Numerical Simulation of Electromagnetic Field in Slab Electroslag Remelting Process with Double Electrode Series
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equations
2.2. Assumptions and Simplified Mathematic Model
- (1)
- The electroslag remelting process is regarded as a quasi-steady state process, and the influence of droplet movement on the electromagnetic field is ignored;
- (2)
- Compared with the magnetic field generated by the melting current, the induced magnetic field generated in the ingot melting pool is negligible;
- (3)
- The surface of a slag pool and molten steel pool is assumed to be flat, and the influence of the molten pool flow on the magnetic field is ignored;
- (4)
- It is assumed that the slag film between the mold and the ingot has a good insulation effect; since the relative permeability of the mold and the cooling water is close to 1, the model is treated according to the air domain;
- (5)
- The slag pool, ingot and electrode are regarded as isotropic materials, and their physical property parameters such as conductivity and permeability are set as constant.
2.3. Boundary Conditions and Calculating Parameters
- (1)
- The magnetic field lines are parallel to the outer surface of the air region;
- (2)
- There are two electrodes, one positive and the other negative, and the melting current is loaded at the top of the electrode.
3. Model Validation
4. Results and Discussion
4.1. Current Distribution in the Model
4.2. Joule Heat Distribution in the Model
4.3. The Influence of Process Parameters on the Current Distribution of the Model
4.3.1. The Influence of Current Frequency Variation on the Current Distribution
4.3.2. The Influence of Slag Pool Height Variation on the Current Distribution
4.3.3. Effect of the Electrode Insertion Depth in the Slag on the Current Distribution
4.3.4. Effect of the Ingot Height on the Current Distribution
5. Conclusions
- (1)
- The accuracy of the calculation model is verified by comparing the calculated magnetic field strength data with the data measured by the Gauss meter.
- (2)
- The Joule heat generated in the slag pool is much greater than that of the electrode and ingot; the maximum Joule heat is located at the contact between the electrode corner and the slag pool. The Joule heat density can reach 6.98 × 107 W/m3, and the Joule heat near the middle of the two electrodes is greater than the rest.
- (3)
- With the increase in the current frequency, the current density distribution in the slag pool is basically unchanged. The outer current density inside the two electrodes decreases slightly with the increase in the current frequency. The inner current density of the two electrodes increases significantly with the current frequency. When the current frequency increases from 10 Hz to 50 Hz, the maximum current density at the inner surface of the electrode increases from 166.9 kA/m2 to 191.4 kA/m2. The current distribution in the corresponding area of the lower side of the electrode in the slag pool is relatively uniform.
- (4)
- The current density in the center and both sides of the slag pool does not change with the height of the slag pool and the depth of the electrode inserted into the slag pool. The current density of the corresponding area on the lower side of the electrode in the slag pool decreases with the increase in the height of the slag pool and the depth of the electrode inserted into the slag pool. The current density distribution in the slag pool does not change with the change in the ingot height.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z. Reviewing the past and looking forward to the future for electroslag metallurgy. Spec. Steel 1999, 20, 1–6. [Google Scholar]
- Li, Z. Development process, current situation and trends of electroslag metallurgy. J. Mater. Metall. 2011, 10, 1–7. [Google Scholar]
