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Abstract: This study investigates the influence of different sinter-HIP temperatures and binder
saturation levels on the microstructure and properties of WC–12Co cemented carbide, produced
using binder jetting. The sinter-HIP process was performed at 1400 ◦C, 1460 ◦C, and 1500 ◦C and
binder saturation levels of 60% and 75% were selected during printing. The binder saturation proved
to affect the repeatability of the manufacturing process and the sturdiness of the green models. The
increase of the sintering temperature from 1400 ◦C to 1460 ◦C is correlated with an increase in the
density. Nonetheless, a further raise in temperature to 1500 ◦C leads to significant grain coarsening
without clear advantages in terms of porosity reduction. Both the transverse rupture strength and
Vickers hardness increase when the sinter-HIP temperature rises from 1400 ◦C to 1460 ◦C, where
the typical results for traditionally manufactured WC–12Co are met, with a comparable grain size.
The transverse rupture strength and Vickers hardness then decrease for samples treated at 1500 ◦C.
Finally, potential issues in the manufacturing process are identified and correlated with the defects in
the final components.
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1. Introduction

Cemented carbides represent a class of composite materials featuring hard carbides
embedded in a ductile metallic binder phase, offering a favorable combination of high hard-
ness, toughness, and wear resistance. The ternary system W–Co–C and the pseudobinary
WC–Co have been extensively studied due to their outstanding mechanical properties and
cutting performance, making them widely used in various industrial applications. The
main factors that influence their mechanical properties are the content of the binder phase
and the size and the distribution of carbide grains [1–3]. Notably, it has been established
that the enhancement of wear resistance exhibits a linear correlation with the reduction
in the square root of the WC grain size, regardless of the cobalt content [4]. Sintering
these WC/Co composites at temperatures between 1380 ◦C and 1450 ◦C ensures high
density (>99% of the theoretical density) and minimal residual porosity, a feat facilitated
by the proper miscibility of W and C in cobalt and the favorable wetting properties of the
liquid/solid interface during sintering. Moreover, sintering at these temperatures yields
not only the desired high microhardness but also a highly uniform microstructure of the
material [3].

Additive manufacturing (AM) is a group of manufacturing technologies that are
used to produce parts by shaping materials, usually in a layer-by-layer manner, through
the section of computer-aided design (CAD) models. This approach holds consider-
able advantages and presents extensive potential for fabricating geometrically intricate
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cemented carbide components, a feat often unattainable through traditional powder
metallurgy methods.

In recent years, several studies have been conducted on the use of additive manufac-
turing (AM) techniques for cemented carbides. Most of the research refers to the two main
groups of AM techniques. The first group consists of hot-forming techniques, which as-
sumes the forming of a dense component during the printing process. This group includes
laser and electron beam powder bed fusion (LPBF and EPBF) [5–9] and directed energy
deposition (DED) techniques [10,11]. In the case of cemented carbides, the latter is mainly
used for coatings rather than to form a three-dimensional shape part. The second group
includes multiple-step processes, in which forming and densification are performed at
separate stages with different equipment. Namely, the most relevant are as follows: fused
deposition modelling (FDM) [12,13], selective laser sintering (SLS) [14], in which the fusion
occurs only in the polymer shells of the powders, and binder jetting additive manufacturing
(BJAM) [15–18]. Multi-step processes combine the forming of a green-body with a subse-
quent thermal treatment (debinding–sintering) as in traditional powder metallurgy. Among
all others, the BJAM technique appears to be the most promising technique to produce
near-net-shape WC-based parts, because the printing process of the green bodies with
the organic binder occurs at a low temperature, the resolution of the process is high, and
densification using sintering or sinter-HIPing is performed separately, following principles
and recommendations similar to those of traditional and well-developed manufacturing
technologies [19,20]. Recent studies on binder jetting revealed the formation of coarse-
grained cemented carbides after sintering [21] at temperatures higher than 1400 ◦C, and
superior wear resistance in comparison with similar conventionally produced cemented
carbides, with a substantial leap in the geometrical complexity of potential parts [22].

