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Abstract: Automotive chassis components, constructed as lap joints and produced by gas metal
arc welding (GMAW), require fatigue durability. The fatigue properties of the weld in a lap joint
are largely determined by weld geometry factors. When there is no gap or a consistent gap in the
lap joint, improving the geometry of the weld toe can alleviate stress concentration and enhance
fatigue properties. However, due to machining tolerances, it is difficult to completely eliminate or
consistently manage the gap in the joint. In the case of a lap-welded joint with an inconsistent gap, it
is necessary to identify the weld geometry factors related to fatigue properties. Evaluating the fatigue
behavior of materials and welded joints requires significant time and cost, meaning that research
that seeks to predict fatigue properties is essential. More research is needed on predicting fatigue
properties related to automotive chassis components, particularly studies on predicting the fatigue
properties of lap-welded joints with gaps. This study proposed a regression model for predicting
fatigue properties based on crucial weld geometry factors in lap-welded joints with gaps using
statistical analysis. Welding conditions were varied in order to build various weld geometries in
joints configured in a lap with gaps of 0, 0.2, 0.5, and 1.0 mm, and 87 S-N curves for the lap-welded
joints were derived. As input variables, 17 weld geometry factors (7 lengths, 7 angles, and 3 area
factors) were selected. The slope of the S-N curve using the Basquin model from the S-N curve and
the safe fatigue strength were selected as output variables for prediction in order to develop the
regression model. Multiple linear regression models, multiple non-linear regression models, and
second-order polynomial regression models were proposed to predict fatigue properties. Backward
elimination was applied to simplify the models and reduce overfitting. Among the three proposed
regression models, the multiple non-linear regression model had a coefficient of determination greater
than 0.86. In lap-welded joints with gaps, the weld geometry factors representing fatigue properties
were identified through standardized regression coefficients, and four weld geometry factors related
to stress concentration were proposed.

Keywords: lap-welded joint; GMAW; fatigue characteristic prediction; regression model; joint gap;
weld geometry

1. Introduction

The automobile chassis collectively refers to all the parts of a car, excluding the body,
and consists of the frame, powertrain, suspension, steering, and braking components.
Among these, the frame serves as the fundamental skeleton of the chassis, comprising
cross-members, lower arms, and coupled torsion beam axle, and is located at the very
bottom of the car, requiring durability against repetitive loads during operation.

The chassis frame, which requires fatigue durability, mainly comprises lap joints
and is primarily manufactured using GMAW to ensure strength. In GMAW, using filler
wire, the weld metal will inevitably impart a geometric shape to the joint. This acts as
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a stress concentration point due to repeated fatigue, leading to fracture initiation and
ultimately decreasing the component’s fatigue durability. Even when high-strength steel
is applied to chassis components for weight reduction, the benefits of high-strength steel
are lost due to the notch effect of lap welds [1,2]. In welded joints with geometric shapes,
such as lap welds, the bead shape has a more significant impact on fatigue characteristics
than does the weld’s microstructure [3,4]. Ahiale et al. [4] compared the weld geometry
and fatigue characteristics of GMA welds and plasma arc welds in lap joints of 590 MPa-
grade dual-phase (DP) steel. Although the heat input in plasma arc welding is relatively
higher than that of GMAW, increasing the arc length improves the weld geometry, leading
to enhanced fatigue characteristics. Additionally, in the coarse-grain heat-affected zone
(CGHAZ), a stress concentration area at the toe, the fraction of acicular ferrite increased in
the plasma arc welds. This increase in the acicular ferrite fraction enhances resistance to
fatigue crack initiation and early propagation, leading to improved fatigue characteristics.
El-Batahgy [5] reproduced the welding thermal cycles of 370 MPa and 500 MPa-grade
steels to fabricate CGHAZ specimens and conducted a bending fatigue test. Widmanstatten
ferrite exhibited higher tensile strength and fatigue strength compared with polygonal
ferrite. Given that the CGHAZ showed higher fatigue strength than the base material, the
material’s influence on the fatigue strength reduction in lap joint welds is not as significant
as the influence of bead geometry. Previous studies have reported that, particularly in lap
joints, improving the weld toe angle alleviates stress concentration at the notch area of
the weld, thereby enhancing fatigue characteristics [6-10]. Prior investigations examining
the fatigue characteristics of lap joints have compared the relationship between weld toe
angle and fatigue characteristics only in flawless joints without gaps or in joints with a
consistent gap.

