Processing, Microstructure, and Properties of Bimetallic Steel-Ni Alloy Powder HIP
Abstract
:1. Introduction
2. Materials and Methods
Bimetallic Configuration | Powder Filled in Bottom Half Can | Powder Vacuum Heat Treatment | Powder Filled in Top Half Can | HIP Cycle | Solution and Aging Treatments | Tempering Treatment |
---|---|---|---|---|---|---|
282/SS316L | SS316L | 1000 °C/30 min | 282 | 1204 °C 15 ksi 4 h | 1149 °C/1 h/WQ 1010 °C/2 h/AC 788 °C/8 h/AC | N/A |
SS316L/282 | 282 | 1100 °C/30 min | SS316L | N/A | ||
282/SS415#1 | SS415#1 | 1000 °C/30 min | 282 | 600 °C/1 h | ||
SS415#1/282 | 282 | 1100 °C/30 min | SS415#1 | 600 °C/1 h | ||
282/SS415#2 | SS415#2 | 1000 °C/30 min | 282 | N/A |
3. Results
3.1. Interdiffusion Simulation and Phase Prediction for HIP Cycle
3.2. SS415 Phase Transformation and Thermal Properties
3.3. Heat Treatment after HIP
3.4. Microstructure
3.5. Tensile Property
3.6. Bimetallic PM HIP Pipe Demonstration
- Providing the dimensionally controlled location of the two alloys in the pipe;
- Formation of the firm and well-controlled interface between the two alloys;
- HIP both alloys to 100% density;
- Achieving the overall dimensions of the bimetal pipe.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marion, J.; Macadam, S.; McClung, A.; Mortzheim, J. The STEP 10 MWe sCO2 Pilot Demonstration Status Update. In Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam, The Netherlands, 13–17 June 2022; Volume 9: Supercritical CO2; V009T28A034. ASME: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Huang, S.; Samarov, V.; Seliverstov, D.; Mortzheim, J.; Khomyakov, E. Near-Net-Shape HIP Manufacturing for sCO2 Turbomachinery Cost Reduction. In Proceeding of the 13th International Conference on Hot Isostatic Pressing: HIP’22, Columbus, OH, USA, 11–14 September 2022; Materials Research Proceedings 2023. Volume 38, pp. 11–16. [Google Scholar] [CrossRef]
- Walker, R.M.; Roberts, D.J.; Rickinson, B.A. Component assembly using HIP diffusion bonding. In Diffusion Bonding 2; Stephenson, D.J., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 261–269. [Google Scholar] [CrossRef]
- Fu, H.Y.; Nagasaka, T.; Muroga, T.; Kimura, A.; Chen, J.M. Microstructural characterization of a diffusion-bonded joint for 9Cr-ODS and JLF-1 reduced activation ferritic/martensitic steels. Fusion Eng. Des. 2014, 89, 1658–1663. [Google Scholar] [CrossRef]
- Hammelmann, K.H.; Buchkremer, H.P.; Stöver, D. HIP-diffusion bonding of ODS-materials by use of plasma sprayed encapsulation. In Diffusion Bonding 2; Stephenson, D.J., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 250–260. [Google Scholar] [CrossRef]
- Nagasaka, T.; Fu, H.; Muroga, T.; Tanaka, T.; Sagara, A.; Guan, W.; Nogami, S.; Hasegawa, A.; Serizawa, H.; Kimura, A.; et al. Development of Dissimilar-Metals Joint of Oxide-Dispersion-Strengthened (ODS) and Non-ODS Reduced-Activation Ferritic Steels (IAEA-N-234); International Atomic Energy Agency (IAEA): Vienna, Austria, 2018. [Google Scholar]
- Auger, J.P.; Raisson, G.; Pierronnet, M. Design and manufacture of engineered components clad by HIP. In Hot Isostatic Pressing—Theory and Applications: Proceedings of the Third International Conference; Koizumi, M., Ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 229–234. [Google Scholar] [CrossRef]
- Theisen, W. Hip cladding of tools. In Proceeding of the 6th International Tooling Conference; Bergström, J., Ed.; Karlstad University: Karlstad, Sweden, 2002; pp. 947–960. [Google Scholar]
