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Abstract: 42CrMo4-type steel grades are widely used in a great variety of components that require ad
hoc mechanical properties. However, due to the dimensions of large components and the previous
thermomechanical treatments, the presence of heterogeneities in the chemical compositions are
expected to impact those mechanical properties. In the present work, a detailed analysis of phase
transformation behavior upon cooling was carried out through a dilatometry test on samples of
42CrMo4 belonging to a component that has a non-homogeneous chemical distribution. The analysis
of the dilatation signals and the quantitative metallography shows a rather complex behavior depend-
ing on the cooling rate as well as on the region of observation. Two different phase transformation
models based on Li’s approach were applied to the present composition to determine the CCT curve
as well as the fraction of the microconstituents. An extensive discussion was carried out on some
aspects about Kirkaldy-based approaches that need to be improved so as to attain more reliable
quantitative results when modeling phase transformations in heterogenous systems.

Keywords: steels; continuous cooling transformation (CCT); phase transformation; modeling;
microstructure; heterogeneity

1. Introduction

42CrMo4 (AISI 4140) steel grade is applied in a wide variety of applications in sectors
such as automotive [1], oil and gas [2] and wind energy [3] due to its appealing mechanical
properties and a relatively low amount of various alloying elements. In that regard, a large
amount of literature on this steel grade can be found that embraces not only the mechanical
aspects [1,4], but also corrosive behavior [5,6] and microstructure development [7,8].

The use of this steel grade in large parts has become of particular interest in the last
years, as discussed elsewhere [9]. These large parts, after thermomechanical treatments
like forging [7], are heat-treated to achieve the targeted mechanical properties. For instance,
quenching and tempering is usually applied so as to accomplish a tempered martensite
structure [9,10]. However, due to the size of the parts, the microstructural evolution, as
inner regions are analyzed, presents a higher degree of complexity. Moreover, such large
parts, like large flanges or shafts fabricated from ingots, exhibit a complex chemical pattern
leading to heterogeneity, which stems from the solidification, and cannot be homogenized
all through the thermomechanical treatment [11]. Depending on the scale, this kind of
segregation can be categorized as macrosegregation, microsegregation and mesosegrega-
tion, the latter usually being arranged in the form of bands [12,13]. Another source of
heterogeneity may arise from the changing austenite grain size along the material, which is
often connected to the chemical heterogeneity [14].

Looking at numerical modeling of the phase transformation on the continuous cooling
of steels, there are different approaches that can be organized in terms of nature, com-
puting time and predictive capabilities [15]. The physics-based approaches for phase
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transformation modeling, which rely on the physical phenomena—nucleation/growth, for
instance [16–18]—and may account for the real initial microstructure [19], excel in predic-
tions with regard to other models. However, their complexity, expectedly, demands higher
computational cost and they are often of limited applicability, as many of the parameters are
not readily suitable for multicomponent and multiphase alloys [20], unless thermodynamic
and kinetics simulations are used [21]. With the advent of the data-driven models, both
factors can be optimized [22], but a significant amount of data are needed, and these are
not always available. Conversely, phenomenological models, JMAK or Kirkaldy types,
which are linked to some physical and process parameters, are extensively applied due to
the easiness of their implementation, low computational cost and the need for a relatively
reduced number of experiments to fit the models. In this line, Li et al.’s variant of the for-
mer Kirkaldy–Venogupalan formulation [23] can be found open-coded by A.S. Nishikawa
in [24], which gives the possibility to predict the microstructural evolution upon cooling.
Lately, Collins et al. [25] have proposed another variant also based on Li’s approach, but
with a significant number of new features related to the carbon partitioning and bainite
transformation, amongst others. These two works, open-access coded [24,26], facilitate the
possibility to predict rapidly the phase transformation behavior upon continuous cooling
(CCT: continuous cooling transformation) in a simple way. Either case can be adapted to
the problem of chemical heterogeneity observed in large parts. On the other hand, com-
mercial models, such as JMatPro, Thermo-Calc, etc., are also available for predicting the
microstructural evolution upon cooling. However, the degree of goodness in the prediction
of the CCT and the final microconstituents fractions need to be thoroughly assessed and
validated in real industrial steels, in which heterogeneities play a significant role.

Some prior works on the microstructure evolution in 42CrMo4 steel during continuous
cooling can be found in the literature [4,27]. However, to the authors’ knowledge, a specific
study that accounts for the heterogeneity from the quantitative and modeling perspectives
is not reported in the literature. In the present work, the main objective is to perform
a thorough analysis of the microstructural development of a 42CrMo4 steel, machined
from a large industrial part, upon continuous cooling, considering both the experimental
observations and insights from the modeling The large part inherits the microstructure
and chemical heterogeneities from both microstructure and chemical perspectives. The
experimental activities have a double aim. On the one hand, the detailed understand-
ing of the microstructural development and cooling cycle relationship and, on the other
hand, the phase quantification for the assessment and calibration of some available phase
transformation models at Ceit. Moreover, the results of the models are compared with
the experimental data. The need for improvements in terms of proper optimization of the
parameters in the models and the introduction of the heterogeneities in the prediction of
the experimental data are tackled for this steel grade.

2. Experimental Section

The chemical composition of the steel grade used in this work is gathered in Table 1,
which corresponds to a 42CrMo4-type steel.