Due to deformation during welding and machining dimensional tolerances, the joint
gap in welded parts cannot be eliminated or consistently maintained. The presence of gaps
in the joint can lead to welding defects, even when welding is performed under the same
conditions on identical components [11]. It has been reported that gaps deteriorate fatigue
properties [12,13]. Kim et at [14] have reported that, in the welds of lap joints, an increase
in the joint gap causes the filler metal of the GMAW process to fill that gap, resulting in
a smoother weld profile and an increase in the apparent weld toe angle. However, they
confirm that stress concentration at the weld root occurred, leading to decreased fatigue
strength. Therefore, they suggest considering geometric shapes other than a weld toe angle
for lap welds with gaps requiring fatigue characteristics.

Deriving S-N curves to determine fatigue characteristics is a time-consuming and
expensive process. Therefore, methods and research for predicting fatigue characteristics
are being actively pursued. After Palmgren introduced the concept of damage accumula-
tion [15] and Miner introduced the linear damage rule [16], many damage and prediction
models were developed. Fatemi et al. [17] and Hectors et al. [18] have reviewed an article
paper on cumulative damage and life prediction models for fatigue. They have confirmed
that linear and non-linear fatigue cumulative damage rules can predict fatigue character-
istics based on fatigue life calculations. These calculations reflect the material and weld
joint properties and the stress—strain relationship resulting from repetitive loading cycles.
Machine learning methods have recently been applied to process data, including noisy data,
and learn complex non-linear relationships by which to predict the fatigue characteristics
of materials and weldments based on data without prior assumptions. Various machine
learning algorithms, including artificial neural networks, convolutional neural networks,
residual neural networks, and gradient boosting decision trees, have been applied to predict
the fatigue characteristics of materials and weldments, demonstrating excellent fatigue
prediction performance [19-22].

In predicting the fatigue characteristics of the lap weld, which is the most commonly
used single-sided joint in chassis components, it is considered difficult to apply a fatigue
cumulative damage model for load cycles due to the challenge of reflecting the changes
to weld shape (non-uniform stress distribution) that arise due to welding conditions and
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disturbances during welding. Machine-learning-based prediction models operate as black-
box surrogate models between input and output parameters, making the internal decision-
making process opaque and difficult to interpret. Additionally, it is challenging to assign
physical meaning to the input variables in relation to the output variables [23]. Although
studies to fatigue characteristics are being reported for chassis components requiring fatigue
properties, research on predicting fatigue characteristics remains relatively scarce. The
lack of research on predicting the fatigue characteristics of automotive chassis components
is due to the widely accepted fact that improving the weld toe angle of typical lap joints
enhances fatigue characteristics. However, the need for additional research on predicting
the fatigue characteristics of lap welds, especially considering the gap, is urgent. This is
particularly crucial in actual components, where it is impossible to eliminate or maintain a
consistent joint gap [11].

This study not only identified the significant weld geometry factors affecting fatigue
characteristics in lap welds with gaps but also predicted an S-N curve based on a regression
model. Lap welding was performed on GA 590 MPa 2.3 mm, which is widely used in
chassis components. The joint gap size (Gap), welding process (WP), wire feed rate (WFR),
and welding speed (WS) were varied to achieve different weld geometric shapes. A total
of 87 S-N curves were derived through fatigue tests on lap joint specimens with various
weld shapes. Through cross-sectional analysis, 17 weld geometry measurements (7 length
factors, 7 angle factors, and 3 area factors) were used as input variables. Three regression
models were proposed to predict the slope of the S-N curve and the fatigue strength
(fatigue strength at 2 x 10 cycles) with a safety factor. Three models were developed using
backward elimination: a multiple linear regression model, a multiple non-linear regression
model, and a second-order polynomial regression model. The significant factors affecting
fatigue characteristics were proposed through standardized regression coefficients.

2. Experimental Procedure
2.1. Welding Procedure

A GA 590 MPa grade steel sheet of thickness 2.3 mm was considered for the welding
experiment, and AWS A5.18 ER70S-3 of diameter 1.2 mm was used as the filler wire.
Table 1 shows the chemical composition and mechanical properties of the base material
and filler wire.

Table 1. The chemical composition and mechanical properties of the base material and filler wire.

