
Citation: Kim, D.-Y.; Yu, J. Statistical

Analysis-Based Prediction Model for

Fatigue Characteristics in Lap Joints

Considering Weld Geometry, Including

Gaps. Metals 2024, 14, 1106. https://

doi.org/10.3390/met14101106

Academic Editors: Frank Czerwinski

and Dariusz Rozumek

Received: 6 August 2024

Revised: 6 September 2024

Accepted: 24 September 2024

Published: 26 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Statistical Analysis-Based Prediction Model for Fatigue
Characteristics in Lap Joints Considering Weld Geometry,
Including Gaps
Dong-Yoon Kim and Jiyoung Yu *

Flexible Manufacturing R&D Department, Korea Institute of Industrial Technology,
Incheon 21999, Republic of Korea; kimdy@kitech.re.kr
* Correspondence: willow@kitech.re.kr

Abstract: Automotive chassis components, constructed as lap joints and produced by gas metal
arc welding (GMAW), require fatigue durability. The fatigue properties of the weld in a lap joint
are largely determined by weld geometry factors. When there is no gap or a consistent gap in the
lap joint, improving the geometry of the weld toe can alleviate stress concentration and enhance
fatigue properties. However, due to machining tolerances, it is difficult to completely eliminate or
consistently manage the gap in the joint. In the case of a lap-welded joint with an inconsistent gap, it
is necessary to identify the weld geometry factors related to fatigue properties. Evaluating the fatigue
behavior of materials and welded joints requires significant time and cost, meaning that research
that seeks to predict fatigue properties is essential. More research is needed on predicting fatigue
properties related to automotive chassis components, particularly studies on predicting the fatigue
properties of lap-welded joints with gaps. This study proposed a regression model for predicting
fatigue properties based on crucial weld geometry factors in lap-welded joints with gaps using
statistical analysis. Welding conditions were varied in order to build various weld geometries in
joints configured in a lap with gaps of 0, 0.2, 0.5, and 1.0 mm, and 87 S–N curves for the lap-welded
joints were derived. As input variables, 17 weld geometry factors (7 lengths, 7 angles, and 3 area
factors) were selected. The slope of the S–N curve using the Basquin model from the S–N curve and
the safe fatigue strength were selected as output variables for prediction in order to develop the
regression model. Multiple linear regression models, multiple non-linear regression models, and
second-order polynomial regression models were proposed to predict fatigue properties. Backward
elimination was applied to simplify the models and reduce overfitting. Among the three proposed
regression models, the multiple non-linear regression model had a coefficient of determination greater
than 0.86. In lap-welded joints with gaps, the weld geometry factors representing fatigue properties
were identified through standardized regression coefficients, and four weld geometry factors related
to stress concentration were proposed.

Keywords: lap-welded joint; GMAW; fatigue characteristic prediction; regression model; joint gap;
weld geometry

1. Introduction

The automobile chassis collectively refers to all the parts of a car, excluding the body,
and consists of the frame, powertrain, suspension, steering, and braking components.
Among these, the frame serves as the fundamental skeleton of the chassis, comprising
cross-members, lower arms, and coupled torsion beam axle, and is located at the very
bottom of the car, requiring durability against repetitive loads during operation.

The chassis frame, which requires fatigue durability, mainly comprises lap joints
and is primarily manufactured using GMAW to ensure strength. In GMAW, using filler
wire, the weld metal will inevitably impart a geometric shape to the joint. This acts as
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a stress concentration point due to repeated fatigue, leading to fracture initiation and
ultimately decreasing the component’s fatigue durability. Even when high-strength steel
is applied to chassis components for weight reduction, the benefits of high-strength steel
are lost due to the notch effect of lap welds [1,2]. In welded joints with geometric shapes,
such as lap welds, the bead shape has a more significant impact on fatigue characteristics
than does the weld’s microstructure [3,4]. Ahiale et al. [4] compared the weld geometry
and fatigue characteristics of GMA welds and plasma arc welds in lap joints of 590 MPa-
grade dual-phase (DP) steel. Although the heat input in plasma arc welding is relatively
higher than that of GMAW, increasing the arc length improves the weld geometry, leading
to enhanced fatigue characteristics. Additionally, in the coarse-grain heat-affected zone
(CGHAZ), a stress concentration area at the toe, the fraction of acicular ferrite increased in
the plasma arc welds. This increase in the acicular ferrite fraction enhances resistance to
fatigue crack initiation and early propagation, leading to improved fatigue characteristics.
El-Batahgy [5] reproduced the welding thermal cycles of 370 MPa and 500 MPa-grade
steels to fabricate CGHAZ specimens and conducted a bending fatigue test. Widmanstatten
ferrite exhibited higher tensile strength and fatigue strength compared with polygonal
ferrite. Given that the CGHAZ showed higher fatigue strength than the base material, the
material’s influence on the fatigue strength reduction in lap joint welds is not as significant
as the influence of bead geometry. Previous studies have reported that, particularly in lap
joints, improving the weld toe angle alleviates stress concentration at the notch area of
the weld, thereby enhancing fatigue characteristics [6–10]. Prior investigations examining
the fatigue characteristics of lap joints have compared the relationship between weld toe
angle and fatigue characteristics only in flawless joints without gaps or in joints with a
consistent gap.

Due to deformation during welding and machining dimensional tolerances, the joint
gap in welded parts cannot be eliminated or consistently maintained. The presence of gaps
in the joint can lead to welding defects, even when welding is performed under the same
conditions on identical components [11]. It has been reported that gaps deteriorate fatigue
properties [12,13]. Kim et at [14] have reported that, in the welds of lap joints, an increase
in the joint gap causes the filler metal of the GMAW process to fill that gap, resulting in
a smoother weld profile and an increase in the apparent weld toe angle. However, they
confirm that stress concentration at the weld root occurred, leading to decreased fatigue
strength. Therefore, they suggest considering geometric shapes other than a weld toe angle
for lap welds with gaps requiring fatigue characteristics.

Deriving S–N curves to determine fatigue characteristics is a time-consuming and
expensive process. Therefore, methods and research for predicting fatigue characteristics
are being actively pursued. After Palmgren introduced the concept of damage accumula-
tion [15] and Miner introduced the linear damage rule [16], many damage and prediction
models were developed. Fatemi et al. [17] and Hectors et al. [18] have reviewed an article
paper on cumulative damage and life prediction models for fatigue. They have confirmed
that linear and non-linear fatigue cumulative damage rules can predict fatigue character-
istics based on fatigue life calculations. These calculations reflect the material and weld
joint properties and the stress–strain relationship resulting from repetitive loading cycles.
Machine learning methods have recently been applied to process data, including noisy data,
and learn complex non-linear relationships by which to predict the fatigue characteristics
of materials and weldments based on data without prior assumptions. Various machine
learning algorithms, including artificial neural networks, convolutional neural networks,
residual neural networks, and gradient boosting decision trees, have been applied to predict
the fatigue characteristics of materials and weldments, demonstrating excellent fatigue
prediction performance [19–22].