In previous works, we investigated the influence of the powder on the microstructure,
the phase composition, and the properties of WC–Co using binder jetting and pressureless
and pressure-assisted sintering [23], and the influence of printing parameters [24] on the
density of the sintered samples. The current study is dedicated to identifying the effects of
different sintering conditions on the densification and grain growth mechanisms within
the microstructure of dense components, in combination with the binder saturation level
adopted during the printing process. This is known to affect the particles packing in the
powder bed, the accuracy of the green parts, and possibly the final carbon content. Addi-
tionally, defects and inaccuracies are analyzed to define recommendations and guidelines
for future studies.

2. Materials and Methods

For this study, the AM WC702 powder was used with a nominal composition of
WC–12Co (wt.%), which is one of the typical industrial cemented carbide compositions,
provided by Global Tungsten & Powders Corp. (Towanda, PA, USA). The organic binder
used in the work is the ExOne Inc (part of Desktop Metal Company, Burlington, MA,
USA) proprietary water-based diethylene glycol monoethyl ether (C6H14O3) product (code:
BA-005), that forms polyethylene glycol (PEG) upon curing.

The powder surface and sections of powder particles were visually analyzed via ZEISS
SIGMA 500 scanning electron microscopy (Carl Zeiss AG, Jena, Germany). For each sample,
5 images with at least 200 measurements of grains were performed to determine the average
size and distribution of the grains [25].

The phase composition was analyzed using an X-ray diffractometer Rigaku Smartlab
2 (Rigaku Corporation, Tokyo, Japan). The measurement was performed with a Cu-Kα

radiation (λ = 1.5406 Å) at a scanning rate of 1◦ min−1, from 10◦ to 100◦ and with a step
size of 0.02◦.

Parallelepiped-shaped samples (6 × 6 × 60 mm3) were printed horizontally alongside
with printhead direction, using an ExOne Innovent+ machine. The printing was performed
with 2 sets of parameters; the most relevant are summarized in Table 1. The selected values
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of binder saturation (namely 60% and 75%) proved to be associated with the optimal results
reported in previous works [23,24].

Table 1. Binder jetting printing parameters.

Sample 50/60 50/75

Layer thickness 50 µm 50 µm
Binder saturation 60% 75%

Drying time 12 s 12 s
Recoat speed 10 mm/s 10 mm/s

After printing, the samples were cured at 180 ◦C for 6 h in air to polymerize the organic
binder. Green models of the samples were then debinded at 500 ◦C for 4 h in nitrogen.
Densification was performed at different conditions: 1400 ◦C, 1460 ◦C, and 1500 ◦C for 3 h
under a vacuum, with subsequent sinter-HIP processing under a 35 bar Ar pressure for
20 min at 1400 ◦C, 1460 ◦C, and 1500 ◦C.

The microstructure of the transverse sections of the samples (along a plane parallel to
building direction) was analyzed using SEM ZEISS SIGMA (Carl Zeiss AG, Jena, Germany)
500 with the following parameters: acceleration voltage 20 kV, working distance 6.8–8.8 mm.
The density was measured using the Archimedes method in accordance with [26]. Speci-
mens were mechanically characterized using Vickers hardness (HV) measurements with an
applied load of 100 kgf for 15 s on the polished surfaces [27] and using 3-point bending
tests on the ground and chamfered type B samples with a constant load displacement rate
of 0.5 mm min−1 [28]; the span between the support rods was set at 14.5 mm to assess the
transverse rupture strength (TRS), with 3 specimens for each condition.

3. Results
3.1. Powder Characterization

The polished sections of the particles (Figure 1) show a highly spherical aspect and a
microstructure consisting of fine WC within homogeneously distributed Co. In contrast
with powders from previous works [24], no coarse WC grains were observed, and a weak
diffraction peak of secondary W2C was noticed in the XRD analysis (Figure 2). Both phases
are uniformly distributed; however, some particles exhibit relevant inner porosity, likely
due to the incomplete densification of the granules during their spheroidization process.
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Figure 2. XRD of the WC–12Co powder.