Chemical Composition [wt.%] Mechanical Properties
C Si Mn P S TS [MPal*  YS [MPa] * EL [%] *
Base material 0.07 0.14 1.44 0.13 0.002 610 583 25
Filler wire 0.07 0.65 1.14 0.02 0.010 560 440 28

* Note. TS: tensile strength, YS: yield strength, EL: elongation.

The base material was cut to a size of 150 mm x 300 mm, and welding was performed
with the specimens overlapped in the rolling direction. As shown in Figure 1, two types
of joint orientations were selected. Various weld joint configurations were considered to
predict fatigue characteristics through weld joint shapes, and welding was conducted using
diverse welding processes and conditions. In order to confirm fatigue characteristics based
on joint gap, four gap conditions were selected: 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm. Cold
metal transfer (CMT) and direct current (DC) were applied to the two types of joints pre-
pared for the WP. CMT generates a short circuit at a low current and enables welding with
low heat input by stably controlling the short circuit through wire feed control [24]. CMT is
characterized by a spatter-free metal transfer, excellent gap-bridging ability, and smooth
bead formation [25]. The TPS3200CMT (Fronius Co., Petenbach, Austria) welding system
was used for CMT, while the DM500 (Daihen Co., Osaka, Japan) welding system was
used for DC waveform. The welding system was installed on a robot (GP25, Yaskawa Co.,
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Kitakyushu, Japan) to produce the welding specimens through automated welding. The
welding parameters were adjusted as follows, and the detailed welding conditions are listed
in Table 2. WEFR was applied at three levels: 5.0 (setting current/voltage: 165 A/15.2 V),
7.0 (214 A/16.2 V), and 9.0 (258 A/20.5 V) m/min for CMT and 3.0 (140 A/16.8 V), 5.0
(200 A/18.0 V), and 7.0 (254 A/25.7 V) m/min for DC. The welding voltage was applied ac-
cording to the appropriate voltage conditions provided by the welding power source. Two
levels of WS were selected as 60 and 80 cm/min. Additionally, contact tip to work distance
(CTWD, «) and work angle were fixed at 15 mm and 45°, respectively. A 90% Ar + 10%
CO;, mixed shielding gas was provided at a flow rate of 25 L /min. The welding experiment
was repeated five times under the same conditions to produce a fatigue specimen.
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Figure 1. Schematic of joint preparation. (a) A position and (b) B position.

Table 2. Welding processes and conditions.

Parameters Value
Weld Joint A Position B Position
WP CMT DC CMT DC
WER (m/min) 5.0 (165 A/15.2V) 3.0 (140 A/16.8 V) 5.0 (165 A/15.2V) 3.0 (140 A/16.8V)
oo JIGUANSZY S0GMATION  oguaney  saeoAby
WS (cm/min) 60, 80
Gap (mm) 0,0.2,0.5,1.0
CTWD (x, mm) 15
Work angle (3, °) 45
Shielding gas 90% Ar + 10% CO; (25 L/min)

2.2. Fatigue Test Procedure

The fatigue test specimens were manufactured by referring to the ASTM E466 standard
for welding specimens (Figure 2) [26]. A spacer was inserted by combining the thickness
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Bottom plate

of the gap and base material. During arc welding of GA steel sheet, zinc vaporized by
the arc heat can become trapped in the weld metal, leading to porosity defects. These
porosity defects together constitute a factor that reduces fatigue life [14]. Figure 3 shows the
presence or absence of porosity in the fatigue test specimens as determined by radiographic
testing. In this study, we aimed to investigate the relationship between weld geometry
factors and fatigue characteristics. To exclude the influence of other factors, such as porosity,
we selected fatigue test specimens without porosity defects, as shown in Figure 3a. We
employed fatigue testing equipment (Instron 8801, Instron Co., Norwood, MA, USA) with
a maximum load of 100 kN. Table 3 show the fatigue test conditions. The stress ratio of a
specific component of an automobile chassis was adopted, and the endurance threshold
was set at the commonly used 2 x 10° cycles. A total of 87 S-N curves were derived
through fatigue testing and were used as data to predict fatigue characteristics. In this
study, the fatigue test specimens were denoted in the order of weld joint—WP—WFR—
WS—Gap (Table A1). As an example, the following conditions—A position, WP CMT, WFR
7.0 m/min, WS 60 cm/min, Gap 0.2 mm (Table 2)—are expressed as A-C (CMT: C, DC:
D)-7.0-60-0.2.