Table 1. Chemical composition of the steel grade 42CrMo4 (wt.%).

C Mn Si Cr Mo Ni

0.44 0.74 0.22 1.02 0.24 0.14

The material was provided after an industrial process, which consists in a solution heat
treatment above 1200 ◦C for more than typically 4 h of a large ingot, upsetting, piercing,
hot forming and final quenching. Before designing the thermal cycles, the Thermo-Calc
program (Thermo-Calc Software v2023.1.108587-453, AB Råsundavägen, Solna, Sweden)
with the TCFe10 database was run with the composition in Table 1; see Figure 1. The phase
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diagram shows that except for the Nb/Ti carbonitrides, the rest of the carbides, mainly
cementite, are fully dissolved at temperatures above 760 ◦C.
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Figure 1. Equilibrium phase diagram calculated with Thermo-Calc (TCFe10 database) for composition
in Table 1.

The thermal cycles were performed in a Bähr DIL805D deformation dilatometer (TA
Instruments, Hüllhorst, Germany) on solid cylinders of 10 mm length and 4 mm diameter.
The applied thermal cycles consist in a two-stage heating segment: 10 ◦C/s up to 700 ◦C
followed by 0.5 ◦C/s up to three austenization temperatures Taus = 850 ◦C, 1050 ◦C and
1100 ◦C, respectively, followed by a holding stage for 900 s at those temperatures and a
final cooling stage at rates between −0.025 ◦C/s and −50 ◦C/s down to room temperature.
The range of cooling rates was chosen based on thermal profiles determined by FE (Finite
Elements) simulations at different radial positions of a steel cylinder of 1000 mm diameter
quenched in water; see Figure 2.
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Figure 2. Evolution of the instantaneous cooling rate at different radial positions of a 42CrMo4 steel
cylinder of ϕ = 1000 mm quenched in water. FE simulations.

All the metallographic observations were performed on the midsection of the cylindri-
cal dilatometric samples. The samples were mechanically polished down to 1 µm. To ensure
the avoidance of temperature gradients and any decarburization close to the surfaces of the
samples, the microstructural characterization was performed on the central region of the
midsection. The microstructures were characterized with different techniques:

• Optical microscopy (OM, LEICA DMI5000 M, Leica Microsystems, Wetzlar, Germany)
for general observations and metallographic quantifications;

• Field-emission gun scanning electron microscopy (Zeiss Sigma 500, SEM, Carl Zeiss
AG, Oberkochen, Germany) for detailed imaging of some microstructure constituents;

• Microchemical analysis by EDS energy dispersive spectroscopy (X-Max® 50 EDS ana-
lyzer, Oxford Instruments, Abingdon, UK) fully controlled by the latest AZtec software
3.0 SP2 (Oxford Instruments, Abingdon, UK). The AZtec program allows creating
quantitative results through the application of the TruLine algorithm that deconvolutes
the peaks in case of overlapping and removes the background automatically.
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The previous austenite was analyzed in optical images after picric acid etching. The
grain size distribution as well as the mean grain size were determined by tracing the grain
boundary structure and using the software Leica Application Suite LAS V4.5 LEICA (Leica
Microsystems, Wetzlar, Germany) for identifying and measuring the grain size.

The phase fraction quantification was performed on optical micrographs after etch-
ing in 2% Nital and applying the point-counting method. As shown in Figure 3a, the
microstructure can be highly heterogeneous for its quantification when large areas such as
the whole length of the dilatometer sample are analyzed.
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Figure 3. Microstructure after etching with Nital 2%. (a) General optical picture of the whole
dilatometry sample showing the heterogeneity. Optical micrographs corresponding to (b) dark
regions and (c) bright regions. (d) FEG-SEM micrograph showing the detailed substructure of bainite
and martensite. Sample after 850 ◦C–2 ◦C/s. B and M stand for bainite and martensite, respectively.

With the aim of measuring the fraction of the various microconstituents, a strategy
based on two sets of micrographs, one at low magnifications and one at higher magni-
fications, was undertaken. Dark and bright regions are readily distinguishable at low
magnifications, Figure 3a. Accordingly, it is possible to measure the fractions correspond-
ing to each region. High magnification micrographs allow segmenting each region and
identifying each microconstituent, Figure 3b. Again, the point-counting method is applied
on each region to quantify the phase fractions. Finally, the total fraction of each microcon-
stituent is defined as the sum of the ponded fraction of the microconstituent by the area
fraction of each region, Equation (1).

Fi = FBFiB + FDFiD (1)

where Fi is the fraction of the i-microconstituent, FB and FD are the bright and dark region
fractions and FiB and FiD are the fractions of the i-microconstituent considering only the
bright and dark regions. From this point on, F, P, B and M will stand for ferrite, pearlite,
bainite and martensite, respectively.

Hardness measurements (Vickers 1 kg) were performed in a QNESS Q30A+ (micro-
hardness tester, QATM, Golling an der Salzach, Austria) on a set of 18 points that were
spatially arranged in a random manner.

