Development of Mischmetal-(FeCo)-B Ribbons with Improved Magnetic Properties by Addition of Si
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, P.; Gutfleisch, O. Advanced magnetic materials could drive next-generation energy technologies. MRS Bull. 2018, 43, 918–919. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.-S.; Nam, W.H.; Kim, D.; Shin, W.H.; Roh, J.W.; Lee, W. Enhancement of thermal stability of Nd–Fe–B sintered magnets with tuned Tb-diffused microstructures via temperature control. J. Alloys Compd. 2021, 855, 157478. [Google Scholar] [CrossRef]
- Grujić, A.; Nedeljković, D.; Stajić-Trošić, J.; Stijepović, M.Z.; Alnouri, S.; Perišić, S. Magneto-Mechanical and Thermal Properties of Nd-Fe-B-Epoxy-Bonded Composite Materials. Polymers 2023, 15, 1894. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H. The current and future status of rare earth permanent magnets. Scr. Mater. 2018, 154, 273–276. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Hirosawa, S.; Nishino, M.; Miyashita, S. Perspectives for high-performance permanent magnets: Applications, coercivity, and new materials. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 013002. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119. [Google Scholar] [CrossRef]
- Sims, Z.C.; Kesler, M.S.; Henderson, H.B.; Castillo, E.; Fishman, T.; Weiss, D.; Singleton, P.; Eggert, R.; McCall, S.K.; Rios, O. How Cerium and Lanthanum as Coproducts Promote Stable Rare Earth Production and New Alloys. J. Sustain. Metall. 2022, 8, 1225–1234. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, J.; Ma, T.; Peng, B.; Wang, X.; Yan, M. Promoting the La solution in 2:14:1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity. J. Mater. Sci. Technol. 2021, 62, 195–202. [Google Scholar] [CrossRef]
- Herbst, J.F.; Meyer, M.S.; Pinkerton, F.E. Magnetic hardening of Ce2Fe14B. J. Appl. Phys. 2012, 111, 07A718. [Google Scholar] [CrossRef]
- Li, Z.-B.; Zhang, M.; Shen, B.-G.; Hu, F.-X.; Sun, J.-R. Variations of phase constitution and magnetic properties with Ce content in Ce-Fe-B permanent magnets. Mater. Lett. 2016, 172, 102–104. [Google Scholar] [CrossRef]
- Grigoras, M.; Lostun, M.; Stoian, G.; Herea, D.; Chiriac, H.; Lupu, N. Microstructure and magnetic properties of Ce10+xFe84−xB6 nanocrystalline ribbons versus preparation conditions. J. Magn. Magn. Mater. 2017, 432, 119–123. [Google Scholar] [CrossRef]
- Sinnema, S.; Radwanski, R.; Franse, J.; de Mooij, D.; Buschow, K. Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. J. Magn. Magn. Mater. 1984, 44, 333–341. [Google Scholar] [CrossRef]
- Burzo, E. Permanent magnets based on R-Fe-B and R-Fe-C alloys. Rep. Prog. Phys. 1998, 61, 1099. [Google Scholar] [CrossRef]
- Herbst, J.F. R2Fe14B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys. 1991, 63, 819–898. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q. A review of environmental aspect of rare earth element extraction processes and solution purification techniques. Miner. Eng. 2022, 170, 107430. [Google Scholar] [CrossRef]