- Kharicha, A.; Karimi-Sibaki, E.; Wu, M.; Ludwig, A.; Bohacek, J. Review on modeling and simulation of electroslag remelting. Steel Res. Int. 2018, 89, 1700100. [Google Scholar] [CrossRef]
- Campbell, J. A Future for Vacuum Arc Remelting and Electroslag Remelting—A Critical Perspective. Metals 2023, 13, 1634. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, G. Features and application of electroslag metallurgy process. Metall. Equip. 2010, S1, 54–56. [Google Scholar]
- Li, C.; Xu, Y.; Han, D.; Fan, G.; Yang, C. Study on properties of 18MND5 steel forgings for PWR steam generator. J. Phys. Conf. Ser. 2021, 2085, 012034. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; You, L.; Zeng, X.; Hu, Y. Safety evolution and investigation of dynamic strain aging effect on tensile property of 18MND5 low alloy steel used in nuclear island equipment. At. Energy Sci. Technol. 2018, 52, 1831. [Google Scholar]
- Liu, X.; Wang, J.; Jia, W.; Gao, J.; Zhao, L.; Tang, Z. Modeling electroslag remelting process of large ingot for nuclear power station and its application. Foundry 2010, 59, 1315–1319. [Google Scholar]
- Dong, Y.; Jiang, Z.; Liu, H.; Chen, R.; Song, Z. Simulation of multi-electrode ESR process for manufacturing large ingot. ISIJ Int. 2012, 52, 2226–2234. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Tsukihashi, F. Modeling of electromagnetic field and liquid metal pool shape in an electroslag remelting process with two series-connected electrodes. Metall. Mater. Trans. B 2014, 45, 1122–1132. [Google Scholar] [CrossRef]
- Tong, W.; Li, W.; Zang, X.; Li, H.; Jiang, Z.; Li, D. A Comprehensive Mathematical Model of Electroslag Remelting with Two Series-Connected Electrodes Based on Sequential Coupling Simulation Method. Metals 2020, 10, 658. [Google Scholar] [CrossRef]
- Hernandez-Morales, B.; Mitchell, A. Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process. Ironmak. Steelmak. 1999, 26, 423–438. [Google Scholar] [CrossRef]
- Weber, V.; Jardy, A.; Dussoubs, B.; Ablitzer, D. A comprehensive model of the electroslag remelting process: Description and validation. Metall. Mater. Trans. B 2009, 40, 271–280. [Google Scholar] [CrossRef]
- Wei, J.; Ren, Y. Mathematical simulation of magnetic field in ESR system. Acta Metall. Sin. 1995, 31, 51–60. [Google Scholar]
- Dong, Y.; Jiang, Z.; Li, Z. Mathematical model for electroslag remelting process. J. Iron Steel Res. Int. 2007, 14, 7–12. [Google Scholar] [CrossRef]
- Jardy, A.; Ablitzer, D.; Wadier, J.F. Magnetohydronamic and thermal behavior of electroslag remelting slags. Metall. Trans. B 1991, 22, 111–120. [Google Scholar] [CrossRef]
- Xia, Z.; Sun, Z.; Zhang, M.; Lin, W.; Zheng, T.; Shen, Z.; Ding, B.; Liu, C.; Lu, H.; Lei, Z.; et al. Numerical Investigation about the Effect of Axial Static Magnetic Field on Improvement of Metal Pool Profile During Electroslag Remelting Process. Metall. Mater. Trans. B 2023, 54, 3101–3114. [Google Scholar] [CrossRef]
- Duan, Y.; Li, B.; Liu, Z.; Huang, X.; Li, D.; Wang, F. Numerical study on the effect of low-frequency power supply on desulfurization in the electroslag remelting process. Steel Res. Int. 2023, 94, 2300081. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Li, G.; Wang, Q.; Wang, L.; Li, B. Effect of Current on Structure and Macrosegregation in Dual Alloy Ingot Processed by Electroslag Remelting. Metals 2017, 7, 185. [Google Scholar] [CrossRef]
- Hugo, M.; Dussoubs, B.; Jardy, A.; Jessica, E.; Poisson, H. Influence of the mold current on the electroslag remelting process. Metall. Mater. Trans. B 2016, 47, 2607–2622. [Google Scholar] [CrossRef]
- Igizianova, N.A.; Sokolova, E.V. Modeling electromagnetic processes in direct current electroslag remelting. Int. J. Adv. Manuf. Technol. 2021, 113, 3189–3193. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Baleta, J.; Li, B. Sequentially Coupled Simulation of Multiphysical Fields During Twin-Electrode Electroslag Remelting Process. Metall. Mater. Trans. B 2020, 51, 2285–2297. [Google Scholar] [CrossRef]