- Gauthier, M.; D’Amours, G.; Bernier, F. HIP Processing of Improved Tooling Materials for High-Productivity Hot Metal Forming Processes. In Proceeding of the 12th International Conference on Hot Isostatic Pressing: HIP’17, Sydney, Australia, 5–8 December 2017; Materials Research Proceedings 2019. Volume 10, pp. 85–91. [Google Scholar] [CrossRef]
- Masahashi, N.; Hanada, S. Effect of pressure application by HIP on microstructure evolution during diffusion bonding. Mater. Trans. 2005, 46, 1651–1655. [Google Scholar] [CrossRef]
- Butrim, V.N.; Beresnev, A.G.; Denisov, V.N.; Klyatskin, A.S.; Medvedev, D.A.; Makhina, D.N. Experience in HIP diffusion welding of dissimilar metals and alloys. In Proceedings of the 12th International Conference on Hot Isostatic Pressing: HIP’17, Sydney, Australia, 5–8 December 2017; Materials Research Proceedings 2019. Volume 10, pp. 65–72. [Google Scholar] [CrossRef]
- Magerramova, L.A. Achievement of bimetallic blisks integrated dissimilar alloys for promising high temperature aviation gas turbine engines. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences 2012, Brisbane, Australia, 23–28 September 2012; Volume 3, pp. 2457–2465. [Google Scholar]
- Magerramova, L.; Kratt, E. Development of the Design and Technological Solutions for Manufacturing of Turbine Blisks by HIP Bonding of the PM Disks with the Shrouded Blades. In Proceedings of the 12th International Conference on Hot Isostatic Pressing: HIP’17, Sydney, Australia, 5–8 December 2017; Materials Research Proceedings 2019. Volume 10, pp. 39–46. [Google Scholar] [CrossRef]
- Locci, I.E.; Nesbitt, J.A.; Ritzert, F.J.; Bowman, C.L. High temperature stability of dissimilar metal joints in fission surface power systems. AIP Conf. Proc. 2007, 880, 660–667. [Google Scholar] [CrossRef]
- Zhang, L.W.; Fu, H.Y.; Chai, Z.J.; Zheng, P.F.; Wei, R.; Zhang, M.; Chen, J.M. Dissimilar-metal bonding of a carbide-dispersion strengthened vanadium alloy for V/Li fusion blanket application. Tungsten 2020, 2, 101–106. [Google Scholar] [CrossRef]
- Xiao, Y.; Lang, L.; Xu, W.; Zhang, D. Diffusion bonding of copper alloy and nickel-based superalloy via hot isostatic pressing. J. Mater. Res. Technol. 2022, 19, 1789–1797. [Google Scholar] [CrossRef]
- Dineshraj, S.; Manwatkar, S.K.; Gupta, R.K.; Bajargan, G. Development of hot isostatic pressing technology for joining multiple joints of dissimilar materials of stainless steels with IN 718 and Ti-6Al-4V. Trans. Indian Inst. Met. 2024. [Google Scholar] [CrossRef]
- Stavroulakis, E.; Bowden, D.; Irukuvarghula, S.; Garner, A.; Pickering, E.; Stewart, D.; Preuss, M. Characterisation of ferritic to austenitic steel functional grading via powder hot isostatic pressing. Mater. Today Commun. 2022, 31, 103442. [Google Scholar] [CrossRef]
- Stavroulakis, E.; Irukuvarghula, S.; Pickering, E.; Stewart, D.; Preuss, M. Fundamental aspects of functional grading via powder hot isostatic pressing–Development of microstructure and diffusional processes. Mater. Des. 2022, 215, 110437. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, W.; Ma, Y.; Cai, Q.; Wang, J.; Duan, Y. Microstructural characteristics, mechanical properties and interfacial formation mechanism of tungsten alloy/steel composite structure fabricated by HIP co-sintering. Mater. Des. 2021, 211, 110127. [Google Scholar] [CrossRef]
- Lister, S.; Blanch, O.L.; Fernandez, D.S.; Pope, J.; Baxter, G.J.; Bray, S.; Jackson, M. A Machinability Assessment of the Novel Application of Field-Assisted Sintering Technology to Diffusion Bond (FAST-DB) and Functionally Grade Dissimilar Nickel-Based Superalloys. Metall. Mater. Trans. A 2023, 19, 1–3. [Google Scholar] [CrossRef]
- Larker, R.; Ockborn, J.; Selling, B. Diffusion bonding of CMSX-4 to UDIMET 720 using PVD-coated interfaces and HIP. J. Eng. Gas Turbines Power. 1999, 121, 489–493. [Google Scholar] [CrossRef]