In predicting the fatigue characteristics of the lap weld, which is the most commonly
used single-sided joint in chassis components, it is considered difficult to apply a fatigue
cumulative damage model for load cycles due to the challenge of reflecting the changes
to weld shape (non-uniform stress distribution) that arise due to welding conditions and
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disturbances during welding. Machine-learning-based prediction models operate as black-
box surrogate models between input and output parameters, making the internal decision-
making process opaque and difficult to interpret. Additionally, it is challenging to assign
physical meaning to the input variables in relation to the output variables [23]. Although
studies to fatigue characteristics are being reported for chassis components requiring fatigue
properties, research on predicting fatigue characteristics remains relatively scarce. The
lack of research on predicting the fatigue characteristics of automotive chassis components
is due to the widely accepted fact that improving the weld toe angle of typical lap joints
enhances fatigue characteristics. However, the need for additional research on predicting
the fatigue characteristics of lap welds, especially considering the gap, is urgent. This is
particularly crucial in actual components, where it is impossible to eliminate or maintain a
consistent joint gap [11].

This study not only identified the significant weld geometry factors affecting fatigue
characteristics in lap welds with gaps but also predicted an S–N curve based on a regression
model. Lap welding was performed on GA 590 MPa 2.3 mm, which is widely used in
chassis components. The joint gap size (Gap), welding process (WP), wire feed rate (WFR),
and welding speed (WS) were varied to achieve different weld geometric shapes. A total
of 87 S–N curves were derived through fatigue tests on lap joint specimens with various
weld shapes. Through cross-sectional analysis, 17 weld geometry measurements (7 length
factors, 7 angle factors, and 3 area factors) were used as input variables. Three regression
models were proposed to predict the slope of the S–N curve and the fatigue strength
(fatigue strength at 2 × 106 cycles) with a safety factor. Three models were developed using
backward elimination: a multiple linear regression model, a multiple non-linear regression
model, and a second-order polynomial regression model. The significant factors affecting
fatigue characteristics were proposed through standardized regression coefficients.

2. Experimental Procedure
2.1. Welding Procedure

A GA 590 MPa grade steel sheet of thickness 2.3 mm was considered for the welding
experiment, and AWS A5.18 ER70S-3 of diameter 1.2 mm was used as the filler wire.
Table 1 shows the chemical composition and mechanical properties of the base material
and filler wire.

Table 1. The chemical composition and mechanical properties of the base material and filler wire.

Chemical Composition [wt.%] Mechanical Properties

C Si Mn P S TS [MPa] * YS [MPa] * EL [%] *

Base material 0.07 0.14 1.44 0.13 0.002 610 583 25

Filler wire 0.07 0.65 1.14 0.02 0.010 560 440 28

* Note. TS: tensile strength, YS: yield strength, EL: elongation.

The base material was cut to a size of 150 mm × 300 mm, and welding was performed
with the specimens overlapped in the rolling direction. As shown in Figure 1, two types
of joint orientations were selected. Various weld joint configurations were considered to
predict fatigue characteristics through weld joint shapes, and welding was conducted using
diverse welding processes and conditions. In order to confirm fatigue characteristics based
on joint gap, four gap conditions were selected: 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm. Cold
metal transfer (CMT) and direct current (DC) were applied to the two types of joints pre-
pared for the WP. CMT generates a short circuit at a low current and enables welding with
low heat input by stably controlling the short circuit through wire feed control [24]. CMT is
characterized by a spatter-free metal transfer, excellent gap-bridging ability, and smooth
bead formation [25]. The TPS3200CMT (Fronius Co., Petenbach, Austria) welding system
was used for CMT, while the DM500 (Daihen Co., Osaka, Japan) welding system was
used for DC waveform. The welding system was installed on a robot (GP25, Yaskawa Co.,



Metals 2024, 14, 1106 4 of 21

Kitakyushu, Japan) to produce the welding specimens through automated welding. The
welding parameters were adjusted as follows, and the detailed welding conditions are listed
in Table 2. WFR was applied at three levels: 5.0 (setting current/voltage: 165 A/15.2 V),
7.0 (214 A/16.2 V), and 9.0 (258 A/20.5 V) m/min for CMT and 3.0 (140 A/16.8 V), 5.0
(200 A/18.0 V), and 7.0 (254 A/25.7 V) m/min for DC. The welding voltage was applied ac-
cording to the appropriate voltage conditions provided by the welding power source. Two
levels of WS were selected as 60 and 80 cm/min. Additionally, contact tip to work distance
(CTWD, α) and work angle were fixed at 15 mm and 45◦, respectively. A 90% Ar + 10%
CO2 mixed shielding gas was provided at a flow rate of 25 L/min. The welding experiment
was repeated five times under the same conditions to produce a fatigue specimen.
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Figure 1. Schematic of joint preparation. (a) A position and (b) B position.

Table 2. Welding processes and conditions.

Parameters Value

Weld Joint A Position B Position

WP CMT DC CMT DC

WFR (m/min)
(Setting current/voltage)

5.0 (165 A/15.2 V)
7.0 (214 A/16.2 V)
9.0 (258 A/20.5 V)

3.0 (140 A/16.8 V)
5.0 (200 A/18.0 V)
7.0 (254 A/25.7 V)

5.0 (165 A/15.2 V)
7.0 (214 A/16.2 V)
9.0 (258 A/20.5 V)

3.0 (140 A/16.8 V)
5.0 (200 A/18.0 V)
7.0 (254 A/25.7 V)

WS (cm/min) 60, 80

Gap (mm) 0, 0.2, 0.5, 1.0

CTWD (α, mm) 15

Work angle (β, ◦) 45

Shielding gas 90% Ar + 10% CO2 (25 L/min)

2.2. Fatigue Test Procedure

The fatigue test specimens were manufactured by referring to the ASTM E466 standard
for welding specimens (Figure 2) [26]. A spacer was inserted by combining the thickness
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of the gap and base material. During arc welding of GA steel sheet, zinc vaporized by
the arc heat can become trapped in the weld metal, leading to porosity defects. These
porosity defects together constitute a factor that reduces fatigue life [14]. Figure 3 shows the
presence or absence of porosity in the fatigue test specimens as determined by radiographic
testing. In this study, we aimed to investigate the relationship between weld geometry
factors and fatigue characteristics. To exclude the influence of other factors, such as porosity,
we selected fatigue test specimens without porosity defects, as shown in Figure 3a. We
employed fatigue testing equipment (Instron 8801, Instron Co., Norwood, MA, USA) with
a maximum load of 100 kN. Table 3 show the fatigue test conditions. The stress ratio of a
specific component of an automobile chassis was adopted, and the endurance threshold
was set at the commonly used 2 × 106 cycles. A total of 87 S–N curves were derived
through fatigue testing and were used as data to predict fatigue characteristics. In this
study, the fatigue test specimens were denoted in the order of weld joint—WP—WFR—
WS—Gap (Table A1). As an example, the following conditions—A position, WP CMT, WFR
7.0 m/min, WS 60 cm/min, Gap 0.2 mm (Table 2)—are expressed as A-C (CMT: C, DC:
D)-7.0-60-0.2.
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Table 3. Fatigue test conditions.