Regarding modeling parts, two approaches based on Li’s approach [24,26] for the
CCT modeling were undertaken by applying open-source software. Further details of the
approaches are given in the discussion section.
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3. Results

The main results of this study are summarized in the next sections looking at five
main points:

• Austenite grain size evolution with austenization temperature;
• Determination of the CCT curves for the three austenization temperatures;
• Hardness evolution with cooling rate;
• Microstructural evolution with the cooling rate;
• Application of the open-source codes and commercial simulators to the nominal

composition, Table 1, for CCT determination.

3.1. Austenite Grain Size

The austenite grain size structures after the three holding temperatures are shown in
Figure 4a–c. The achieved grain sizes were about 6, 20 and 38 µm for holding temperatures
of 850 ◦C, 1050 ◦C and 1100 ◦C, respectively. The range of grain sizes is large enough
for modeling purposes. Moreover, the grain size distribution was determined for each
condition, Figure 4d. It is to be mentioned that, in general, the distributions seem to be
homogeneous except for a few grains for the highest austenitizing temperature of 1100 ◦C,
which appears to be related to the onset of the abnormal grain growth.
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Figure 4. Optical micrographs of the previous austenite grain structure before final cooling. Taus

(a) 850 ◦C; (b) 1050 ◦C and (c) 1100 ◦C. Note that the magnifications are lower for 1100 ◦C. (d) Previous
austenite grain size distribution for the three Taus.

Additionally, the spatial distribution of the austenite grain size was analyzed, trying to
discern whether it is correlated to the chemical pattern detected in micrographs such as the
one in Figure 5a. Samples corresponding to cooling rates of 5 ◦C/s were gently (re)polished
and etched with the picric acid, Figure 5b.

The results in Figure 5 prove that the chemical pattern is not correlated to likely
changes in the austenite grain size. Indeed, the grain size is spatially homogeneous and the
grain size effect on the phase transformation can be dismissed in the present work.
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3.2. CCT Curves

Several dilatation curves with temperature are shown in Figure 6. As can be seen, the
different phase transformation curves for the same cooling rate differ for each austenitizing
temperature. The onset and finish of the different phase transformations was determined
through the analysis of the dilatation curves. In particular, the phase transformation occurs
when the slope of the curves changes significantly.
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The CCT (Continuous Cooling Transformation) curves were determined for three
different mean austenite grain sizes of 6, 20 and 38 µm, Figure 7.
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The effect of the austenitizing temperature on the CCT curve can be described as
follows. The ferritic-pearlitic field is clearly retarded to lower cooling rates at Taus above
1050 ◦C. In fact, there is no signal of ferrite-pearlite transformation for 1100 ◦C and a cooling
rate of 0.2 ◦C/s. The range of cooling rates in which bainite transformation takes place
moves to the left, has shorter times, and disappears at more sluggish rates when the lowest
Taus, 850 ◦C, is applied. Interestingly, there is a range of cooling rates, from 0.2 to 0.5 ◦C/s,
for the highest austenization temperature, 1100 ◦C, in which only bainite seems to be the
main microstructure constituent. For cooling rates faster than 5 ◦C/s, the microstructure is
fully martensite irrespective of the austenization temperature.

3.3. Hardness Evolution

The evolution of hardness with the cooling rate and austenization temperature is
shown in Figure 8. The change in hardness can be roughly divided into three cooling
rate regions: below 0.2 ◦C/s, above 2 ◦C/s and in-between these two cooling rates. The
increase in hardness between 0.02 ◦C/s and 0.2 ◦C/s and between 2 ◦C/s and 20 ◦C/s
is about 100 HV1, whereas the steepest increase is located between 0.2 ◦C/s and 2 ◦C/s,
about 300 HV1. It is also worth indicating that the cooling rate affects in a limited manner
the hardness at cooling rates of 0.1 ◦C/s and 0.5 ◦C/s, when Taus is equal to or higher
than 1050 ◦C. To rule out that this is not a purely statistical artifact when machining
the dilatometric samples, an additional dilatometry test was performed for 1050 ◦C and
0.1 ◦C/s. The same result was obtained (314 HV1 vs. prior 310 HV1). Another observation
that can be derived from the experimental data is that the scatter in hardness, defined as the
standard deviation, is significantly larger when the cooling rates are in the range 0.2 ◦C/s
and 2 ◦C/s, leading to a peak at 1 ◦C/s.

3.4. Microstructural Evolution

Optical micrographs taken for different cooling conditions and austenization temper-
atures are illustrated in Figure 9. The evolution of the microstructure with the cooling
rates in the range 0.05 ◦C/s and 2 ◦C/s is characterized by the transition from mainly
ferrite-pearlite microstructures to martensite-bainite ones. Only some bainitic zones are
detected for 0.05 ◦C/s and the highest austenization temperature, 1100 ◦C.
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B + M microstructures for 2 austenization temperatures.
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The quantification of the microstructures is gathered in Figure 10 for each microstruc-
tural constituent, namely, ferrite-pearlite, bainite and martensite. The effect of the annealing
temperature on the evolution of the different microconstituents with regard to the cooling
rate can be summarized as follows. The ferrite-pearlite microstructures are favored at lower
austenization temperatures. At cooling rates below 0.05 ◦C/s, the microstructure is fully
ferritic-pearlitic for 850 ◦C, whereas bainite appears at that cooling rate, if the austenization
temperature is 1050 ◦C or higher. Bainite is formed at intermediate cooling rates, between
0.1 ◦C/s and 2 ◦C/s, but the attained fraction is maximized at higher austenization temper-
atures. Particularly, after holding at 1100 ◦C, an almost fully bainitic structure is attained
for such an intermediate cooling rate range. The critical cooling rate for bainite to start
forming is delayed as lower austenization temperatures are applied.
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Figure 10. Evolution of the experimentally measured phase fractions as a function of the cooling rate
for the three austenization temperatures (a) ferrite-pearlite; (b) bainite; (c) martensite.