AN\
S

20

“» Gap thickness
Base material thickness (2.3 mm)

Spacer insert

Unit : mm

Figure 2. Configuration of fatigue specimen.

Weld metal Upper plate

5.0 mm

@) (b)

Figure 3. Presence of porosity in fatigue specimens analyzed by radiographic testing (a) without
porosity and (b) with porosity.

Table 3. Fatigue test conditions.

Parameters Value
366-122 MPa (at intervals of 10%)
122-62 MPa (at intervals of 5%)

Maximum stress

(Omax)
62 MPa under (at intervals of 2.5%)
Stress ratio (R) 0.1
Frequency 40 Hz
Endurance threshold 2 x 10° cycles

3. Method for Developing the S—-N Curve Prediction Model
3.1. Selection of Independent and Dependent Variables

Figures A1l and A2 show representative cross-sections after welding with the parame-
ters listed in Table 2. A lap joint weld typically appears in a shape similar to that illustrated
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in Figure 4, and the weld joint geometry data were extracted and used as independent
variables, as in Figure 4. As criteria for configuration of weld shape to be used in a fatigue
prediction model, 17 parameters were extracted. The method for extracting the 17 pa-
rameters is summarized in Figure 4. In the geometry of the lap weld joint, seven factors
related to length, including leg length and penetration depth [27-30]; seven factors related
to angle [31], such as toe angle; and three factors related to area have been derived [31].

y _Gap

@) (b)

XI5
i X16

X17 T

Gap

(0)
Figure 4. Schematic of weld joint geometry factors for (a) length, (b) angle, and (c) area.

3.2. Selection of Dependent Variables

The response variable for developing the S-N curve prediction model was constructed
using the fatigue dataset. For each S-N curve, a logarithm was considered at the stress
range (0y), and the Basquin equation (Equation (1)) was applied to determine U} and b [32].

o= (7}- (Nf) - )

where (7} is the material property, Ny is the fatigue life as the number of cycles to failure
under a constant load, and b is the Basquin slope (BS).

In the S-N curve for the weld joint, establishing a safety factor to prevent fatigue failure
is essential. Modified (TJ’, (O‘}M) and Modified b (BSy;) were determined by applying M-
25D in Equation (2) [33].

1 n 1 n p—
NMZSD:HZ(N1+N2+"'+N11)_2'\/;Z(Ni_N)2 (2)
i3 i—1

where N represents fatigue life at ¢, while N signifies the mean life at ;.

Essentially, M-2SD represents fatigue life re-expressed by subtracting twice the stan-
dard deviation from the average fatigue life at ;. This value was used to design a safety
factor in the S-N curve using the Basquin equation. BS), incorporating the safety factor
was used as the dependent variable with which to predict fatigue characteristics through
weld joint geometry parameters. Only BS); was predicted, while U'J’(M was not predicted.
The reasons are explained in the following section. Predicting the endurance fatigue
limit (2 x 10° cycles) on the S-N curve was essential. Fatigue strength at a fatigue life of
2 x 10° cycles was derived from the Basquin equation. using M-2SD and compared with
the fatigue strength obtained through fatigue testing. Lower fatigue strength was defined
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as safety fatigue strength (SFS), considering stability against fatigue failure. The schematic
for osrs is presented in Figure 5. The critical factors obtained from BSys and SFS, along
with the individually applied value of stress levels, included independent variables that
were used to predict the overall fatigue life. Independent and dependent variables are
summarized in Table 4.

; — (NP
’5. . Basquin model o = a; -(N;)
v /4
©/
&
IS
£ Point A
oin
£20- i !
o e
2 SFS of point A
- SFS of point B<—I
Point B
1.5 -
10° 10* 10° 10° 10’

Number of cycles to failure (N)

Figure 5. Schematic for the definition of the safety fatigue strength (ogpg).

Table 4. Independent and dependent variables for predicting fatigue characteristics.

Independent Variable Dependent Variable.
Seventeen weld geometry factors BSuM, OsEs
Significant weld geometry factors Fatigue life

3.3. Development of an S—N Curve Prediction Model through Statistical Analysis

We employed a statistical analysis method, a regression model approach, to predict
the S-N curve. A regression model is a statistical analysis technique used to predict the
value of dependent variables from independent variables by assuming a mathematical
model between them. A generalized linear regression model was constructed, as given in
Equation (3).