- Zapp, P.; Schreiber, A.; Marx, J.; Kuckshinrichs, W. Environmental impacts of rare earth production. MRS Bull. 2022, 47, 267–275. [Google Scholar] [CrossRef]
- Langkau, S.; Erdmann, M. Environmental impacts of the future supply of rare earths for magnet applications. J. Ind. Ecol. 2021, 25, 819–1101. [Google Scholar] [CrossRef]
- Yin, X.; Martineau, C.; Demers, I.; Basiliko, N.; Fenton, N.J. The potential environmental risks associated with the development of rare earth element production in Canada. Environ. Rev. 2021, 29, 354–377. [Google Scholar] [CrossRef]
- Gong, W.; Hadjipanayis, G.C. Misch-metal-iron based magnets. J. Appl. Phys. 1988, 63, 3513. [Google Scholar] [CrossRef]
- Ahmad, Z.; Waqas, M.; Ali, Z.A. Fabrication and analysis of mischmetal MM-Fe-B magnetic alloys. J. Magn. Magn. Mater. 2022, 553, 169257. [Google Scholar] [CrossRef]
- Zuo, W.-L.; Zuo, S.-L.; Li, R.; Zhao, T.-Y.; Hu, F.-X.; Sun, J.-R.; Zhang, X.-F.; Liu, J.P.; Shen, B.-G. High performance misch-metal (MM)-Fe-B magnets prepared by melt spinning. J. Alloys Compd. 2017, 695, 1786–1792. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Li, Z.; Peng, L.; Shen, B.; Hu, F.; Sun, J. Magnetization process of nanocrystalline mischmetal-Fe-B ribbons. J. Alloys Compd. 2016, 688, 1053–1057. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, Q.; Zhong, M.; Rehman, S.U.; Zhong, Z.; Li, M.; Liu, R. Magnetic properties, thermal stabilities and microstructures of melt-spun Misch-Metal-Fe-B alloys. Phys. B Condens. Matter 2019, 567, 118–121. [Google Scholar] [CrossRef]
- Shang, R.X.; Xiong, J.F.; Li, R.; Zuo, W.L.; Zhang, J.; Zhao, T.Y.; Chen, R.J.; Sun, J.R.; Shen, B.G. Structure and properties of sintered MM–Fe–B magnets. AIP Adv. 2017, 7, 056215. [Google Scholar] [CrossRef]
- Yang, C.; Ray, R.; O’Handley, R. Magnetic hardening in melt-spun Fe-R-B alloys. Mater. Sci. Eng. 1988, 99, 137. [Google Scholar] [CrossRef]
- Chaudhary, R.P.; Gandha, K.H.; Meng, F.; Simsek, E.; Nlebedim, I.C.; Rios, O.; Kramer, M.J.; Ott, R.T. Development of Mischmetal-Fe-Co-B permanent magnet alloys via high-throughput methods. ACS Comb. Sci. 2020, 22, 248–254. [Google Scholar] [CrossRef]
- Ko, K.Y.; Yoon, S.; Ko, S.W. Microstructures of Mischmetal–Fe-B Hot-pressed Magnets with Ti Addition. J. Phys. Conf. Ser. 2011, 266, 012036. [Google Scholar] [CrossRef]
- Wang, H.; Fan, X.; Jin, M.; Ding, G.; Li, Y.; Jia, Z.; Zheng, B.; Guo, S.; Chen, R.; Yan, A. Grain boundary restructuring of the (Misch Metal, Nd)-Fe-B sintered magnet using Pr82Co18 powders. J. Magn. Magn. Mater. 2022, 564, 170210. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Yue, M.; Li, Z.; Wu, D.; Zhou, Z.; Chen, H.; Li, Y.; Pang, Z.; Yu, X. MM-Fe-B based gap magnet with excellent energy density. Intermetallics 2019, 115, 106626. [Google Scholar] [CrossRef]