As a general observation, the dilatometry signal and the microstructural quantifi-
cations agree. Even fractions as low as 5%, at 5 ◦C/s after austenitizing at 850 ◦C, can
be detected.

3.5. Open-Source Software: Results for the Current Steel Grade

As detailed in the Introduction, there is a large number of different approaches to
model phase transformation kinetics under isothermal, continuous cooling and anisother-
mal conditions. In this study, the open-source models based on Li’s approach, but with some
additional improvements [24,26], were applied to predict either the transformation start
temperatures or the fraction of the various microconstituents. It is noted that Nishikawa’s
code [24] was slightly modified so as to consider the simultaneous phase transformation of
ferrite and/or pearlite with bainite. This change did not have a significant impact on the
final results for the present steel grade.

The predictions of the open-source models are gathered in Figure 11 for an austeniza-
tion temperature of 1100 ◦C. For the sake of clarity, from this point on, the legends in the
figures will contain a capital letter, N and C, that stand for Nishikawa’s model [24] or
Collins et al.’s model [26], respectively. The results show that there are differences between
the two models even though the approaches themselves are similar. The ferrite transfor-
mation kinetics are very similar for all the cooling rates. Instead, the bainitic reaction is
affected by the applied model, leading to a deceleration of the bainite transformation for
intermediate cooling rates in Collins et al.’s [26] model predictions.

Details of the reasons for such divergences are discussed thoroughly in the Section 4.
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4. Discussion

This section concentrates on the modeling task of the work aiming at assessing the
quality of the predictions in terms of quantitative results and improving Li’s approach-
based models, accounting for the experimental results in a chemically heterogeneous
42CrMo4.

4.1. Modeling Hardness

The hardness in low alloy steels has been typically predicted through empirical models
that relate hardness with the microconstituent fractions, chemical composition and cooling
rate. For this study, the formulation proposed by Maynier et al. in [28], which has been
proven to give reasonable predictions in the general literature [23], was used to predict
hardness. The chemical composition in Table 1 together with the fractions determined
experimentally, see Figure 10, are inputted. The comparison of the results of the model
with experimental data is illustrated in Figure 12.
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Even though the predictions rely on average chemical compositions, there is a nice
agreement which validates this formulation for the present steel grade. The largest scatter
in hardness is correlated with the bainite and martensite microstructure mixtures, where
the material shows the more evident presence of the segregation pattern.

4.2. Modeling Phase Transformation

The direct comparison of the predictions of the open-source models as they are in
their repositories [24,26] with the experimental start temperatures and microconstituents
fractions are depicted in Figure 13. The main results are described next:
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• Significant changes in the prediction of the onset of ferrite-pearlite transformation
depending on the model. Instead, the bainite and martensite start temperatures of
the two models are close. In general, Nishikawa’s formulation [24] agrees better with
the experimentally determined temperatures for ferrite, whereas Collins et al.’s [26]
formulation excels when it comes to the bainite and martensite start temperature.

• However, looking at the phase fractions, the predictions largely deviate from the
experimentally measured fractions of the different microconstituents regardless of the
approach undertaken.
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With the objective of grasping the reason for the deviations between models, some
of the main features of the two approaches are summarized in Table 2. To begin with, the
variation in the ferrite-pearlite start transformation temperatures is directly related to the
use of different Ae3 and Ae1 formulations. However, the Bs formulation is common to both
and, even though the integration schemes differ, the predictions for bainite transformation
onset are close.

As far as volume fractions are concerned, the two models fail in predicting the mea-
sured fractions. As pointed out in Table 2, the critical temperatures (Ae1, Ae3, Bs, Ms)
and the integration of Li’s approach are significantly different, leading to such divergence.
This is clearly observed in the prediction of the two models with cooling time for the
condition Taus = 1100 ◦C and CR = −0.5 ◦C/s, under the assumption that the Ae3 and Ae1
temperatures are formulated by Grange’ equations in [29], Figure 14. The impact of the
stagnation in the bainitic reaction as well as the decrease in the martensite start temperature
is better described by Collins et al. model [26].
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Table 2. Comparison of the main features of the open-source programs used in this work (as they are in [24,26]).

Open-Source SW Included Features
(Integration Scheme) Omitted Features

Common Features

Ae3 Ae1 Bs Ms Transformation
Kinetics

J. Collins
[26]

• Partitioning of C during
γ to αf/B transformation

• T0 temperature (bainite)
• Bainite differentiation

(Upper and Lower)

• Simultaneous phase
transformations are
avoided

Grange
[29] Grange [29]

Li [23]

Kung-Rayment [30]

Original work by Li
et al. [23]

A. Nishikawa [24]

• Simultaneous phase
transformation at any
temperature

• Chemical partitioning
• T0 temperature (bainite)
• Bainite differentiation

(Upper and Lower)

Andrews [31] Andrews [31] Van Bohemen [32]
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In the following subsections, several strategies are attempted to enhance the quality of
the predictions of the models. Basically, the strategies are based on the improvement of
the following:

➢ Individual models;
➢ Overall transformation model;
➢ Introduction of the compositional heterogeneity in the model.