Parameters Value

Maximum stress
(σmax)

366–122 MPa (at intervals of 10%)

122–62 MPa (at intervals of 5%)

62 MPa under (at intervals of 2.5%)

Stress ratio (R) 0.1

Frequency 40 Hz

Endurance threshold 2 × 106 cycles

3. Method for Developing the S–N Curve Prediction Model
3.1. Selection of Independent and Dependent Variables

Figures A1 and A2 show representative cross-sections after welding with the parame-
ters listed in Table 2. A lap joint weld typically appears in a shape similar to that illustrated
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in Figure 4, and the weld joint geometry data were extracted and used as independent
variables, as in Figure 4. As criteria for configuration of weld shape to be used in a fatigue
prediction model, 17 parameters were extracted. The method for extracting the 17 pa-
rameters is summarized in Figure 4. In the geometry of the lap weld joint, seven factors
related to length, including leg length and penetration depth [27–30]; seven factors related
to angle [31], such as toe angle; and three factors related to area have been derived [31].
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3.2. Selection of Dependent Variables

The response variable for developing the S–N curve prediction model was constructed
using the fatigue dataset. For each S–N curve, a logarithm was considered at the stress
range (σr), and the Basquin equation (Equation (1)) was applied to determine σ′

f and b [32].

σ = σ′
f ·
(

N f

)−b
(1)

where σ′
f is the material property, N f is the fatigue life as the number of cycles to failure

under a constant load, and b is the Basquin slope (BS).
In the S–N curve for the weld joint, establishing a safety factor to prevent fatigue failure

is essential. Modi f ied σ′
f (σ

′
f M

) and Modi f ied b (BSM) were determined by applying M-
2SD in Equation (2) [33].

NM−2SD =
1
n

n

∑
i=1

(N1 + N2 + · · ·+ Nn)− 2·
√

1
n

n

∑
i=1

(
Ni − N

)2 (2)

where N represents fatigue life at σ, while N signifies the mean life at σr.
Essentially, M-2SD represents fatigue life re-expressed by subtracting twice the stan-

dard deviation from the average fatigue life at σr. This value was used to design a safety
factor in the S–N curve using the Basquin equation. BSM incorporating the safety factor
was used as the dependent variable with which to predict fatigue characteristics through
weld joint geometry parameters. Only BSM was predicted, while σ′

f M
was not predicted.

The reasons are explained in the following section. Predicting the endurance fatigue
limit (2 × 106 cycles) on the S–N curve was essential. Fatigue strength at a fatigue life of
2 × 106 cycles was derived from the Basquin equation. using M-2SD and compared with
the fatigue strength obtained through fatigue testing. Lower fatigue strength was defined
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as safety fatigue strength (SFS), considering stability against fatigue failure. The schematic
for σSFS is presented in Figure 5. The critical factors obtained from BSM and SFS, along
with the individually applied value of stress levels, included independent variables that
were used to predict the overall fatigue life. Independent and dependent variables are
summarized in Table 4.
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Table 4. Independent and dependent variables for predicting fatigue characteristics.

Independent Variable Dependent Variable.

Seventeen weld geometry factors BSM, σSFS

Significant weld geometry factors Fatigue life

3.3. Development of an S–N Curve Prediction Model through Statistical Analysis

We employed a statistical analysis method, a regression model approach, to predict
the S–N curve. A regression model is a statistical analysis technique used to predict the
value of dependent variables from independent variables by assuming a mathematical
model between them. A generalized linear regression model was constructed, as given in
Equation (3).

Y = β0 +
n

∑
i=1

βi fi(X0, X1, · · · , Xn) + ε (3)

where fi denotes a scalar function with independent variables as arguments and includes
non-linear and polynomial expressions. In this study, multiple linear, non-linear, and
second-order polynomial regression models were derived using the backward elimina-
tion method.

4. Result of Fatigue Behavior

A total of 87 S–N curves were derived from varying welding conditions, with some
of these selectively presented in Figure 6. It was observed that, as WFR increases, fatigue
strength and life at a constant load increase (Figure 6a). Conversely, an increase in WS was
found to result in decreased fatigue life and strength (Figure 6b). As the gap increased,
fatigue life and strength decreased (Figure 6c). The fatigue life and strength were seen to be
similar despite changes in the joint position (Figure 6d).
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Figure 6. Fatigue behavior of lap joint weld by welding conditions. (a) WFR variation (fixed B
position, WP: DC, WS: 60 cm/min, gap: 0 mm), (b) WS variation (fixed A position, gap: 0 mm),
(c) gap variation (fixed A position, WP: CMT, WFR: 5.0 m/min, WS: 80 cm/min), and (d) position
variation (fixed WFR: 5.0 m/min, WS: 60 cm/min, gap: 0 mm).

Using the Basquin model (Equation (1)), BSM and σ′
f M

were derived. M-2SD was
applied to the fatigue life at the shared stress range and BSM and σ′

f M
were derived from

the logarithmic values in the Basquin model (Equation (4)).

log σ = logσ′
f M − BSM·log N f (4)

Figure 7 shows BSM and logσ′
f M

derived from the S–N curves under varying welding
conditions. The X axis represents the deposition rate, which is proportional to WFR and
inversely proportional to WS. Figure 7a shows the relationship between the deposition rate
and BSM. As the value of BSM decreases, the slope of the S–N curve decreases, indicating
that the fatigue life increases within the same stress range. The BSM tends to decrease as the
deposition rate increases, regardless of the joint gap size. As the gap of the joint increases,
BSM increases for the same deposition rate. The variation in BSM was more significant
with the joint gap size than the deposition rate. While increasing the deposition rate can
reduce BSM by improving the weld joint’s shape, an increase in gap size results in a greater
share force acting on the lap joint, thereby degrading the fatigue characteristics of the lap
weld. In the field in which chassis parts are manufactured, the joint gap is an uncontrollable
variable, so it was not measured separately. It was determined that the weld joint shape
measured in Figure 4, including the gap, varies. Figure 7b shows the relationship between
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the deposition rate and logσ′
f M

. Although log σ′
f M

did not vary significantly with changes
in the deposition rate, it was observed to increase with the increase in the joint gap.

