Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Cu/GNP Composite
2.2. Microstructural Characterization
2.3. Mechanical Properties
2.4. Electrical Conductivity
3. Results
3.1. Constituents of the Composite
3.1.1. GNP—Graphene Powder
3.1.2. Copper Sheets
3.2. Micrographs of the Composite Cu/GNP
3.3. Mechanical Properties
3.4. Fractography
3.5. Electrical Conductivity
4. Discussion
5. Conclusions
- The ARBed composite strips exhibit a low occurrence of voids and graphene clumps due to the dispersion technique involving spraying and annealing before rolling.
- The final strips have the presence of a carbon compound, likely graphene.
- Some strips have no copper oxide, even after multiple annealing treatments without a controlled atmosphere (confirmed via the Energy-dispersive X-ray spectroscopy analysis).
- There was no influence of graphene content on electrical conductivity for the relatively small number of ARB cycles applied. In our study, the electrical conductivity of the composite material ranged from 80% to 93% IACS.
- This process can improve the yield strength (963%) and the ultimate tensile strength (69.2%) via work hardening (compare, for example, the A00-220 sample to annealed bulk pure copper). Strengthening mechanisms such as thermal mismatch, grain refinement, load transfer, and Orowan looping system can improve the copper/graphene composite’s strength but necessitate a minimum number of cycles to fully engage.
- The ARBed composite exhibits a low total elongation (2%) compared to bulk pure copper (73%) despite several intermediate annealing treatments, which are supposed to increase the ductility of the material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hidalgo-Manrique, P.; Lei, X.; Xu, R.; Zhou, M.; Kinloch, I.A.; Young, R.J. Copper/graphene composites: A review. J. Mater. Sci. 2019, 54, 12236–12289. [Google Scholar] [CrossRef]
- Khan, H.A.; Asim, K.; Akram, F.; Hameed, A.; Khan, A.; Mansoor, B. Roll bonding processes: State-of-the-art and future perspectives. Metals 2021, 11, 1344. [Google Scholar] [CrossRef]
- Ghalehbandi, S.M.; Malaki, M.; Gupta, M. Accumulative Roll Bonding—A Review. Appl. Sci. 2019, 9, 3627. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M.R. Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng. A 2010, 527, 2320–2326. [Google Scholar] [CrossRef]
- Mahabunphachai, S.; Koç, M.; Ni, J. Pressure welding of thin sheet metals: Experimental investigations and analytical modeling. J. Manuf. Sci. Eng. 2009, 131, 0410031–0410039. [Google Scholar] [CrossRef]
- Ding, C.; Xu, J.; Li, X.; Shan, D.; Guo, B.; Langdon, T.G. Microstructural Evolution and Mechanical Behavior of Cu/Nb Multilayer Composites Processed by Accumulative Roll Bonding. Adv. Eng. Mater. 2020, 22, 1900702. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, S.; Han, S.; Lim, C.; Goto, M. Tensile behavior of commercially pure copper sheet fabricated by 2- and 3-layered accumulative roll bonding (ARB) process. Met. Mater. Int. 2008, 14, 171–175. [Google Scholar] [CrossRef]
- Yao, G.C.; Mei, Q.S.; Li, J.Y.; Li, C.L.; Ma, Y.; Chen, F.; Liu, M. Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Mater. Des. 2016, 110, 124–129. [Google Scholar] [CrossRef]
- Liu, X.; Wei, D.; Zhuang, L.; Cai, C.; Zhao, Y. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding. Mater. Sci. Eng. A 2015, 642, 1–6. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Mandal, A.; Rudra, A.; Mukherjee, D.; Sathish, N. Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding. J. Alloys Compd. 2019, 801, 49–59. [Google Scholar] [CrossRef]