3.2. Microstructural Characterization

The microstructure of the transverse section of the 50/60 samples after sinter-HIP
processing is shown in Figure 3. At a lower magnification, the samples sintered at 1400 ◦C
(Figure 3A) display some randomly located equiaxial-shaped pores. At a higher magnifica-
tion (Figure 3B), the microstructure presents uniformly distributed fine grains of WC with
an average size of about 1.65 µm, and some coalesced coarse grains with a dimension up
to 15 µm. To understand this bi-modal nature of the WC grains, the size of the grains was
evaluated, and the results were divided into coarse grains, which are above 5 µm, and fine
grains. The total area occupied by the coarse grains (>5 µm) is about 11%, as summarized
in Table 2. Cobalt is distributed uniformly in between the WC grains. Nonetheless, it can
be noticed that cobalt tends to accumulate within the voids between the coarse grains,
forming large pools, as shown in the higher magnification micrographs (Figure 3C).

Elevating the sinter-HIP processing temperature to 1460 ◦C results in a significant
reduction in residual porosity, and the final relative density is raised above 99% (see
Table 2). Simultaneously, there is an enlargement in the volume occupied by the coarse
grains (visible in Figure 3D,F) to approximately 15%. Despite this temperature increase,
there is no significant growth observed in the average size of the tungsten carbide grains,
which remains at 1.60 µm, as outlined in Table 2 and depicted in Figure 3E.
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Figure 3. SEM micrographs of the microstructure of 50/60 samples sinter-HIPed at (A–C) 1400 ◦C,
(D–F) 1460 ◦C, and (G–I) 1500 ◦C.

Table 2. Grains size, relative density, hardness, and transverse rupture strength of the samples.

Sample Average Grains
Size, µm Relative Density, % Area with Grains

above 5 µm, % Hardness, HV100
Transverse Rupture

Strength, MPa

1400 50/60 1.65 ± 0.93 98.5 ± 0.6 11 1207 ± 28 1521 ± 149
1460 50/60 1.60 ± 0.92 99.3 ± 0.1 15 1222 ± 16 2295 ± 169
1500 50/60 1.95 ± 1.53 99.8 ± 0.8 32 1140 ± 43 1811 ± 113
1400 50/75 1.61 ± 0.90 98.5 ± 0.5 10 1130 ± 12 2386 ± 300
1460 50/75 1.62 ± 0.92 99.1 ± 0.6 13 1209 ± 47 2600 ± 112
1500 50/75 1.90 ± 1.69 99.5 ± 0.3 24 1167 ± 19 2076 ± 160

With a further increase in temperature up to 1500 ◦C (micrographs in Figure 3G–I),
porosity is further limited: the highest relative density is achieved, as confirmed using
the measurements shown in Table 2. Unlike the previous cases, the microstructure in the
case of the 1500 ◦C samples changed drastically. As can be observed in Figure 3H, the
grains grow significantly, thus affecting the average grain size, which in this case is 1.95 µm.
Additionally, the coarse grain area is more than doubled in comparison to 1460 ◦C (32%
against 15%). The overall average grain size increases together with the difference in size
between coarse and fine grains, with some grains showing abnormal growth, reaching
almost 90 µm in size. This phenomenon can be explained by the increasing importance of
the effects related to coalescence over the densification mechanisms at higher temperatures.
The formation of a massive liquid phase combined with high pressure allows for the rapid
closure of porosity and promotes the mobility of tungsten and carbon through liquid cobalt,
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leading to the growth of larger grains at the expense of smaller ones, according to Ostwald
ripening processes, and resulting in a marked bimodality in their size distribution. With
the higher magnification (Figure 3I), the stacking of finer grains could be observed, which
could be the one of the stages of coalescence of the grains.

The microstructure of the 50/75 samples is presented in Figure 4. The sample after
sinter-HIP processing at 1400 ◦C has some residual porosity, which can be observed at
lower and higher magnifications of the SEM image of the transverse section (Figure 4A,B).
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(C,D) 1460 ◦C, and (E,F) 1500 ◦C.

The rise in temperature to 1460 ◦C results in a further densification, and it led to an
increase in the area occupied by the coarse WC grains (>5 µm), which could be observed
in SEM images in Figure 4C,D and reported in Table 2. The microstructure of the samples
sinter-HIPed at 1500 ◦C shows substantial grain growth both in terms of average grain size
and the area occupied by the coarsened WC phase, as shown in Figure 4E,F.