To make it easier to understand how the strategies just mentioned, which are built on
the modifications of the kinetics of ferrite, pearlite and bainite transformations, are planned
to be employed, the common function type describing such kinetics under isothermal
conditions is defined as follows:

τi(Xi, T, G, Compo) = 2−NGPi(Compo)(Ti − T)−n exp
(

Q
RT

)
S(Xi) (2)

where τi is the time for the i-microconstituent to reach an Xi transformed fraction, G is
the austenite grain size in the ASTM number, Ti is the critical temperature for the onset of
transformation of austenite-to-i-microconstituent, Pi is the composition-dependent term
and S(Xi) is the reaction rate term for the i-microconstituent. The latter is an approximation
to the sigmoidal effect of phase transformations; refer to detailed description in [23].

4.2.1. Improvement of the Transformation Models for Each Product Phase: Application to
the Bainite Transformation Model

The quantitative results in Figure 10 allow selecting experimental conditions that yield
a one-phase microstructure to analyze the transformation models for each product phase.
In that regard, the goodness of the austenite to bainite transformation model was tested
under continuous cooling conditions for an austenitizing temperature of 1100 ◦C and a
cooling rate of 0.2 ◦C s−1 and 0.5 ◦C s−1, which led to almost fully bainitic microstructures.
The experimental bainitic transformation kinetics are shown in Figure 15, which was
determined by the application of the classical lever rule on the dilatation curve. Assuming
a functional dependence of the bainitic transformation kinetics τB(X, T, G, Compo) used
by the open-source models, Equation (3), the sensitivity of the bainitic transformation
kinetics to Bs, bainitic start transformation temperature, as well as to the n and Q value
in the general expression was assessed through the optimization of these three values in
Equation (3) by mean least square optimization methods.

τB(XB, T, G, Compo)
= 2−0.29G exp(−10.23 + 10.18C + 0.85Mn + 0.55Ni + 0.9Cr
+0.36Mo)(Bs − T)−n exp

(
Q
RT

)
S(XB)

(3)

The shape predicted by the Li-type Kirkaldy model, using the original values indicated
in the table inserted in Figure 15, does not fit the actual experimental curves regardless of
the applied parametrization, Figure 15a,b. This is certainly evident in the region where the
kinetics speeds up, which corresponds approximately to the zone of 20% to 80% bainitic
transformation. Figure 15a,b, additionally, display a comparison between experimental
bainitic transformation and the optimized modeled one. It can be observed how the
optimized model fails to capture the bainite transformation kinetics.
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4.2.2. Improvements in the Overall Open-Source Models

To improve the quantitative predictions of the phase transformation model, two as-
pects may be considered for the fine-tuning of the parameters. On the one hand, the various
transformation start/finish temperatures can be regarded as the objective. On the other
hand, the fractions of the microconstituents may be used to fit the parameters accordingly.
Recently, Rauch et al. [33] have defined a function to be minimized, Equation (4), in which
all parameters are considered but assuming different weights for each parameter.

Φ(a, p) =
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(
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)2
+

wX
k

k
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(
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Xim

)2
(4)

where Tim and Tic are the measured and calculated start and end phase transformation
temperatures, Xim and Xic are the measured and calculated volume fractions of the phases
after cooling and n and k are the number of measurements of temperatures and volume
fractions of phases. Finally, wT and wX are the weight or each set of parameters. The
best method to solve this kind on inverse problem was found to be the Particle Swarm
Optimization (PSO) in Ref. [33] that takes into account different seeds in the optimization
task for parametrization. The specifications and details of the application of the PSO to the
current analysis are given in Appendix B. Trying to keep it as simple as possible, the main
efforts were focused on the fractions, presented in Figure 10, ruling out the start and end
phase transformation temperatures in the optimization process. Additionally, the weighting
factors were set to 1 and, the compositional Pi(Compo) and grain size 2−NG, dependent
functions in Equation (2), were calculated as one for each microconstituent (ferrite, pearlite,
bainite). That is to say, the temperature-related terms were maintained in the original
form and grain size and compositional terms were put together as only one value for
each microconstituent. The numerical results of those terms are collected in Table 3, after
applying the customization of the PYSWARM toolkit [34] for the present problem.

The results of such an approach are gathered in Figure 16. The improvement of the
model is remarkable, compared to results in Figure 13b, and the scatter of the data around
the 1:1 relationship remains relatively low. In particular, using RMSE (root mean square
error) to measure the goodness of the models, its value for Nishikawa’s approach is 0.046,
whereas for Collins’ approach, it is 0.122.
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Table 3. Evaluation of the combined grain size-compositional term for Li’s original work and
optimized for Nishikawa’s (N) and Collins et al.’s (C) approaches for ferrite, pearlite and bainite.

