12.5%

	
230

	
22.9%

	
420

	
84.7%

	
1511

	
80.1%

	
1432




	
0~2000

	
92.2%

	
1647

	
84.0%

	
1500

	
103.3%

	
1844

	
97.2%

	
1736




	
0~3000

	
63.2%

	
1131

	
57.1%

	
1019

	
98.5%

	
1758

	
92.7%

	
1655




	
0~4000

	
67.9%

	
1215

	
62.0%

	
1108

	
100.0%

	
1785

	
93.6%

	
1671




	
0~5000

	
51.3%

	
921

	
46.1%

	
826

	
97.2%

	
1735

	
90.9%

	
1625




	
Average

	
69.0%

	
1233

	
63.9%

	
1142

	
98.9%

	
1766

	
92.8%

	
1658




	
a

	
0~1000

	
38.2%

	
0.259

	
34.6%

	
0.234

	
35.2%

	
0.238

	
33.9%

	
0.2