Figure 7. The relationship between (a) BSM and (b) σ′
f M with respect to the deposition rate and gap

variation in a lap joint.

σ′
f M

is a value derived from the material property in Equation (1), and it has been
determined that a verification of changes in the weld joint’s properties is necessary. The
amount of heat input and colling rate applied to the base material during welding determine
changes in the properties of the weld joint, which can be identified through its hardness. The
hardness of a weld depends on the amount of heat input, and the formula for calculating
the heat input is presented in Equation (5).

Heat input
(

J
cm

)
=

60·I·V
WS

(5)

Figure 8 shows the hardness of the weld joint according to variations in heat input
and gap. DC and CMT in WP exhibited different current waveform shapes, which led us to
anticipate variations in heat input. Welding conditions with the highest and lowest heat
input were selected in each WP. The joint position was fixed to the A position, respectively.
The heat inputs calculated using average current and voltage, for the welding conditions
A-D-3.0-80-0, A-C-5.0-80-1.0, A-D-7.0-60-1.0, and A-C-9.0-60-0, were 1.76, 1.92, 6.52, and
5.29 kJ/cm, respectively.
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Figure 8. Hardness distribution of the lap weld according to heat input and gap.

The base metal was at 199 HV on average, and HAZ softening was not observed. With
the increase in heat input, an increase in the size of FZ and a difference in hardness within
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FZ were observed. The hardness of FZ under various welding conditions, A-DC-3-80-0,
A-DC-7-60-1.0, A-CMT-5-80-1.0, and A-CMT-9-60-0, was to be 255, 237, 255, and 239 HV,
respectively. The difference in heat input resulted in hardness variations, although no
hardness difference was observed with a change in the gap size. An increase in heat input
delays the solidification of the molten pool, leading to a rise in ferrite structures in the target
material’s FZ. This increase in ferrite structures, which have a lower hardness compared
with bainite and martensite structures, decreases the hardness of the FZ [34]. Kim et al. [35]
investigated the fatigue characteristics of lap welds in the subject material; despite the low
FZ hardness in the welded joints with high fatigue strength, the fatigue characteristics of
the welded joints improved by enhancing the weld shape.

In Figure 7b, variations in log σ′
f M

, representing material characteristics, were evident
with a change in gap size, whereas differences in log σ′

f M
due to variations in heat input

were scarcely observed. Therefore, log σ′
f M

was not adopted as a dependent variable in the
prediction model of this study.

5. Fatigue Prediction Model for Statistical Analysis
5.1. Correlation Analysis between the Weld Joint Geometry and Dependent Variables (BSM, σSFS)

Before conducting regression analysis, a correlation matrix between the dependent
(BSM and σSFS) and independent (X1–17) variables was computed to determine their
relationships. Generally, a higher correlation between predictor variables and dependent
variable implies a more significant influence of those predictors on the outcome, which
is essential between variables. Therefore, in some cases, variables with strong correla-
tions could still remain inappropriate for inclusion in a regression model if the model
assumptions are not met. Conversely, even variables with low correlation coefficients could
contribute to reducing the error in a regression model. Additionally, the intercorrelation
among independent variables should be considered. High intercorrelation indicates similar
impacts of the variables on BSM and σSFS, potentially leading to multi-collinearity effects
that increase errors in all models.

The correlation analysis was conducted to examine the linearity between dependent
and independent variables, and among independent variables. Table 5 illustrates the
correlation analysis results of variables concerning BSM and σSFS. In the correlation analysis
between BSM and the independent variables, X10 showed a correlation of 0.82, while X14
demonstrated −0.84, indicating a stronger linear relationship with BSM than other factors.
In the correlation analysis between σSFS and the independent variables, X10 and X14 were
observed to exhibit strong linear relationships with correlation coefficients of −0.84 and
0.83, respectively.

Table 5. Correlation matrix between the independent variables and BSM/σSFS.

BSM σSFS X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 −0.66 0.76
X2 −0.26 0.51 0.63
X3 −0.02 0.27 0.54 0.83
X4 0.62 −0.43 −0.35 0.16 0.49
X5 −0.77 0.78 0.60 0.36 0.07 −0.46
X6 0.21 0.07 0.26 0.84 0.89 0.61 −0.13
X7 −0.13 0.37 0.50 0.74 0.68 0.24 0.22 0.66
X8 −0.15 0.21 0.06 0.25 0.05 0.04 0.19 0.16 0.29
X9 −0.73 0.69 0.88 0.27 0.26 −0.56 0.58 −0.13 0.21 −0.11
X10 0.82 −0.84 −0.75 −0.61 −0.33 0.49 −0.67 −0.18 −0.39 −0.18 −0.66
X11 0.68 −0.66 −0.90 −0.24 −0.23 0.53 −0.53 0.13 −0.22 0.06 −0.96 0.60
X12 −0.59 0.59 0.89 0.21 0.19 −0.46 0.45 −0.12 0.22 −0.01 0.86 −0.51 −0.97
X13 0.79 −0.67 −0.55 −0.07 0.31 0.92 −0.74 0.47 0.04 −0.09 −0.68 0.66 0.63 −0.55
X14 −0.84 0.83 0.74 0.43 0.09 −0.72 0.77 −0.08 0.22 0.15 0.73 −0.82 −0.69 0.61 −0.86
X15 −0.58 0.74 0.96 0.80 0.66 −0.23 0.59 0.45 0.62 0.12 0.75 −0.77 −0.75 0.70 −0.45 0.71
X16 0.38 −0.11 0.11 0.71 0.82 0.70 −0.24 0.95 0.63 0.11 −0.24 0.03 0.22 −0.20 0.60 −0.23 0.29
X17 −0.07 0.33 0.47 0.80 0.76 0.31 0.16 0.77 0.98 0.27 0.15 −0.39 −0.16 0.15 0.12 0.18 0.62 0.74
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The correlation analysis among independent variables revealed significant correla-
tions, with a correlation coefficient of 0.96 between X1 and X15, 0.95 between X6 and
X16, 0.98 between X7 and X17, −0.96 between X9 and X11, and −0.97 between X11 and
X12. Such high correlation values indicate strong relationships among the variables, and
caution should be exercised when including them in the regression model. The regression
model used the remaining factors, excluding X6, X11, X12, X15, and X17, with correlation
coefficients exceeding 0.95 among the independent variables.

5.2. Regression Model for S–N Curve Prediction

The selected weld shape parameters were normalized and used as independent vari-
ables. Multi-linear regression analysis was conducted using the backward elimination
method, a technique employed in regression analysis to simplify models by iteratively
removing non-significant variables based on their p-value. Furthermore, the approach
allows for a more interpretable model and assists in preventing overfitting.