- Huang, X.; Duan, Y.; Liu, Z.; Li, B.; Wang, F. Role of Electrode Rotation on Improvement of Metal Pool Profile in Electroslag Remelting Process. Metals 2021, 11, 1675. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Jiang, Z.; Li, H.; Geng, X.; Chen, X. Electromagnetic behavior for laboratory scale and industrial scale electroslag remelting process. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 3580–3585. [Google Scholar]
- Wang, F.; Li, B. Analysis of electromagnetic field and joule heating of electroslag remelting processes. Acta Metall. Sin. 2010, 46, 794–799. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Liu, S.; Liu, Z.; Xia, T.; Wang, F.; Li, B. Numerical simulation of electromagnetic, flow and temperature fields in electroslag remelting process. Chin. J. Process Eng. 2014, 14, 16–22. [Google Scholar]
- Jing, X.; Jiang, Z.; Liu, F.; Chen, X.; Duan, J. Numerical simulation of electric and temperature fields for ESR hollow ingot with current conductive mold. J. Mater. Metall. 2013, 12, 203–208. [Google Scholar]
- Li, B.; Wang, F.; Tsukihashi, F. Current, magnetic field and joule heating in electroslag remelting processes. ISIJ Int. 2012, 52, 1289–1295. [Google Scholar] [CrossRef]
- Wang, C.; Ge, F.; Zhang, Y.; Wang, D.; Luo, W.; Wan, H. Influence of process parameters on solidification process in electroslag remelting. Foundry Technol. 2013, 34, 1321–1323. [Google Scholar]
- Patel, A.D. Electrode immersion depth effects in the ESR process. In Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, Nancy, France, 25–28 September 2011. [Google Scholar]
- Wang, X.; Li, Y. Numerical simulation of electromagnetic field and temperature field of ESR. J. Northeast. Univ. (Nat. Sci.) 2014, 35, 813–818. [Google Scholar]
- Sibaki, E.K.; Kharicha, A.; Wu, M.; Ludwig, A.; Holzgruber, H.; Ramprecht, M. A numerical study on the influence of the frequency of the applied AC current on the electroslag remelting process. In Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, Austin, TX, USA, 22–25 September 2013; Springer International Publishing: Cham, Switzerland, 2016; pp. 13–19. [Google Scholar]
Parameter | Value |
---|---|
Ingot size/mm | 2080 × 730 × 1000 |
Slag pool size/mm | 2080 × 730 × 275 |
Electrode sizer/mm | 800 × 500 × 500 |
Distance between two electrodes/mm | 200 |
Electrode insertion depth of the slag pool/mm | 15 |
Melting current Im/kA | 20 |
Current frequency/Hz | 50 |
Material | Value | |
---|---|---|
Bulk Conductivity | Relative Permeability | |
Ingot, electrode | 7.14 × 105 | 1 |
Slag pool | 175 | 1 |
Air domain | 0 | 1 |
Item | Position | ||
---|---|---|---|
X = −1000 mm | X = 0 mm | X = 1000 mm | |
Calculated/mT | 4.77 | 20.72 | 4.78 |
Measured/mT | 4.56 | 20.35 | 4.65 |
Error/% | 4.61 | 1.82 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Jing, Z.; Sun, Y. Numerical Simulation of Electromagnetic Field in Slab Electroslag Remelting Process with Double Electrode Series. Metals 2024, 14, 37. https://doi.org/10.3390/met14010037
Li Q, Jing Z, Sun Y. Numerical Simulation of Electromagnetic Field in Slab Electroslag Remelting Process with Double Electrode Series. Metals. 2024; 14(1):37. https://doi.org/10.3390/met14010037
Chicago/Turabian StyleLi, Qi, Zhenquan Jing, and Yanhui Sun. 2024. "Numerical Simulation of Electromagnetic Field in Slab Electroslag Remelting Process with Double Electrode Series" Metals 14, no. 1: 37. https://doi.org/10.3390/met14010037
APA StyleLi, Q., Jing, Z., & Sun, Y. (2024). Numerical Simulation of Electromagnetic Field in Slab Electroslag Remelting Process with Double Electrode Series. Metals, 14(1), 37. https://doi.org/10.3390/met14010037