Taus (◦C) Ferrite (Li) Ferrite (N/C) Pearlite (Li) Pearlite (N/C) Bainite (Li) Bainite (N/C)

850 330 2463/367 93 394/280 0.0017 0.00355/0.0026

1050 869 2975/490 199 571/592 0.0034 0.00473/0.00254

1100 1465 5269/790 299 1203/882 0.0049 0.00412/0.00261
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4.2.3. Sensitivity to the Chemical Composition: Introduction of the Heterogeneity in the
Modeling of the Phase Transformation of 42CrMo4 Steel

Up to now, the discussion has relied on the mean chemical composition of the steel.
However, the material shows large heterogeneities in the microstructure as a consequence
of the different thermal cycles and chemical segregations. The open-source software
allows introducing in a simple way the chemical heterogeneities in the continuous cooling
simulations. Aiming to account for the chemical heterogeneity in the present analysis, EDS
linescans were performed on a set of samples to characterize the chemical heterogeneity,
specifically, in samples cooled at −1 ◦C/s from the two austenization temperatures, 850 ◦C
and 1100 ◦C. The quantitative data, derived from those microanalyses, were obtained
according to the methodology described in Appendix A. The original open-source models
weree applied to the linescans in a point-to-point manner to calculate the volume fractions
for some lines. Both models yielded an RMSE value of about 0.26. This value is close to
the one achieved after the application of the original models to the nominal composition
(RMSE ∼= 0.27).

Finally, the PSO approach was deployed, assuming that the linescans were illustrative
of the general chemical heterogeneity of the material. The optimized parameters, which
were previously evaluated for the models under homogeneous conditions, demonstrated
difficulties in capturing the effect of the heterogeneity. In light of this limitation, a new
methodology was introduced to improve the quality of the predictions. Specifically, the
PSO algorithm was applied on the chemical profile (heterogeneity) and grain size terms
of Li’s approach, but this time the vector of parameters aXi, as expressed in Equation (5),
was the object for optimization of the phase transformation model, where X and i stood
for the different chemical elements and i-microconstituents (ferrite, pearlite or bainite),
respectively.

Pi(Compo) = exp(a1i + aCi %C + aMni %Mn + aNii %Ni + aCri %Cr
+aMoi %Mo + aSii %Si)2−aGsi G (5)
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Li’s original work and optimized compositional parameters calculated in this work
together with the comparison of the experimental and model results are shown in Figure 17.
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To wrap up, the RMSE parameter change, depending on the strategy and model,
is illustrated in Table 4. There are some clear results that will be described next. First,
Nishikawa’s approach performs better than Collins et al.’s when heterogeneity is consid-
ered. The application of optimization strategies to the two approaches yields a much lower
RMSE than the original ones. Finally, the introduction of the heterogeneity in the models
brings about a decrease in the RMSE value.

Table 4. Evolution of the RMSE parameter depending on the model, type and chemical state.

Model Type Chemical RMSE

N Original Homogeneous 0.271

C Original Homogeneous 0.271

N Original Heterogeneous 0.263

C Original Heterogeneous 0.260

N Optimized Homogeneous 0.046

C Optimized Homogeneous 0.122

N Optimized Heterogeneous 0.054

C Optimized Heterogeneous 0.085

4.3. Limitations

There are still many missing points to be tackled by Kirkaldy’s kind of models to
achieve reliable predictions. A nicely reported description of these issues is written in [25],
indicating the inherent limitations in Li’s original approach: (a) the accuracy of the original
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Li predictions due to the empirical nature of the models, (b) the empirical source data used
to calibrate their predictions. As stated by those authors for their model [25], “Although
improvements were made to the CCT predictions, the accuracy of the proposed model is restricted
by the inherent, empirical limitations of the original semi-empirical expressions. Correcting these
limitations would require developing new sets of constituent transformation expressions around
reliable and carefully controlled TTT and CCT datasets”. In the present work, the application of
optimization methods for the improvement of Li’s approach to predict the phase transfor-
mation on a set of CCT curves of a chemically heterogeneous 42CrMo4 steel is analyzed. As
expected, a consistent model that predicts simultaneously the start and end temperatures of
phase formation and the volume fractions of the various phases is not accomplished when
the basic structure of Li-type formulations is applied. The main reason lies in applying
the nominal chemistry of the steel in a chemically segregated (heterogeneous) 42CrMo4
steel, even though optimized parameters are included. The same issue is also true when
the individual models are regarded. Trying to overcome this issue, the application of the
optimization tools for parameter identification in the case of heterogeneous compositions
was explored. Other sources of disagreement can be also found:

• The formulation for the transformation onset (Ae1, Ae3, Acm, Bs, etc.) of the different
austenite products can strongly affect the predicted volume fractions.

• The strategy applied to integrate the full transformation model may lead to significant
scatter in the results. It must be recalled that the model has to deal with conditions
under which multiple transformation products are formed. From the results above, the
introduction of some physical considerations (Collins et al.) or the simple possibility
to transform austenite into more than one microconstituent at every integration step
(Nishikawa) in the models bring about variations in the optimized parameter values.
This is clearly proven in Table 3, where the values are significantly different for
each model.

• The linear approaches to the composition-dependent term do not reflect likely higher-
order correlations or some synergistic effects on phase transformations, which are
usually reported in the literature [35].