The variables were systematically eliminated from the regression model based on the
criteria of partial correlation coefficients and the significance level of regression coefficients
with a threshold of 0.05. The accuracy of the regression model was assessed using the
adjusted coefficient of determination and the standard error of the estimates. The adjusted
coefficient of determination was particularly valuable as it accounted for model complexity
and is often preferred over traditional coefficients. Equations (6)–(8) were used to represent
the coefficient of determination, adjusted coefficient of determination, and standard error
of the estimates, respectively.

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (6)

R2
adj = 1 −

(
1 − R2

)
· n − 1
n − k − 1

(7)

SE(ε) =
√Σ(ŷi − yi)

2

n − k − 1
(8)

where n denotes the number of samples, k represents the number of independent variables,
yi is the i-th actual measurement data, ŷi is the predicted value for the i-th data point, and
y represents the mean value of the dependent variable y.

Table 6 presents the backward elimination regression analysis results for Model IBSM .
A total of eight steps were performed, and the variables X7, X13, X2, X3, X8, X1, and X5
were removed in higher order of their p-values, which exceeded 0.05. Despite reducing
the number of independent variables, R2

adj remained unchanged at 0.86 and the final SE(ε)
value was 0.170, the same as it was in step 1. Therefore, the model from step 8 was presented
as the final regression equation for predicting BSM using linear multiple regression analysis.
Table 7 presents the regression analysis results obtained using the backward elimination
method for Model IσSFS , which followed the same procedure as BSM. A total of eight steps
resulted in removing variables in the following order: X13, X8, X9, X3, X2, X5, and X1. After
eight steps, R2

adj remained at 0.838, and SE(ε) was 7.461. Accordingly, the regression model
is represented as Equation (9).

Model IBSM = 3.326 − 0.86X4 − 0.26X9 + 0.90X10 − 0.85X14 + 1.00X16
Model IσSFS = −47.9 + 51.44X4 + 17.40X7 − 28.72X10 + 54.70X14 − 36.03X16

(9)

The variables X4, X10, X14, and X16 were observed to simultaneously satisfy the
significance level of 0.05 for both BSM and σSFS. The standardized regression coefficient
was utilized to examine the contributions of the variables used to determine the fatigue
characteristics. The contributions are presented in Table 8. The standardized regression
coefficients revealed that X14 had the most significant influence, followed by X4, X10, X16,
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and X9 as the critical factors for predicting BSM. For σSFS, the order of importance for
factors was X14, X4, X10, X16, and X7.

Table 6. Significance provability values of regression coefficients for the back elimination method
and its result for Model IBSM .

p-Value
Step

#1 #2 #3 #4 #5 #6 #7 #8

X1 0.20 0.20 0.21 0.16 0.11 0.18 - -
X2 0.73 0.74 0.83 - - - - -
X3 0.35 0.34 0.33 0.29 - - - -
X4 0.07 0.06 0.01 0.00 0.00 0.00 0.00 0.00
X5 0.24 0.24 0.19 0.11 0.10 0.09 0.14 -
X7 0.83 - - - - - - -
X8 0.26 0.23 0.24 0.23 0.19 - - -
X9 0.05 0.05 0.04 0.01 0.01 0.03 0.03 0.03
X10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13 0.075 0.76 - - - - - -
X14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16 0.11 0.10 0.11 0.08 0.00 0.00 0.00 0.00

R2
adj 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

SE(ε) 0.170 0.169 0.168 0.167 0.167 0.167 0.169 0.170

Table 7. Significance provability values of regression coefficients for the back elimination method
and its result for Model IσSFS .

p-Value
Step

#1 #2 #3 #4 #5 #6 #7 #8

X1 0.62 0.61 0.60 0.24 0.10 0.07 0.07 -
X2 0.59 0.53 0.52 0.52 0.53 - - -
X3 0.78 0.74 0.73 0.83 - - - -
X4 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5 0.37 0.25 0.24 0.20 0.18 0.09 - -
X7 0.10 0.09 0.08 0.08 0.06 0.06 0.03 0.01
X8 0.97 0.97 - - - - - -
X9 0.80 0.78 0.78 - - - - -
X10 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
X13 0.98 - - - - - - -
X14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16 0.23 0.02 0.02 0.02 0.10 0.00 0.00 0.00

R2
adj 0.84 0.84 0.84 0.84 0.85 0.85 0.84 0.84

SE(ε) 7.474 7.424 7.375 7.331 7.286 7.258 7.348 7.461

Table 8. Standardized regression coefficients of Model I.

X4 X7 X9 X10 X14 X16

Model IBSM −0.50 - −0.14 0.50 −0.50 0.40

Model IσSFS 0.50 0.14 - −0.38 0.66 −0.36

Another regression model was considered for predicting fatigue characteristics, uti-
lizing the same dependent and independent variables. The non-linear regression model
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involved taking the logarithm of the 17 variables extracted from the welded geometry for
analysis and back-transforming them to obtain a form similar to Equation (10).

Y = β0·X1β1 ·X2β2 ·X3β3 ·X4β4 · · · ·X17β17 (10)

As revealed during the examination of the linear regression model that considered
issues including model overfitting and complexity, backward elimination proved to be
more effective in constructing the regression model. Therefore, only the results obtained
through the method were considered for the non-linear regression model. The results are
presented in Equation (11).

Model I IBSM = 10.23·X4−0.46·X100.42·X13−0.38·X14−0.35·X160.44

Model I IσSFS = 0.000995·X3−0.72·X41.04·X90.78·X10−1.04·X142.02·X161.87 (11)

Among the critical factors in the non-linear regression model for predicting BSM
and σSFS, X4, X10, X14, and X16 were significant in both prediction models. R2

adj for
Model I IBSM and Model I IσSFS in the multiple non-linear regression model was 0.863 and
0.860, respectively. Additionally, SE(ε) values were 0.024 and 0.071, respectively.

The standardized regression coefficients were calculated for Model I I, a non-linear
regression model, using the same method as Model I to examine the influence of inde-
pendent variables on the dependent variable. These results are presented in Table 9. In
both Model I IBSM and Model I IσSFS , the standardized regression coefficients for X4 and
X16 were highest. It was observed that the independent variables X4, X10, X14, and X16
intersect in the non-linear models predicting BSM and σSFS. Based on the standardized
coefficients of the multi linear regression model and non-linear regression model, which
predict the S–N curve (BSM and σSFS) through weld geometry factors (independent vari-
ables) in a lap weld, it was determined that weld geometry factors X4, X10, X14, and X16
are significant variables.

Table 9. Standardized regression coefficients of Model I I.

X3 X4 X9 X10 X13 X14 X16

Model I IBSM - −0.518 - 0.483 −0.372 −0.409 0.458

Model I IσSFS −0.237 0.365 0.287 −0.408 - 0.781 0.785

Finally, a second-order polynomial regression model was applied to predict BSM and
σSFS. Considering complexity and analysis, only four independent variables (X4, X10, X14,
X16) were used, and backward elimination was applied to enhance the model performance,
as shown in Equation (12).