Y =Bo+ )Y Bifi(Xo, X1, -+, Xn) +¢ 3)
i=1

where f; denotes a scalar function with independent variables as arguments and includes
non-linear and polynomial expressions. In this study, multiple linear, non-linear, and
second-order polynomial regression models were derived using the backward elimina-
tion method.

4. Result of Fatigue Behavior

A total of 87 S-N curves were derived from varying welding conditions, with some
of these selectively presented in Figure 6. It was observed that, as WER increases, fatigue
strength and life at a constant load increase (Figure 6a). Conversely, an increase in WS was
found to result in decreased fatigue life and strength (Figure 6b). As the gap increased,
fatigue life and strength decreased (Figure 6¢). The fatigue life and strength were seen to be
similar despite changes in the joint position (Figure 6d).
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Figure 6. Fatigue behavior of lap joint weld by welding conditions. (a) WFR variation (fixed B
position, WP: DC, WS: 60 cm/min, gap: 0 mm), (b) WS variation (fixed A position, gap: 0 mm),
(c) gap variation (fixed A position, WP: CMT, WFR: 5.0 m/min, WS: 80 cm/min), and (d) position
variation (fixed WFR: 5.0 m/min, WS: 60 cm/min, gap: 0 mm).

Using the Basquin model (Equation (1)), BSps and U}M were derived. M-25D was
applied to the fatigue life at the shared stress range and BS,s and O'}M
the logarithmic values in the Basquin model (Equation (4)).

were derived from

log o = logogy, — BSm-log Ny 4)

Figure 7 shows BSy; and lo gU}M derived from the S-N curves under varying welding
conditions. The X axis represents the deposition rate, which is proportional to WEFR and
inversely proportional to WS. Figure 7a shows the relationship between the deposition rate
and BSy;. As the value of BS); decreases, the slope of the S-N curve decreases, indicating
that the fatigue life increases within the same stress range. The BS); tends to decrease as the
deposition rate increases, regardless of the joint gap size. As the gap of the joint increases,
BS); increases for the same deposition rate. The variation in BSy; was more significant
with the joint gap size than the deposition rate. While increasing the deposition rate can
reduce BSj by improving the weld joint’s shape, an increase in gap size results in a greater
share force acting on the lap joint, thereby degrading the fatigue characteristics of the lap
weld. In the field in which chassis parts are manufactured, the joint gap is an uncontrollable
variable, so it was not measured separately. It was determined that the weld joint shape
measured in Figure 4, including the gap, varies. Figure 7b shows the relationship between
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the deposition rate and lo gJJ’,M. Although log O'}M did not vary significantly with changes
in the deposition rate, it was observed to increase with the increase in the joint gap.

0.5 L " N " 1 " 45 N 1 1 L L L
n 8. - .
g.__8 ED“~--E — u] ’
e -gd L8 : ; ;
03{ =--=_1m_ 8@ “----..0 - = TCCTHEE --::::8
s - g ""EE----&R_ - 50 E ﬁ%
2 S - e ___ s 2 351 FEE B Bb CIooeEIIIIIIT ] r
L) .
0.24 - - °e
3.0 -
0.14 ® Gap0Omm L ® Gap 0 mm
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0O Gap 1.0 mm 0O Gap 1.0 mm
0.0 T T T T T T 2.5 T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Deposition rate (g-cm) Deposition rate (g-cm)
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Figure 7. The relationship between (a) BSys and (b) (fj’r v With respect to the deposition rate and gap
variation in a lap joint.

0’} is a value derived from the material property in Equation (1), and it has been
determined that a verification of changes in the weld joint’s properties is necessary. The
amount of heat input and colling rate applied to the base material during welding determine
changes in the properties of the weld joint, which can be identified through its hardness. The
hardness of a weld depends on the amount of heat input, and the formula for calculating

the heat input is presented in Equation (5).

) J\ _ 60-I.V
Heat input <cm> = ()

WS

Figure 8 shows the hardness of the weld joint according to variations in heat input
and gap. DC and CMT in WP exhibited different current waveform shapes, which led us to
anticipate variations in heat input. Welding conditions with the highest and lowest heat
input were selected in each WP. The joint position was fixed to the A position, respectively.
The heat inputs calculated using average current and voltage, for the welding conditions
A-D-3.0-80-0, A-C-5.0-80-1.0, A-D-7.0-60-1.0, and A-C-9.0-60-0, were 1.76, 1.92, 6.52, and
5.29 kJ/cm, respectively.