• Lastly, the chemical characterization at the micro/mesoscale of the samples is of
crucial significance since it is the base for properly describing the behavior of the
phase transformations while being closer to the actual observed phenomena.

5. Conclusions
5.1. Experimental Characterization

The present work gives a detailed dilatometry study of the phase transformation of
42CrMo4 steel arising from an industrial material characterized by its chemical heterogene-
ity. Several conclusions can be extracted from the experimental characterization. Looking
at the CCT curves, the change in the austenization temperature (grain size) has a marked
impact on the ferrite-pearlite transformation region. Instead, the shape and extension, in
terms of cooling rates, of the bainitic transformation region is less affected. This may be
attributed to the chemical heterogeneity, which may dilute the effect of the grain size on
bainitic transformation kinetics. With regard to the microstructure development, large
enough grain sizes, after austenization at 1100 ◦C, generate almost completely bainitic
structures in a certain range of continuous cooling rates, 0.1 to 0.5 ◦C/s. However, the
formation of fully martensitic microstructures, often aimed at 42CrMo4 steel grade, is
attainable if cooling rates higher than 5 ◦C/s are applied.

5.2. Modeling Phase Transformation upon Continuous Cooling

The present work tries to improve the quality, in terms of quantitative measures, of the
phase transformation predictions of two already developed CCT modeling formulations
(Nishikawa and Collins et al.) based on Li’s former phenomenological work when applied
to heterogeneous chemical composition in a 42CrMo4 steel. The way the different phenom-
ena are modeled or the way the integration scheme is considered when multiple phases



Metals 2024, 14, 1096 18 of 23

are formed, which make the difference between the formulations, may induce variations
in the predictions. The predictions of the two approaches are far from the experimental
observations when nominal chemistry is used, as RSME values over 0.25 are obtained
irrespective of the model and chemical spatial distribution. The use of different strategies
that embrace improvement of the individual models for each austenite product, a new
minimization formulation for parameter fitting and, finally, heterogeneity conditions is
tackled. In particular, the introduction of the spatial chemical heterogeneity adds complex-
ity to the modeling task. The need for an accurate characterization of the chemical spatial
distribution, diffusion simulation tools (DICTRA in this work) and optimization tools for
fine-tuning of the parameters of the phenomenological models is shown in this work. In
the present study, RSME values below 0.09 are achieved for the two formulations when
considering the optimized parametrization as well as the chemical heterogeneity.

From the results of this work, it is foreseen that the use of chemically heterogeneous
materials together with appropriate modeling and microstructure/chemical characteriza-
tion tools may be a way to accelerate the development of new phenomenological phase
transformation models.
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Appendix A. Description of the Chemical Heterogeneity

The chemical heterogeneity of the material under analysis has been characterized by
EDS (electron dispersive spectroscopy) by using the AzTec software. The quantification
carried out with this software is based on the simultaneous application of the following
techniques in the standardless mode: QCAL, FLS, XPP and Pulse Pile-Up Correction. QCAL
technology is a quantitative calibration approach that delivers a unique set of parameters
and an efficiency curve for each hardware type; FLS is the Filtered Least Squares Fitting for
the background correction; XPP is the Exponential model of Pouchou and Pichoir Matrix
Correction [36].

The analyses were performed under the conditions gathered in Table A1 on lines that
cross several dendrites as observed in Figure 4a. Those lines were randomly distributed
over the selected samples: Taus = 850 ◦C and 1100 ◦C and C.R. = −1 ◦C/s. The number of
lines was five per condition.

Table A1. Conditions applied for setting up the EDS analyses at ZEISS Σ500 FEG-SEM microscope.

Microscopy Conditions Acquisition Conditions

Potential (kV) 20
Step/total line length (µm) 3–5/1400–2800

Dwell time (ms) 1500

Aperture (µm) 60 (High Current) Analyzed elements Fe-Cr-Mn-Si-Ni-Cu
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The microchemical quantification was carried out taking into account the next spectral
lines for each element: Fe (Kline), Cr (Kline), Mn (Kline), Mo (Lline), Ni (Kline) and Si (Kline). The
results were normalized to 100% for such quantification.

In order to smooth out likely spurious/artificial peaks, the chemical composition at
each point was calculated by averaging over the 30 µm length. An example of a quantitative
linescan is shown in Figure A1, where only the elements that contribute to the kinetics of
the phase transformations in the original work by Li et al. [23], except for C, are illustrated.
In this particular case, the presence of a peak in the amount of Cr and Mn at about 600 µm
is readily observed in Figure A1.
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The details of the statistical analysis are gathered in Table A2, in which the chemical
information is given in a point-to-point or line-to-line manner. In order words, the statistical
samples are the points in all lines or the lines themselves, respectively. In general, the
EDS measurements, in the mean chemical composition EDS row, are slightly higher than
the ones measured through the AES (Atomic Emission Spectroscopy) technique. The
experimental point-to-point chemical analysis scatters due to the inherent experimental
error and the spatial chemical heterogeneity itself. However, the significantly wider range
of chemical compositions attained per line, Amplitude EDS (95% data interval), than the
amplitude considering the mean composition of all the analyzed lines makes it reasonable
to use them as the measure of the heterogeneity.

Table A2. Comparison of the chemical composition determined through AES and EDS of the
main elements.