Model I I IBSM = 3.02 + 0.97X4 + 0.94X10 − 1.08X14 − 1.01X16 − 1.07X42 + 1.25X14·X16
Model I I IσSFS = 491 − 624X4 − 26.27X10 − 464X14 + 491X16 + 142.4X42 + 112.6X142 + 291.4X·X14

−145.9X14·X16 − 186X14·X16
(12)

The regression analysis showed that the R2
adj values for Model I I IBSM , and Model I I IσSFS

were 0.863 and 0.851, respectively. The values of SE(ε) were 0.168 and 7.158, respectively.
Although the second-order polynomial regression model introduced a more complex
structure, compared with the multiple linear and non-linear models, the coefficient of
determination and standard error were not improved.

Various regression analyses were employed to statistically analyze the impact of weld
joint geometry on fatigue characteristics and propose diverse fatigue property prediction
models. While slight variations did exist among the models used, up to 86% of the total
variability could be explained collectively. Figure 9 compares the measured and predicted
values of BSM and σSFS, with the quantified results presented in Tables 10 and 11.
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Table 10. Coefficient of determination and standard error of the estimate for the BSM estimation models.

BSM Model I Model II Model III

R2
adj 0.863 0.867 0.863

SE(ε) 0.170 0.024 0.168

Table 11. Coefficient of determination and standard error of the estimate for the σSFS estimation models.

σSFS Model I Model II Model III

R2
adj 0.838 0.860 0.851

SE(ε) 7.461 0.071 7.158

5.3. Fatigue Life Prediction Using Statistical Models

BSM and σSFS were derived using the Basquin eqation and predicted through statisti-
cal modeling. Measuring the weld size allowed for the prediction of the slope of the S–N
curve and the endurance limit (2 × 106 cycles). In this study, we aim to predict the fatigue
characteristics of chassis components by determining fatigue and endurance limits for au-
tomobile chassis parts. The chassis comprise various components, and the magnitude and
nature of stress were confirmed to vary depending on these components. In evaluating the
fatigue life of chassis components, durability assessments were conducted by maintaining
a constant load control value rather than assessing the component fatigue life based on
fatigue load variations, as typically undertaken when deriving the S–N curve. Thus, a
minimum fatigue life of 100,000–300,000 cycles was required. As a result, predicting fatigue
life through weld configuration and fatigue stress could assist in assessing the fatigue
characteristics of chassis components.

The main derived factors (X4, X10, X14, X16) and the applied stress (σr) were selected
as independent variables, while fatigue life was designated as the dependent variable. A
regression model for predicting fatigue life was developed using the backward elimination
method. Equations (13)–(15) represent the results of regression models for predicting fatigue
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life, including multiple linear (Model IV), multiple non-linear (Model V), second-order
polynomial (Model VI) models.

Model IV : logN = 4.257 − 0.01σr + 0.71X4 − 0.34X10 + 0.96X14 (13)

Model V : N = 6.19·σ−3.10
r ·X42.39·X10−1.64·X143.59 (14)

Model VI : N = 17.46 − 0.01σr − 7.63X4 − 4.96X10 − 9.87X14 + 6.40X16 + 1.90X42 + 0.77X102

+2.06X142 + 3.55X4·X14 − 1.96X4·X16 + 1.60X10·X14 − 2.18X14·X16
(15)

Table 12 presents the results of regression analysis. The R2
adj value for Model V was

the highest at 0.955. Model IV and Model VI had R2
adj value of 0.904 and 0.906, respectively.

Furthermore, the SE(ε) value for Model IV, Model V, and Model VI were 0.301, 0.206,
and 0.299, respectively. With the highest R2

adj and lowest SE(ε) values, Model V proved
superior for predicting fatigue life among the models. The results of predicting fatigue life
based on these load and key factor variables are presented in Figure 10.

Table 12. Coefficient of determination and standard error of the estimate for the N estimation models.

N Model IV Model V Model VI

R2
adj 0.904 0.955 0.906

SE(ε) 0.301 0.206 0.299

Metals 2024, 14, x FOR PEER REVIEW 15 of 21 
 

 

Thus, a minimum fatigue life of 100,000–300,000 cycles was required. As a result, predict-
ing fatigue life through weld configuration and fatigue stress could assist in assessing the 
fatigue characteristics of chassis components. 

The main derived factors (X4, X10, X14, X16) and the applied stress (𝜎𝑟) were selected 
as independent variables, while fatigue life was designated as the dependent variable. A 
regression model for predicting fatigue life was developed using the backward elimina-
tion method. Equations (13)–(15) represent the results of regression models for predicting 
fatigue life, including multiple linear (𝑀𝑜𝑑𝑒𝑙 𝐼𝑉), multiple non-linear (𝑀𝑜𝑑𝑒𝑙 𝑉), second-
order polynomial (𝑀𝑜𝑑𝑒𝑙 𝑉𝐼) models. 𝑀𝑜𝑑𝑒𝑙 𝐼𝑉: 𝑙𝑜𝑔𝑁 = 4.257 − 0.01𝜎௥ + 0.71𝑋4 − 0.34𝑋10 + 0.96𝑋14 (13) 𝑀𝑜𝑑𝑒𝑙 𝑉: 𝑁 = 6.19 ∙ 𝜎௥ି ଷ.ଵ଴ ∙ 𝑋4ଶ.ଷଽ ∙ 𝑋10ିଵ.଺ସ ∙ 𝑋14ଷ.ହଽ (14) 𝑀𝑜𝑑𝑒𝑙 𝑉𝐼: 𝑁 = 17.46 − 0.01𝜎௥ − 7.63𝑋4 − 4.96𝑋10 − 9.87𝑋14 + 6.40𝑋16 + 1.90𝑋4ଶ + 0.77𝑋10ଶ+ 2.06𝑋14ଶ + 3.55𝑋4 ∙ 𝑋14 − 1.96𝑋4 ∙ 𝑋16 + 1.60𝑋10 ∙ 𝑋14 − 2.18𝑋14 ∙ 𝑋16 

(15) 

Table 12 presents the results of regression analysis. The 𝑅௔ௗ௝ଶ  value for 𝑀𝑜𝑑𝑒𝑙 𝑉 was 
the highest at 0.955. 𝑀𝑜𝑑𝑒𝑙 𝐼𝑉 and 𝑀𝑜𝑑𝑒𝑙 𝑉𝐼 had 𝑅௔ௗ௝ଶ  value of 0.904 and 0.906, respec-
tively. Furthermore, the 𝑆𝐸(𝜀) value for 𝑀𝑜𝑑𝑒𝑙 𝐼𝑉, 𝑀𝑜𝑑𝑒𝑙 𝑉,and 𝑀𝑜𝑑𝑒𝑙 𝑉𝐼 were 0.301, 
0.206, and 0.299, respectively. With the highest 𝑅௔ௗ௝ଶ  and lowest 𝑆𝐸(𝜀) values, 𝑀𝑜𝑑𝑒𝑙 𝑉 
proved superior for predicting fatigue life among the models. The results of predicting 
fatigue life based on these load and key factor variables are presented in Figure 10. 