As observed for the samples printed with a binder saturation level of 60%, the rela-
tive density progressively increases with the sintering temperature, especially at 1500 ◦C
(Table 2). The formation of cobalt pools in between the coarse-grained areas are similarly
promoted during the thermal treatment at higher temperatures. However, both the overall
area occupied by the coarsened WC grains and the average grain size remains lower in
the parts printed at a binder saturation level of 75%, especially if sinter-HIP processing at
1500 ◦C is considered.
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Binder saturation might affect the amount of residual C, O, and H in the microstruc-
ture, since debinding in a non-oxidizing atmosphere should be incomplete. As a result,
additional carbon could be introduced into the system, although an estimate of this effect is
complex, as both oxygen and hydrogen could lead to decarburization at higher tempera-
tures during the sintering process, thus leading to a counterintuitive reduction of carbon, as
observed in previous works [1]. Most likely, the binder saturation level has a minor effect
on the densification mechanism, which is dominated by the role of the liquid phase and
its amount, the variation of which depends primarily on temperature and secondarily on
carbon content. The expected volume of the liquid phase is 25.95% for 1400 ◦C, 26.62% for
1400 ◦C, and 27.11% for 1500 ◦C, as calculated using the CALPHAD method via Thermocalc
software (version 2023a, using TCHEA 2 database). Nonetheless, carbon also affects the
solubility of tungsten in molten cobalt, the wettability of the surface of the WC grains, and
the migration of cobalt toward low carbon regions, as demonstrated in a recent work [2].
The latter mechanism should be irrelevant since binder is initially distributed in the entire
component; thus, the compositional gradient is not justified. Instead, the two former factors
could influence the growing rate of the WC grains. The grain size characterization in
Table 2 suggests that the excess of the binder affects the pore evolution and/or carbon
content, leading to a net effect of grain growth inhibition. The difference between printing
conditions becomes particularly evident at a higher sinter-HIP temperature (1500 ◦C),
because it favors diffusivity in the liquid phase when not inhibited, as was observed.

The negligible effect of binder saturation on the phase composition was verified using
an XRD analysis (Figure 5) as well. Diffractograms showed no relevant differences among
the 50/60 and 50/75 samples. In addition, meaningful variations induced with sintering
temperatures were not detected. Indeed, peaks of WC and low intensity peaks of Co
are observed. No carbon or secondary phases, such as undesired low carbon carbides,
were identified. This suggests that the minor W2C phases in the feedstock are properly
carburized during the densification process, likely thanks to the carbon introduced with
the organic binder during the shaping phase. The elemental map of the distribution of the
chemical elements (Figure 5B) showed the distribution of cobalt in between the WC grains.
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3.3. Mechanical Characterization

The transverse rupture strength (TRS) was determined using a three-point bending
test, which was described in Section 2. There is a positive trend of the TRS (Figure 6A)
with increasing temperatures of sinter-HIP processing from 1400 ◦C to 1460 ◦C, which,
in accordance with observations on the microstructure, is justified by the reduction of
the overall porosity without a significant growth of the average grain size. The further
increase to 1500 ◦C causes an opposite effect. In this case, the reduction of the TRS is
associated with the growth of the WC grains and the formation of large cobalt pools among
them, which has already been described (Figures 3 and 4). Moreover, the increase in the
binder saturation level during the printing of the samples from 60% to 75% leads to an
increase in the TRS in the whole range of the sinter-HIP temperatures investigated, due to
the concomitant achievement of matching final densities and the reduced average grain
size. The highest increase in the TRS is noticed at the lowest temperature (1400 ◦C). In
addition, the green parts of the samples with a higher BS better retained geometric shapes
during handling. With an increase in the sinter-HIP temperature, the influence of the
increased binder saturation level on the TRS becomes less relevant. Hardness shows a
similar behavior in correspondence with sinter-HIP temperature: it increases from 1400 ◦C
to 1460 ◦C, and then decreases at 1500 ◦C.
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When considering the fracture behaviour of the samples at 1400 ◦C, it was observed
that porosity is the dominant cause of the sample failure, whereas at 1460 ◦C and 1500 ◦C,
the main cause shifts toward coarse WC grains, where cracks initiate and lead to sample
failure. The sample failure is similar for both binder saturation levels, and it does not
change with an increase in the binder saturation level to 75% (as shown in Figure 7).