Element C Mn Si Cr Mo Ni

Chemical composition (AES) 0.44 0.74 0.22 1.02 0.24 0.14

Mean chemical composition based on all EDS spectra
(point-to-point) Unknown 0.82 0.26 1.17 0.28 0.16

Amplitude EDS per element based on all EDS spectra (95%
data interval, point-to-point) Unknown 0.08 0.06 0.12 0.08 0.07

Amplitude of mean EDS among all lines (Max-Min)/2
(line-to-line) Unknown 0.06 0.01 0.03 0.03 0.04

Taking into account these observations, the mean chemical composition for each line
was calculated and the difference with regard to actual value per point was estimated for
all elements except for C. Then, this difference was added to the nominal composition
(chemical composition (AES)) at each scanned point. However, as discussed in [36] for
EPMA (Electron Probe MicroAnalyzer), but also applicable to EDS analyses, C pollution
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masks the real C content. Based on the approach undertaken in [37], the C profile was
determined for the different lines with the help of DICTRA (Thermo-Calc Software AB
Råsundavägen, Solna, Sweden) with TCFE10 and MobFe7 databases. These experimentally
characterized chemical profiles account for the likely common segregation of some elements.
As an example, a typical chemical distribution line is given in Figure A2a. Two extreme
initial scenarios for C distribution before austenization stage were analyzed:

• C distributes homogeneously (constant value of 0.44%).
• C distributes as if the material was held for a very long time (half a day) at a tem-

perature of 1250 ◦C (simulating the solution heat treatment before high temperature
thermomechanical processing).

The results of the carbon distribution do not deliver highly different patterns depend-
ing on the scenario, and the C minimum and maximum are in the range 0.43 and 0.45%,
Figure A2b.
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dinate can be associated with the goodness of the solution given by itself. In this study, 

Figure A2. Distribution of (a) the main elements on a line analyzed in sample 850 ◦C and (b) carbon
upon different initial conditions calculated with DICTRA. (a) Homogeneous (0.44%C) and (b) After
solution heat treatment at 1250 ◦C for 0.5 days.

Additionally, the correlation matrix for the chemical elements was determined, Table A3.
The results show that the Mn-Cr-Mo elements tend to be correlated as the Pearson correlation
coefficients are typically greater than 0.6. This is a sign of common segregation of such
chemical species in the steel under study.

Table A3. Correlation matrix (Pearson correlation coefficient) for analyzing the chemical segregation.

Chemical
Element Cr

Cr 1.000 Mn

Mn 0.701 1.000 Mo

Mo 0.655 0.618 1.000 Ni

Ni 0.048 0.122 0.032 1.000 Si

Si 0.204 0.515 0.132 −0.009 1.000

Appendix B. Description Particle Swarm Approach

Least squares optimization methods have been observed to struggle when tuning the
parameters within compositional terms. The employment of metaheuristic algorithms has
emerged as a viable solution to address this task. Particle Swarm Optimization (PSO) is
a metaheuristic computational method that imitates social behavior to search for optimal
global solutions for a given problem.

PSO is initialized by generating a population of random solutions. Each of these
potential solutions are called “particles”, and they keep track of their respective coordi-
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nates within the problem space throughout all the iterations performed in the PSO. Every
coordinate can be associated with the goodness of the solution given by itself. In this study,
the goodness was evaluated by measuring the error of the consequent phase fractions
calculated with the model. Thus, at each step t, the best potential solution achieved by
every particle is known, which is commonly noted as pt

besti
for particle i. Additionally, the

global best potential solution obtained at step t, is noted as gt
best.

The concept of PSO follows a very basic procedure of updating the position of every
particle at each time step by changing its velocity toward both its respective and global best
solutions. This behavior is expressed as follows:

xt+1
i = xt

i + vt+1
i , vt+1

i = wvt
i + c1r1

(
pt

besti
− xt

i

)
+ c2r2

(
gt

best − xt
i
)
,

i ∈ {1, 2, . . . , S}, t ∈
{

1, 2, . . . , t f

}
,

where xt
i and vt

i are the coordinates and velocities of the particle i at time step t, S is
the number of particles in the swarm and t f is the number of steps followed during the
optimization. The terms r1 and r2 are randomly generated and both of them follow a
uniform U(0, 1) distribution. The coefficients {w, c1, c2} are shared across all particles
in the optimization and play a pivotal role in its functioning. The coefficient w governs
the inertia, while c1 and c2 determine the influence of cognitive and social behaviors,
respectively, for each particle.

Typically, the stopping criterion involves reaching a determined number of iterations,

at which point, the best solution found (g
t f
best) is returned as the optimized value.

There is no clear consensus on which coefficients to use in the optimization. While
particle sizes of 20–50 are a common choice for sufficiently good solutions and a minimized
number of evaluations [38,39], certain studies utilizing meta-optimization have indicated
that larger particle sizes lead to improved convergence for specific problem instances [40,41].
The variability observed in the values of S extends to the coefficients {w , c1, c2}, thereby
underscoring the problem-specific characteristics inherent in the PSO coefficients. The
coefficients employed in this study primarily comprise S = 50, w = 0.729, c1 = c2 = 1.494,
although alternative values have been also explored.
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