- Kwan, C.; Wang, Z.; Kang, S.B. Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100. Mater. Sci. Eng. A 2008, 480, 148–159. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, L.; Zhao, Y. Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing. Materials 2020, 13, 5171. [Google Scholar] [CrossRef] [PubMed]
- Eivani, A.R.; Shojaei, A.; Park, N.; Jafarian, H.R. Fabrication of Cu-CuG nanocomposites with enhanced mechanical strength and reduced electrical resistivity. J. Mater. Res. Technol. 2021, 11, 650–666. [Google Scholar] [CrossRef]
- Eivani, A.R.; Shojaei, A.; Salehi, M.T.; Jafarian, H.R.; Park, N. On the evolution of microstructure and fracture behavior of multilayered copper sheet fabricated by accumulative roll bonding. J. Mater. Res. Technol. 2021, 10, 291–305. [Google Scholar] [CrossRef]
- You, C.; Xie, W.; Miao, S.; Liang, T.; Zeng, L.; Zhang, X.; Wang, H. High strength, high electrical conductivity and thermally stable bulk Cu/Ag nanolayered composites prepared by cross accumulative roll bonding. Mater. Des. 2021, 200, 109455. [Google Scholar] [CrossRef]
- Alizadeh, M.; Dashtestaninejad, M.K. Development of Cu-matrix, Al/Mn-reinforced, multilayered composites by accumulative roll bonding (ARB). J. Alloys Compd. 2018, 732, 674–682. [Google Scholar] [CrossRef]
- Mehr, V.Y.; Toroghinejad, M.R.; Rezaeian, A. Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing. Mater. Sci. Eng. A 2014, 601, 40–47. [Google Scholar] [CrossRef]
- Shabani, A.; Toroghinejad, M.R.; Shafyei, A. Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties. Mater. Sci. Eng. A 2012, 558, 386–393. [Google Scholar] [CrossRef]
- Guo, T.; He, J.; Pang, X.; Volinsky, A.A.; Su, Y.; Qiao, L. High temperature brittle film adhesion measured from annealing-induced circular blisters. Acta Mater. 2017, 138, 1–9. [Google Scholar] [CrossRef]
- Lee, J.A.; Woods, S. Hydrogen Embrittlement NASA/TM-2016-218602 (JSC-CN-36009); National Aeronautics and Space Administration: Huntsville, AL, USA, 2016.
- Goldstein, J.I.; Newbury, D.; Echlin, P.; Joy, D.C.; Lyman, C.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.; Springer: New York, NY, USA, 2003; ISBN 978-1-4613-4969-3. [Google Scholar]
- Ferreira, F.; Ferreira, I.; Camacho, E.; Lopes, F.; Marques, A.C.; Velhinho, A. Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding. Compos. Part B Eng. 2019, 164, 265–271. [Google Scholar] [CrossRef]
- Mansourzadeh, S.; Hosseini, M.; Salahinejad, E.; Yaghtin, A.H. Cu-(B4C)p metal matrix composites processed by accumulative roll-bonding. Prog. Nat. Sci. Mater. Int. 2016, 26, 613–620. [Google Scholar] [CrossRef]
- Luo, J.; Khattinejad, R.; Assari, A.; Tayyebi, M.; Hamawandi, B. Microstructure, Mechanical and Thermal Properties of Al/Cu/SiC Laminated Composites, Fabricated by the ARB and CARB Processes. Crystals 2023, 13, 354. [Google Scholar] [CrossRef]
- Chen, F.; Mei, Q.S.; Li, J.Y.; Li, C.L.; Wan, L.; Zhang, G.D.; Mei, X.M.; Chen, Z.H.; Xu, T.; Wang, Y.C. Fabrication of graphene/copper nanocomposites via in-situ delamination of graphite in copper by accumulative roll-compositing. Compos. Part B Eng. 2021, 216, 108850. [Google Scholar] [CrossRef]
- Reihanian, M.; Bagherpour, E.; Paydar, M.H. Particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mater. Sci. Technol. 2012, 28, 103–108. [Google Scholar] [CrossRef]