In comparison to the transverse rupture strength of the samples produced using
traditional technologies, the result of the samples sinter-HIPed at 1460 ◦C lies within
or above the typical values of WC–12Co, especially for the samples printed with a 75%
binder saturation level. The latter shows less scattered results, which can indicate that
this printing setup provided more predictable and repeatable properties. Satisfactory
results were also obtained for samples sinter-HIPed at 1400 ◦C; however, the scattering
is significant: this is due to the higher porosity, which may anticipate the failure of the
component. Samples with an excessive grain growth (sinter-HIPed at 1500 ◦C) are generally
weaker than other samples.

Regarding the microhardness, the trend is similar. For samples sinter-HIPed at
1460 ◦C, the Vickers hardness (Figure 6B) lies within the typical values for tradition-
ally manufactured cemented carbides at both 60% and 75% binder saturation levels. At
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1400 ◦C and 1500 ◦C, the performance is slightly inferior, and eventually it does not satisfy
industrial requirements.
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3.4. Defects

Some specific defects could be observed during the binder-jetting process which are
worthy of being discussed. Firstly, some discarded samples featured localized porosity due
to discontinuities in the printing process, namely printing interruption due to the need to
refill the powder hopper. This leads to a discontinuity in the delivery process of the organic
binder and in its infiltration mechanisms, thus leading to heterogeneous porosity within
the components (Figure 8A).
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Another cause of the defects is related to the non-uniform distribution of feedstock
on the powder bed, possibly due to insufficient filling close to the job plate boundaries or
to friction among the powder bed volume and the external fixed walls during the vertical
downshifting of the printing platform. In this case, some of the corner regions of the
parts might have incomplete powder particle packing (especially close to the border of the
building platform) (Figure 8B). This could cause the appearance of porosity of a relevant
size, which cannot be eliminated or sufficiently reduced with an increase in the sintering
temperature (Figure 8C).

The abovementioned binder-jetting-related defects should be taken into considera-
tion during the technological manufacturing process, to avoid possible risks of failure
and ensure good repeatability of the results with predictable and stable microstructures
and properties comparable to industrial-scale traditional technologies. In this study, the
investigation was performed on samples taken from the central zone of the powder bed to
ensure the stability and repeatability of the results.

4. Conclusions

In the current study, the influence of sinter-HIP temperature and binder saturation
level on the microstructure and the mechanical properties of binder-jetted additively
manufactured WC–12Co was investigated.

The microstructure of the samples after sinter-HIP processing at 1400 ◦C consists of
two zones: mainly a fine-grained microstructure and localized regions of coarse grains
of WC surrounded by cobalt pools. With the increase in the temperature of sinter-HIP
processing from 1400 ◦C to 1460 ◦C, the residual pores were mostly filled, with a slight
increase in coarse-grained areas. A further raise in temperature to 1500 ◦C leads to a
significant coalescence of the WC phase, leading to abnormal grain growth. The increase
in binder-jetting saturation level from 60% to 75% leads to a slight decrease in the density
for the samples. The increase in binder saturation during printing leads to the better
repeatability of the printing procedure and to the safer handling of the components due to
the higher sturdiness of the green parts.

The transverse rupture strength and hardness increase with the sinter-HIP temperature
from 1400 ◦C to 1460 ◦C, and then decrease for the samples treated at 1500 ◦C. This trend
could be explained by the complete filling of the pores in the first segment and by the
prevailing significant growth of WC grains in the second one.

During the usage of binder jetting, some specific potential defects should be taken into
consideration, such as the risk of the formation of increased porosity in between the layers
due to process interruptions and insufficient powder filling at the sides of the job plate,
leading to relevant localized porosity that cannot be reduced or eliminated, regardless of
the sinter-HIP temperature.
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