Table 12. Coefficient of determination and standard error of the estimate for the 𝑁 estimation mod-
els. 𝑵 𝑴𝒐𝒅𝒆𝒍 𝑰𝑽 𝑴𝒐𝒅𝒆𝒍 𝑽 𝑴𝒐𝒅𝒆𝒍 𝑽𝑰 𝑅௔ௗ௝ଶ  0.904 0.955 0.906 𝑆𝐸(𝜀) 0.301 0.206 0.299 

2.0 3.0 4.0 5.0 6.0 7.0

2.0
3.0
4.0
5.0
6.0
7.0

2.0 3.0 4.0 5.0 6.0 7.0 2.0 3.0 4.0 5.0 6.0 7.0

 

 

Es
tim

at
ed

 lo
g 

N

Measured log N

Model V Model VIModel IV

 

  

 
Figure 10. Relationship between measured number of cycles to failure (log𝑁) and estimated number 
of cycles to failure (log𝑁) by regression model. 

5.4. Analysis of Significant Weld Geometry Affecting Fatigue Characteristics 
X4, X10, X14, and X16 were considered significant factors in predicting fatigue be-

havior for lap welds that include a gap. Fatigue fracture in lap joints occurs in two forms 
[36]. In one case, a fatigue crack initiates at the weld toe on the top surface of the bottom 
plate and propagates to the bottom surface of the bottom plate, leading to failure (Figure 
11a). In the other case, a fatigue crack initiates at the weld root and propagates to the top 
surface of the top plate, resulting in failure (Figure 11b). Figure 12 illustrates a schematic 
of the stress distribution at area A (𝜎஺), B (𝜏஻), C (𝜏௖) when subjected to tensile forces in 
lap welds [37]. During load application, stress distribution in the weld joint was not 

Figure 10. Relationship between measured number of cycles to failure (logN) and estimated number
of cycles to failure (logN) by regression model.

5.4. Analysis of Significant Weld Geometry Affecting Fatigue Characteristics

X4, X10, X14, and X16 were considered significant factors in predicting fatigue behavior
for lap welds that include a gap. Fatigue fracture in lap joints occurs in two forms [36]. In
one case, a fatigue crack initiates at the weld toe on the top surface of the bottom plate and
propagates to the bottom surface of the bottom plate, leading to failure (Figure 11a). In the
other case, a fatigue crack initiates at the weld root and propagates to the top surface of
the top plate, resulting in failure (Figure 11b). Figure 12 illustrates a schematic of the stress
distribution at area A (σA), B (τB), C (τc) when subjected to tensile forces in lap welds [37].
During load application, stress distribution in the weld joint was not uniform (Figure 12a).
Herein, t represents the material thickness (2.3 mm) and l denotes the width of the fatigue
specimen (10 mm). The same stress acted in area A, where thickness and width were
uniform (Equation (16)). The force acting on area B resulted in shear stress (τB); and, as
X4 increased, τB decreased (Equation (17)). Finally, at area C, stress concentration was the
greatest at the red point on the bottom plate, and an increase in angle X10 led to an increase
in shear stress on the welded toe surface of the bottom plate (Equation (18)). The additional
bending stress occurred at the joint in tension due to the eccentricity between one-side lap
welds and the applied force, as depicted in Figure 12b.
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The higher the stress, the greater the bending force, thereby increasing stress concen-
tration at the weld root. Therefore, the magnitude of X14 was considered to be crucial.
Additionally, the magnitude of X16 was expected to be determined by X4, X10, and X14.
In conclusion, the four factors (X4, X10, X14, and X16) derived from the regression model
can be considered as variables that represent stress concentration and magnitude in the lap
welds, allowing us to predict fatigue characteristics.

σA =
F

A1
=

F
t·l (16)

τB =
F

A2
=

F
X4·l (17)

τc =
F

cosθdθ
= F·secθtanθ = F· sinθ

cos2θ
(18)

6. Conclusions

In this study, we developed a statistical analysis-based model to predict the fatigue
characteristics of lap welds using the weld geometry factors of lap joints and proposed key
weld geometry factors in response to the fatigue characteristics of welds with gaps.

(1) A GA590 2.3 mm sheets were overlapped, and welding performed by varying the
joint position, WP, WFR, WS, and gap to produce various weld geometries. Among
the weld geometry factors, the size of seven length factors, including leg length; seven
angle factors, including toe angle; and three area factors, were measured and utilized
as independent variables to predict fatigue characteristics.

(2) Eighty-seven S–N curves were derived under various welding conditions, and the
S–N curves varied according to change in WP, gap size, WFR, and WS. The Basuin
equation determined the BSM and σ′

f M
for each S–N curve. The BSM increased with

the gap size and showed a decreasing trend as the deposition rate increased. The σ′
f M
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showed a slight upward trend with increasing gap size, while significant changes
were not observed with variations in the deposition rate.

(3) BSM and σSFS were selected as dependent variables to predict the S–N curve with
the M-2SD applied, and 17 weld geometry factors were used as independent vari-
ables. Through correlation analysis, the weld geometry factors X6, X11, X12, X15,
and X17, which showed multicollinearity among variables, were excluded from the
independent variables.

(4) Backward elimination was applied to develop multiple linear and non-linear regres-
sion models to predict BSM and σSFS. The weld geometry factors applied across both
multiple linear regression models and multiple non-linear regression models were X4
(length), X10 (Angle), X14 (Area), and X16 (Area). Upon examining the standardized
regression coefficients, the four factors were identified as the primary weld geometry
factors for predicting BSM and σSFS.

(5) For the multiple linear regression model, the adjusted R-squared values for BSM and
σSFS were 0.863 and 0.838, respectively. The adjusted R-squared values for the multiple
non-linear regression models for BSM and σSFS were 0.867 and 0.860, respectively. The
second-order polynomial regression model performed backward elimination on the
four significant weld geometry factors, resulting in adjusted R-squared values of 0.863
and 0.851 for BSM and σSFS, respectively. The predictive performance of the three
regression models was nearly identical at around 86%, but the multiple non-linear
regression model showed slightly better performance.

(6) A statistical model for predicting fatigue life based on the key weld geometry factors
was proposed. The adjusted R-squared and standard error of the estimates for the
multiple non-linear regression model were 0.955 and 0.206, respectively, confirming
its excellent predictive performance in estimating fatigue life.