- Buchkremer, H.P.; Ennis, P.J.; Stover, D. Manufacture and stress rupture properties of hipped austenitic-ferritic transition joints. J. Mater. Process. Technol. 1999, 92–93, 368–370. [Google Scholar] [CrossRef]
- Guelman, A.A. HIP diffusion bonding of intricate shape components made of light alloys and steels. In Proceedings of the KWS Conference; The Korean Welding and Joining Society: Daejeon, Republic of Korea, 2002; pp. 769–775. [Google Scholar]
- Bassini, E.; Vola, V.; Lorusso, M.; Ghisleni, R.; Lombardi, M.; Biamino, S.; Ugues, D.; Vallillo, G.; Picqué, B. Net shape HIPping of Ni-superalloy: Study of the interface between the capsule and the alloy. Mater. Sci. Eng. A 2017, 695, 55–65. [Google Scholar] [CrossRef]
- Frisk, K.; Luo, C.; Johansson, S.C.; Haglund, S.; Petterson, N.; Strandell, I. Compound materials by PM-HIP. Powder Metall. 2014, 57, 341–347. [Google Scholar] [CrossRef]
- Le, J.; Yang, J.; Yin, H.; Samarov, V.; Gandy, D.; Lou, X. SA508 low alloy steel to 316L stainless steel dissimilar metal joint made by powder metallurgy hot isostatic pressing. Mater. Sci. Eng. A 2023, 875, 145060. [Google Scholar] [CrossRef]
- Burlet, H.; Martinez, M.; Cailletaud, G. Microstructure and residual stresses issued from the bonding of an austenitic onto a ferritic steel by solid diffusion. In Proceedings of the 4th European Mechanics of Materials Conference on Processes, Microstructures and Mechanical Properties, Metz, France, 11 September 2001; Volume 11, pp. 157–164. [Google Scholar] [CrossRef]
- Weiss, B.F.; Strickler, R. Phase Instabilities during High Temperature Exposure of 316 Austenitic Stainless Steel. Metall. Trans. 1972, 3, 851–866. [Google Scholar] [CrossRef]
- Blair, M.; Stevens, T.L. Steel Casting Handbook, 6th ed.; Steel Founders’ Society of America: Crystal Lake, IL, USA, 1995. [Google Scholar]
Alloy | Ni | Co | Fe | Cr | Al | Ti | Mo | C | Mn | Si | N | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SS316L powder | 12.6 | - | Bal. | 17.82 | - | - | 2.32 | 0.021 | 0.96 | 0.71 | 0.09 | 0.015 |
SS415#1 powder | 4.9 | - | Bal. | 12.9 | - | - | 0.74 | 0.002 | 0.61 | 0.08 | 0.003 | 0.063 |
SS415#2 powder | 4.6 | - | Bal. | 12.2 | - | - | 0.76 | 0.028 | 0.75 | 0.03 | 0.01 | 0.031 |
282 powder | Bal. | 9.95 | 0.95 | 19.5 | 1.44 | 2.09 | 8.26 | 0.067 | 0.15 | 0.084 | 0.006 | 0.007 |
HAYNES® 282® | SS316L | SS415 |
---|---|---|
Solution/annealing: 1121–1149 °C, air cool (AC), Two-step Aging: 1010 °C for 2 h, AC; 788 °C for 8 h, AC. Or single-step Aging: 800 °C for 4 h, AC. | Annealing: 1040–1105 °C, AC. | Hardening: (except for +A) 950–1050 °C, AC or oil cool Tempering: 600–650 °C, AC or furnace cool (“soft annealed” +A); 650–700 °C, 600–620 °C, AC or furnace cool (“quench-tempered” QT650) 550–600 °C, AC or furnace cool (QT780) 520–580 °C, AC or furnace cool (QT900) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Shen, C.; Samarov, V. Processing, Microstructure, and Properties of Bimetallic Steel-Ni Alloy Powder HIP. Metals 2024, 14, 118. https://doi.org/10.3390/met14010118
Huang S, Shen C, Samarov V. Processing, Microstructure, and Properties of Bimetallic Steel-Ni Alloy Powder HIP. Metals. 2024; 14(1):118. https://doi.org/10.3390/met14010118
Chicago/Turabian StyleHuang, Shenyan, Chen Shen, and Victor Samarov. 2024. "Processing, Microstructure, and Properties of Bimetallic Steel-Ni Alloy Powder HIP" Metals 14, no. 1: 118. https://doi.org/10.3390/met14010118
APA StyleHuang, S., Shen, C., & Samarov, V. (2024). Processing, Microstructure, and Properties of Bimetallic Steel-Ni Alloy Powder HIP. Metals, 14(1), 118. https://doi.org/10.3390/met14010118