- Liu, W.; Ke, Y.; Sugio, K.; Qiu, Z.; Li, W.; Guo, Y.; Liu, X.; Sasaki, G. Effects of repeated accumulative roll bonding cycles on microstructural characteristics and tensile behaviors of Al2O3 particle reinforced aluminum-matrix composites. Mater. Lett. 2022, 320, 132386. [Google Scholar] [CrossRef]
- Eftekhari, A.; Jafarkhani, P. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage. J. Phys. Chem. C 2013, 117, 25845–25851. [Google Scholar] [CrossRef]
- Malygin, G.A. Dislocation Density Evolution Equation and Strain Hardening of f.c.c. Crystals. Phys. Status Solidi 1990, 119, 423–436. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Zehetbauer, M.; Seumer, V. Cold Work Hardening in Stages IV and V of F.C.C. Metals-I. Experiments and Interpretation. Acta Metall. Mater. 1993, 41, 577–588. [Google Scholar] [CrossRef]
- Wang, C.; Gan, X.; Tao, J.; Xie, M.; Yi, J.; Liu, Y. Simultaneous achievement of high strength and high ductility in copper matrix composites with carbon nanotubes/Cu composite foams as reinforcing skeletons. Nanotechnology 2020, 31, 045701. [Google Scholar] [CrossRef]
- Sandström, R.; Hallgren, J.; Burman, G. Stress Strain Flow Curves for Cu-OFP; Swedish Nuclear Fuel and Waste Management Co., Ltd.: Stockholm, Sweden, 2009; Volume 18. [Google Scholar]
- Li, Y.Z.; Huang, M.X. A dislocation-based flow rule with succinct power-law form suitable for crystal plasticity finite element simulations. Int. J. Plast. 2021, 138, 102921. [Google Scholar] [CrossRef]
- Miyajima, Y.; Okubo, S.; Abe, H.; Okumura, H.; Fujii, T.; Onaka, S.; Kato, M. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing. Mater. Charact. 2015, 104, 101–106. [Google Scholar] [CrossRef]
- Dong, L.L.; Fu, Y.Q.; Liu, Y.; Lu, J.W.; Zhang, W.; Huo, W.T.; Jin, L.H.; Zhang, Y.S. Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties. Carbon 2021, 173, 41–53. [Google Scholar] [CrossRef]
- An, Z.; Li, J.; Kikuchi, A.; Wang, Z.; Jiang, Y.; Ono, T. Mechanically strengthened graphene-Cu composite with reduced thermal expansion towards interconnect applications. Microsyst. Nanoeng. 2019, 5, 20. [Google Scholar] [CrossRef]
- Mazloum, A.; Kováčik, J.; Zagrai, A.; Sevostianov, I. Copper-graphite composite: Shear modulus, electrical resistivity, and cross-property connections. Int. J. Eng. Sci. 2020, 149, 103232. [Google Scholar] [CrossRef]
- Long, X.; Bai, Y.; Algarni, M.; Choi, Y.; Chen, Q. Study on the strengthening mechanisms of Cu/CNT nano-composites. Mater. Sci. Eng. A 2015, 645, 347–356. [Google Scholar] [CrossRef]
- Kuhlmann-Wilsdorf, D.; Hansen, N. Theory of work-hardening applied to stages III and IV. Metall. Trans. A 1989, 20, 2393–2397. [Google Scholar] [CrossRef]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Imantalab, O.; Mazaheri, Y.; Keshavarz, M.K. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process. Mater. Sci. Eng. A 2016, 650, 8–14. [Google Scholar] [CrossRef]
- Li, X.; Yan, S.; Chen, X.; Hong, Q.; Wang, N. Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering. J. Alloys Compd. 2020, 834, 155182. [Google Scholar] [CrossRef]
- Zhang, D.; Zhan, Z. Strengthening effect of graphene derivatives in copper matrix composites. J. Alloys Compd. 2016, 654, 226–233. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, T.J.; Han, S.H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 2014, 69, 55–65. [Google Scholar] [CrossRef]