- Xiao, C.; Zeng, W.; Tang, Y.; Lu, C.; Tang, R.; Zheng, Z.; Liao, X.; Zhou, Q. Effect of Ho Substitution on Magnetic Properties and Microstructure of Nanocrystalline Nd-Pr-Fe-B Alloys. Metals 2022, 12, 1922. [Google Scholar] [CrossRef]
- Chacon, C.; Isnard, O.; Miraglia, S. Structural and magnetic properties of Nd2Fe14−xSixB compounds and related hydrides. J. Alloys Compd. 1999, 283, 320–326. [Google Scholar] [CrossRef]
- Marasinghe, G.K.; Pringle, O.A.; Long, G.J.; James, W.J.; Xie, D.; Li, J.; Yelon, W.B.; Grandjean, F. Neutron-diffraction and Mössbauer effect study of the preferential silicon site occupation and magnetic structure of Nd2Fe14−xSixB. J. Appl. Phys. 1993, 74, 6798–6809. [Google Scholar] [CrossRef]
- Grigoras, M.; Lostun, M.; Stoian, G.; Lupu, N.; Borza, F. High performance MM–FeCo–B spark plasma sintered magnets with nonmagnetic grain-boundary phase. Intermetallics 2021, 135, 107232. [Google Scholar] [CrossRef]
- Yamasaki, J.; Soeda, H.; Yanagida, M.; Mohri, K.; Teshima, N.; Kohmoto, O.; Yoneyama, T.; Yamaguchi, N. Misch metal-Fe-B melt spun magnets with 8 MGOe energy product. IEEE Trans. Magn. 1986, 22, 763–765. [Google Scholar] [CrossRef]
Si (at. %) | v = 15 m/s | v = 35 m/s | ||||||
---|---|---|---|---|---|---|---|---|
Hc (Oe) | Ms (emu/) | Mr/Ms | Grain Size of RE2(FeCo)14B (nm) | Hc (kOe) | Ms (emu/g) | Mr/Ms | ||
x = 0.0 | 6.6 | 118 | 0.56 | 275 | 0.2 | 111 | 0.13 | |
x = 0.5 | 6.9 | 113 | 0.60 | 171 | 0.25 | 108 | 0.10 | |
x = 1.0 | 7.1 | 107 | 0.58 | 132 | 0.24 | 106 | 0.14 | |
x = 1.5 | 7.3 | 100 | 0.61 | 88 | 0.26 | 102 | 0.18 |
Si (at%) | Hc (kOe) | Mr (emu/g) | Squareness | (BH)max (MGOe) |
---|---|---|---|---|
x = 0.0 | 8.17 | 90.72 | 0.76 | 10.42 |
x = 0.5 | 8.51 | 95.43 | 0.80 | 11.86 |
x = 1.0 | 8.98 | 98.25 | 0.88 | 13.84 |
x = 1.5 | 9.13 | 93.63 | 0.87 | 13.21 |
x (at.%) | Grain Size of RE2(FeCo)14B (nm) | a (Å) | c (Å) |
---|---|---|---|
0.0 | 194 | 8.7913 | 12.2154 |
0.5 | 87 | 8.7844 | 12.2056 |
1.0 | 61 | 8.7767 | 12.1951 |
1.5 | 39 | 8.7684 | 12.1847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoras, M.; Lostun, M.; Ababei, G.; Porcescu, M.; Stoian, G.; Lupu, N. Development of Mischmetal-(FeCo)-B Ribbons with Improved Magnetic Properties by Addition of Si. Metals 2024, 14, 8. https://doi.org/10.3390/met14010008
Grigoras M, Lostun M, Ababei G, Porcescu M, Stoian G, Lupu N. Development of Mischmetal-(FeCo)-B Ribbons with Improved Magnetic Properties by Addition of Si. Metals. 2024; 14(1):8. https://doi.org/10.3390/met14010008
Chicago/Turabian StyleGrigoras, Marian, Mihaela Lostun, Gabriel Ababei, Marieta Porcescu, George Stoian, and Nicoleta Lupu. 2024. "Development of Mischmetal-(FeCo)-B Ribbons with Improved Magnetic Properties by Addition of Si" Metals 14, no. 1: 8. https://doi.org/10.3390/met14010008
APA StyleGrigoras, M., Lostun, M., Ababei, G., Porcescu, M., Stoian, G., & Lupu, N. (2024). Development of Mischmetal-(FeCo)-B Ribbons with Improved Magnetic Properties by Addition of Si. Metals, 14(1), 8. https://doi.org/10.3390/met14010008