The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy
Abstract
:1. Introduction
2. Description of Material and Experiment Methods
3. Results and Discussion
3.1. The True Stress–Strain Curves
3.2. The Effect of Deformation Parameters on Maximum Elongation
3.3. The Effect of Deformation Parameters on the Flow Stress
3.4. The Constitutive Equation
3.5. SEM Observation
3.6. OM Observation
3.7. TEM Observation
4. Conclusions
- (1)
- The flow stress of as-cast 7005 aluminum alloy decreases with the increase in tensile deformation temperature. In addition, the strain rate sensitivity of the material increases with increasing temperature. The Johnson–Cook model can be employed to characterize the thermal flow behavior of the targeted alloy.
- (2)
- The plastic deformation capacity of the as-cast 7005 aluminum alloy increases with the increase in temperature and the decrease in strain rate. Therefore, the grain at the fracture is continuously stretched with the increase in temperature, and the number and size of holes also increase. With the increase in tensile deformation temperature, the brittle fracture characteristics of the studied alloy disappear, and the fracture is dominated by microporous aggregation. The number and size of dimples increase, and the plastic deformation of the material is more significant.
- (3)
- In the process of tensile deformation, a large number of high-density dislocation structures are generated in the material due to plastic deformation. With the increase in tensile deformation temperature, the high-temperature conditions promote the elimination of dislocation, and the dislocation density decreases gradually. In addition, dynamic precipitation occurs inside the material.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Zang, Q.; Chen, H.; Lee, Y.-S.; Yu, H.; Kim, M.-S.; Kim, H.-W. Improvement of anisotropic tensile properties of Al-7.9Zn-2.7Mg-2.0Cu alloy sheets by particle stimulated nucleation. J. Alloys Compd. 2020, 828, 154330. [Google Scholar] [CrossRef]
- Lewis, G.M.; Buchanan, C.A.; Jhaveri, K.D.; Sullivan, J.L.; Kelly, J.C.; Das, S.; Taub, A.I.; Keoleian, G.A. Green Principles for Vehicle Lightweighting. Environ. Sci. Technol. 2019, 53, 4063–4077. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xin, Y.; Ma, L.; Zhang, H.; Lin, Z.; Li, X. Challenges and solutions of cathodic protection for marine ships. Corros. Commun. 2021, 2, 33–40. [Google Scholar] [CrossRef]
- Tiwary, A.; Kumar, R.; Chohan, J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021, 51, 865–870. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, B.; Zhang, S.; Lin, R.; Jiang, Y.; Lan, X. Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties. J. Alloys Compd. 2021, 879, 160407. [Google Scholar] [CrossRef]
- Ma, Z.; Ji, H.; Huang, X.; Xiao, W.; Tang, X. Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy. Materials 2021, 14, 5485. [Google Scholar] [CrossRef]
- Wang, L.; Tao, S.; Zhu, P.; Chen, W. Data-driven topology optimization with multiclass microstructures using latent variable Gaussian process. J. Mech. Des. 2021, 143, 031708. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Edwards, D.M.; Rawat, D.B. Quantum Adversarial Machine Learning: Status, Challenges and Perspectives. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020. [Google Scholar]
- Tang, J.; Liu, M.; Bo, G.; Jiang, F.; Luo, C.; Teng, J.; Fu, D.; Zhang, H. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling. J. Mater. Sci. Technol. 2022, 116, 130–150. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Teng, J.; Wang, G.; Fu, D.; Zhang, H.; Jiang, F. Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation. Vacuum 2021, 184, 109941. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Zhao, H. Microstructure evolution and mechanical responses of Al–Zn–Mg–Cu alloys during hot deformation process. J. Mater. Sci. 2021, 56, 13429–13478. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Mo, Y.; Wang, H.; Xu, J. Hot deformation and processing maps of Al–Zn–Mg–Cu alloy under coupling-stirring casting. J. Mater. Res. Technol. 2019, 8, 1224–1234. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Lang, Q.; Song, G.; Liu, L. Microstructure evolution and deformation behavior of TIG welded 7075-T6 aluminum alloy followed by partial hot rolling. J. Manuf. Process. 2023, 94, 524–538. [Google Scholar] [CrossRef]
- Tian, N.; Jiang, X.; Zhang, Y.; Zeng, Z.; Wang, T.; Zhao, G.; Qin, G. Effect of Precipitates on the Mechanical Performance of 7005 Aluminum Alloy Plates. Materials 2022, 15, 5951. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Deng, P.; Wang, S.; Xu, H.; Shi, Y. Study on formability and microstructure evolution of hot deep drawing manufactured 7005 aluminum alloy sheet metal. Mater. Today Commun. 2023, 36, 106794. [Google Scholar] [CrossRef]
- Chaskis, S.; Stachouli, E.; Gavalas, E.; Bouzouni, M.; Papaefthymiou, S. Microstructure, phase formation and heat-treating of novel cast Al-Mg-Zn-Cu-Si lightweight complex concentrated aluminum based alloy. Materials 2022, 15, 3169. [Google Scholar] [CrossRef]