- Fadavi Boostani, A.; Yazdani, S.; Taherzadeh Mousavian, R.; Tahamtan, S.; Azari Khosroshahi, R.; Wei, D.; Brabazon, D.; Xu, J.Z.; Zhang, X.M.; Jiang, Z.Y. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater. Des. 2015, 88, 983–989. [Google Scholar] [CrossRef]
- Nardone, V.C.; Prewo, K.M. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 1986, 20, 43–48. [Google Scholar] [CrossRef]
- Shaarbaf, M.; Toroghinejad, M.R. Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A 2008, 473, 28–33. [Google Scholar] [CrossRef]
- Dehghan, M.; Qods, F.; Gerdooei, M.; Mohammadian-Semnani, H. Effect of inter-cycle heat treatment in accumulative roll-bonding (ARB) process on planar isotropy of mechanical properties of AA1050 sheets. Trans. Nonferrous Met. Soc. China 2020, 30, 2381–2393. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gu, Y.T. Mechanical Properties of Graphene: Effects of Layer Number, Temperature and Isotope. Comput. Mater. Sci. 2013, 71, 197–200. [Google Scholar] [CrossRef]
- ASM International Handbook Committee. Heat Treating of Copper Alloys. In ASM Handbook, Heat Treating, 10th ed.; ASM International: Detroit, MI, USA, 1991; Volume 4, pp. 1970–1973. [Google Scholar]
Strip ID | %vol. of GNP | Processing Route | Stress Relief Heat Treatment T (°C) |
---|---|---|---|
A00-180 | 0 | The material goes through four ARB cycles with annealing 1 before each cold rolling, Rt = (63%, 67%, 50%, 50%). After this, the material undergoes extra annealing 1 and cold rolling (Rt = 40%). Finally, the material is subjected to a stress relief heat treatment for one hour (see temperature in the next column). | 180 |
A00-220 | 0 | 220 | |
A15-180 | 0.15 | 180 | |
A15-220 | 0.15 | 220 | |
A22-180 | 0.22 | 180 | |
A22-220 | 0.22 | 220 | |
A46-180 | 0.46 | 180 | |
A46-220 | 0.46 | 220 |
Strip ID | %vol. of GNP | Final Stress Relief Temp. (°C) | Yield Strength (MPa) | Ultimate Strength (MPa) | Elongation (%) |
---|---|---|---|---|---|
A00-180 | 0 | 180 | 347 ± 21 | 359 ± 12 | 3.8 ± 0.3 |
A00-220 | 0 | 220 | 372 ± 28 | 384 ± 24 | 3.7 ± 0.4 |
A15-180 | 0.15 | 180 | 388 ± 3 | 414 ± 6 | 2.0 ± 0.5 |
A15-220 | 0.15 | 220 | 341 ± 13 | 361 ± 4 | 2.3 ± 0.3 |
A22-180 | 0.22 | 180 | 310 ± 29 (1) | 312 ± 33 | 1.3 ± 0.1 |
A22-220 | 0.22 | 220 | 345 ± 9 | 356 ± 7 | 2.1 ± 0.3 |
A46-180 | 0.46 | 180 | 341 ± 42 (2) | 350 ± 49 | 1.4 ± 0.3 |
A46-220 | 0.46 | 220 | - (3) | 227 ± 21 | 0.9 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cruz, R.A.; de Andrade Mendes Filho, A.; Santos, S.L.d.; Santos, V.T.d.; da Silva, M.R.; Lobo, F.G.; Santos, G.A.d.; Couto, A.A. Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere. Metals 2024, 14, 4. https://doi.org/10.3390/met14010004
da Cruz RA, de Andrade Mendes Filho A, Santos SLd, Santos VTd, da Silva MR, Lobo FG, Santos GAd, Couto AA. Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere. Metals. 2024; 14(1):4. https://doi.org/10.3390/met14010004
Chicago/Turabian Styleda Cruz, Ricardo Aparecido, Anibal de Andrade Mendes Filho, Silvano Leal dos Santos, Vinícius Torres dos Santos, Márcio Rodrigues da Silva, Flávia Gonçalves Lobo, Givanildo Alves dos Santos, and Antonio Augusto Couto. 2024. "Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere" Metals 14, no. 1: 4. https://doi.org/10.3390/met14010004
APA Styleda Cruz, R. A., de Andrade Mendes Filho, A., Santos, S. L. d., Santos, V. T. d., da Silva, M. R., Lobo, F. G., Santos, G. A. d., & Couto, A. A. (2024). Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere. Metals, 14(1), 4. https://doi.org/10.3390/met14010004