(7) Among the weld geometry factors of the lap joint with a gap, X4, X10, X14, and X16
are considered to be closely related to stress concentration. These four factors are
judged to predict fatigue characteristics.

When manufacturing chassis components that are subject to fatigue loading, it is
challenging to completely eliminate or consistently manage the gap. Aspects such as leg
length, penetration depth, throat thickness, and the toe angle of the weld in lap joint are
managed in the manufactured chassis components. The controlled weld geometry remains
the same even if a gap occurs in the lap joint. For lap joints with gaps that require fatigue
characteristics, it is necessary to manage new weld geometry factors such as X10, X14, and
X16, in addition to throat thickness (X4).

Additionally, easy statistical analysis of the main weld geometry factors predicting
fatigue characteristics in lap joints, which requires significant time and cost, is possible.
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Appendix A

Table A1. Fatigue combination for case study.

Joint WP WFR WS Gap Joint WP WP WS Gap

A-C-5.0-60-0 A CMT 5.0 60 0 A-C-5.0-80-0 A CMT 5.0 80 0
A-C-7.0-60-0 A CMT 7.0 60 0 A-C-7.0-80-0 A CMT 7.0 80 0
A-C-9.0-60-0 A CMT 9.0 60 0 A-C-9.0-80-0 A CMT 9.0 80 0

A-C-5.0-60-0.2 A CMT 5.0 60 0.2 A-C-5.0-80-0.2 A CMT 5.0 80 0.2
A-C-7.0-60-0.2 A CMT 7.0 60 0.2 A-C-7.0-80-0.2 A CMT 7.0 80 0.2
A-C-9.0-60-0.2 A CMT 9.0 60 0.2 A-C-9.0-80-0.2 A CMT 9.0 80 0.2
A-C-5.0-60-0.5 A CMT 5.0 60 0.5 A-C-5.0-80-0.5 A CMT 5.0 80 0.5
A-C-7.0-60-0.5 A CMT 7.0 60 0.5 A-C-7.0-80-0.5 A CMT 7.0 80 0.5
A-C-9.0-60-0.5 A CMT 9.0 60 0.5 A-C-9.0-80-0.5 A CMT 9.0 80 0.5
A-C-5.0-60-1.0 A CMT 5.0 60 1.0 A-C-5.0-80-1.0 A CMT 5.0 80 1.0
A-C-7.0-60-1.0 A CMT 7.0 60 1.0 A-C-7.0-80-1.0 A CMT 7.0 80 1.0
A-C-9.0-60-1.0 A CMT 9.0 60 1.0 A-C-9.0-80-1.0 A CMT 9.0 80 1.0
A-D-3.0-60-0 A DC 3.0 60 0 A-D-3.0-80-0 A DC 3.0 80 0
A-D-5.0-60-0 A DC 5.0 60 0 A-D-5.0-80-0 A DC 5.0 80 0
A-D-7.0-60-0 A DC 7.0 60 0 A-D-7.0-80-0 A DC 7.0 80 0

A-D-3.0-60-0.2 A DC 3.0 60 0.2 A-D-5.0-80-0.2 A DC 5.0 80 0.2
A-D-5.0-60-0.2 A DC 5.0 60 0.2 A-D-7.0-80-0.2 A DC 7.0 80 0.2
A-D-7.0-60-0.2 A DC 7.0 60 0.2 A-D-5.0-80-0.5 A DC 5.0 80 0.5
A-D-3.0-60-0.5 A DC 3.0 60 0.5 A-D-7.0-80-0.5 A DC 7.0 80 0.5
A-D-5.0-60-0.5 A DC 5.0 60 0.5 A-D-5.0-80-1.0 A DC 5.0 80 1.0
A-D-7.0-60-0.5 A DC 7.0 60 0.5 A-D-7.0-80-1.0 A DC 7.0 80 1.0
A-D-5.0-60-1.0 A DC 5.0 60 1.0
A-D-7.0-60-1.0 A DC 7.0 60 1.0
B-C-5.0-60-0 B CMT 5.0 60 0 B-C-5.0-80-0 B CMT 5.0 80 0
B-C-7.0-60-0 B CMT 7.0 60 0 B-C-7.0-80-0 B CMT 7.0 80 0
B-C-9.0-60-0 B CMT 9.0 60 0 B-C-9.0-80-0 B CMT 9.0 80 0

B-C-5.0-60-0.2 B CMT 5.0 60 0.2 B-C-5.0-80-0.2 B CMT 5.0 80 0.2
B-C-7.0-60-0.2 B CMT 7.0 60 0.2 B-C-7.0-80-0.2 B CMT 7.0 80 0.2
B-C-9.0-60-0.2 B CMT 9.0 60 0.2 B-C-9.0-80-0.2 B CMT 9.0 80 0.2
B-C-5.0-60-0.5 B CMT 5.0 60 0.5 B-C-5.0-80-0.5 B CMT 5.0 80 0.5
B-C-7.0-60-0.5 B CMT 7.0 60 0.5 B-C-7.0-80-0.5 B CMT 7.0 80 0.5
B-C-9.0-60-0.5 B CMT 9.0 60 0.5 B-C-9.0-80-0.5 B CMT 9.0 80 0.5
B-C-5.0-60-1.0 B CMT 5.0 60 1.0 B-C-5.0-80-1.0 B CMT 5.0 80 1.0
B-C-7.0-60-1.0 B CMT 7.0 60 1.0 B-C-7.0-80-1.0 B CMT 7.0 80 1.0
B-C-9.0-60-1.0 B CMT 9.0 60 1.0 B-C-9.0-80-1.0 B CMT 9.0 80 1.0
B-D-3.0-60-0 B DC 3.0 60 0 B-D-3.0-80-0 B DC 5.0 80 0
B-D-5.0-60-0 B DC 5.0 60 0 B-D-5.0-80-0 B DC 7.0 80 0
B-D-7.0-60-0 B DC 7.0 60 0 B-D-7.0-80-0 B DC 9.0 80 0

B-D-3.0-60-0.2 B DC 3.0 60 0.2 B-D-3.0-80-0.2 B DC 3.0 80 0.2
B-D-5.0-60-0.2 B DC 5.0 60 0.2 B-D-5.0-80-0.2 B DC 5.0 80 0.2
B-D-7.0-60-0.2 B DC 7.0 60 0.2 B-D-7.0-80-0.2 B DC 7.0 80 0.2
B-D-3.0-60-0.5 B DC 3.0 60 0.5 B-D-5.0-80-0.5 B DC 5.0 80 0.5
B-D-5.0-60-0.5 B DC 5.0 60 0.5 B-D-7.0-80-0.5 B DC 7.0 80 0.5
B-D-7.0-60-0.5 B DC 7.0 60 0.5
B-D-5.0-60-1.0 B DC 5.0 60 1.0
B-D-7.0-60-1.0 B DC 7.0 60 1.0
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