- Kulkarni, S.M. Effect of geometric irregularities induced during manufacturing of a crash-box on its crashworthiness performance. Mater. Today Proc. 2022, 57, 715–721. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, G.; Yu, J.; Zhang, W. Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process. Mater. Des. 2015, 66, 129–136. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, L.; Xu, G.; Deng, Y.; Yin, Z. Microstructure and mechanical properties of 7005 aluminum alloy processed by room temperature ECAP and subsequent annealing. J. Alloys Compd. 2016, 664, 518–529. [Google Scholar] [CrossRef]
- Jiang, J.; Atkinson, H.; Wang, Y. Microstructure and mechanical properties of 7005 aluminum alloy components formed by thixoforming. J. Mater. Sci. Technol. 2017, 33, 10. [Google Scholar] [CrossRef]
- Liu, M.; Shan, Z.; Li, X.; Zang, Y. Hot tensile deformation behavior and microstructure evolution of 7075 aluminum alloy sheet. J. Mater. Res. Technol. 2023, 24, 724–736. [Google Scholar] [CrossRef]
- Fu, R.; Liang, Y.; Han, Q.; Guo, Y.; Lei, H.; Liu, C. Strengthening and fracturing mechanisms of laser-directed energy deposited Al-7075 alloy. Mater. Sci. Eng. A 2023, 881, 145433. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Wu, Y.; Yang, X. Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation. Mater. Sci. Eng. A 2018, 712, 704–713. [Google Scholar] [CrossRef]
- Zang, Q.; Yu, H.; Lee, Y.-S.; Kim, M.-S.; Kim, H.-W. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy. J. Alloys Compd. 2018, 763, 25–33. [Google Scholar] [CrossRef]
- Wu, H.; Wen, S.; Huang, H.; Gao, K.; Wu, X.; Wang, W.; Nie, Z. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy. J. Alloys Compd. 2016, 685, 869–880. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Tan, J.; Zhang, J. Effect of strain rate on the recrystallization mechanism during isothermal compression in 7050 aluminum alloy. Mater. Sci. Eng. A 2018, 734, 120–128. [Google Scholar] [CrossRef]
- Zheng, J.-H.; Pruncu, C.; Zhang, K.; Zheng, K.; Jiang, J. Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy. Mater. Sci. Eng. A 2021, 814, 141158. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, J.; Zhou, Y.; Kong, C.; Yu, H. Tensile properties and a modified s-Johnson-Cook model for constitutive relationship of AA7075 sheets at cryogenic temperatures. J. Alloys Compd. 2023, 942, 169044. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M.; Liu, G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng. A 2010, 527, 6980–6986. [Google Scholar] [CrossRef]
- Taheri-Mandarjani, M.; Zarei-Hanzaki, A.; Abedi, H.R. Hot ductility behavior of an extruded 7075 aluminum alloy. Mater. Sci. Eng. A 2015, 637, 107–122. [Google Scholar] [CrossRef]
- Jiang, J.-F.; Wang, Y.; Liu, Y.-Z.; Xiao, G.-F.; Li, H. Microstructure and mechanical properties of 7005 aluminum alloy processed by one-pass equal channel reciprocating extrusion. Trans. Nonferrous Met. Soc. China 2021, 31, 609–625. [Google Scholar] [CrossRef]
- Mao, W.-M.; Zhu, W.-Z. Tensile properties and microstructure of rheo-diecast 7075 alloy prepared by serpentine channel process. China Foundry 2019, 16, 161–167. [Google Scholar] [CrossRef]
- Li, G.; Ding, H.; Wang, J.; Zhang, N.; Hou, H. Superplastic tensile deformation behavior and microstructural evolution of Al–Zn–Mg–Cu alloy. Metals 2019, 9, 941. [Google Scholar] [CrossRef]
- Lu, J.; Song, Y.; Zhou, P.; Lin, J. Rheological behavior and dynamic softening mechanism of AA7075 sheet under isothermal tensile deformation. J. Mater. Res. Technol. 2020, 9, 9784–9797. [Google Scholar] [CrossRef]
- Ye, T.; Wu, Y.; Liu, A.; Xu, C.; Li, L. Mechanical property and microstructure evolution of aged 6063 aluminum alloy under high strain rate deformation. Vacuum 2019, 159, 37–44. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Lee, Y.-S.; Kim, M.-S.; Kim, H.-W. Effect of microstructure on hot tensile deformation behavior of 7075 alloy sheet fabricated by twin roll casting. Mater. Sci. Eng. A 2016, 652, 221–230. [Google Scholar] [CrossRef]
Composition | Zn | Mg | Si | Mn | Fe | Cu | Al |
---|---|---|---|---|---|---|---|
Content (wt %) | 4.5 | 1.3 | 0.25 | 0.25 | 0.15 | 0.05 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, E.; Ye, T.; Liu, L.; Liu, W.; Yue, H.; Tang, J.; Wu, Y. The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy. Metals 2024, 14, 125. https://doi.org/10.3390/met14010125
Xia E, Ye T, Liu L, Liu W, Yue H, Tang J, Wu Y. The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy. Metals. 2024; 14(1):125. https://doi.org/10.3390/met14010125
Chicago/Turabian StyleXia, Erli, Tuo Ye, Limei Liu, Wei Liu, Huanyu Yue, Jian Tang, and Yuanzhi Wu. 2024. "The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy" Metals 14, no. 1: 125. https://doi.org/10.3390/met14010125
APA StyleXia, E., Ye, T., Liu, L., Liu, W., Yue, H., Tang, J., & Wu, Y. (2024). The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy. Metals, 14(1), 125. https://doi.org/10.3390/met14010125