300 : \ \ —
1 | HAZ & BM
250 -
s
>
<
200 £
2 A-D-3.0-80-0 : 1
= A-C-5.0-80-0 — |
S A-D-7.0-60-0 —»
£ 1504 A-C-9.0-60-0 —» |
—o— A-D-3.0-80-0
—o— A-C-5.0-80-1.0
100 —a— A-D-7.0-60-1.0, |
B —o— A-C-9.0-60-0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Displacement (mm)

Figure 8. Hardness distribution of the lap weld according to heat input and gap.

The base metal was at 199 HV on average, and HAZ softening was not observed. With
the increase in heat input, an increase in the size of FZ and a difference in hardness within
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FZ were observed. The hardness of FZ under various welding conditions, A-DC-3-80-0,
A-DC-7-60-1.0, A-CMT-5-80-1.0, and A-CMT-9-60-0, was to be 255, 237, 255, and 239 HV,
respectively. The difference in heat input resulted in hardness variations, although no
hardness difference was observed with a change in the gap size. An increase in heat input
delays the solidification of the molten pool, leading to a rise in ferrite structures in the target
material’s FZ. This increase in ferrite structures, which have a lower hardness compared
with bainite and martensite structures, decreases the hardness of the FZ [34]. Kim et al. [35]
investigated the fatigue characteristics of lap welds in the subject material; despite the low
FZ hardness in the welded joints with high fatigue strength, the fatigue characteristics of
the welded joints improved by enhancing the weld shape.

In Figure 7b, variations in log U}M, representing material characteristics, were evident

with a change in gap size, whereas differences in log U’}M due to variations in heat input
were scarcely observed. Therefore, log O'}M was not adopted as a dependent variable in the
prediction model of this study.

5. Fatigue Prediction Model for Statistical Analysis
5.1. Correlation Analysis between the Weld Joint Geometry and Dependent Variables (BSp1, 0sps)

Before conducting regression analysis, a correlation matrix between the dependent
(BSym and ogrg) and independent (X1-17) variables was computed to determine their
relationships. Generally, a higher correlation between predictor variables and dependent
variable implies a more significant influence of those predictors on the outcome, which
is essential between variables. Therefore, in some cases, variables with strong correla-
tions could still remain inappropriate for inclusion in a regression model if the model
assumptions are not met. Conversely, even variables with low correlation coefficients could
contribute to reducing the error in a regression model. Additionally, the intercorrelation
among independent variables should be considered. High intercorrelation indicates similar
impacts of the variables on BS); and osrg, potentially leading to multi-collinearity effects
that increase errors in all models.

The correlation analysis was conducted to examine the linearity between dependent
and independent variables, and among independent variables. Table 5 illustrates the
correlation analysis results of variables concerning BSy and osrs. In the correlation analysis
between BS)s and the independent variables, X10 showed a correlation of 0.82, while X14
demonstrated —0.84, indicating a stronger linear relationship with BS,; than other factors.
In the correlation analysis between osrg and the independent variables, X10 and X14 were
observed to exhibit strong linear relationships with correlation coefficients of —0.84 and
0.83, respectively.

Table 5. Correlation matrix between the independent variables and BSy;/0srs.

BSw ogs X1 X2 X3 X4 X5 X6 X7 X8 X9 X100 XI1 XI2 XI3 X4 XI5 X16
X1 —0.66 076
X2 —026 051 063
X3 002 027 054 083
X4 062 —043 —035 016 049
X5 —077 078 060 036 007 —046
X6 021 007 026 08 08 061 —013
X7 -013 037 050 074 068 024 022 066
X§ —015 021 006 025 005 004 019 016 029
X9 073 069 088 027 026 —056 058 —013 021 011
X10 082 —084 —075 —061 —033 049 —0.67 —018 —039 —018 —0.66
X11 068 —066 —090 —024 —023 053 —053 013 —022 006 —096 0.60
X12 059 059 089 021 019 —046 045 -—012 022 001 08 —051 —0.97
X13 079 —067 —055 —007 031 092 —074 047 004 —009 —068 066 063 —0.55
X14 084 083 074 043 009 —072 077 -008 022 015 073 -082 —0.69 061 —0.86
X15 058 074 096 080 066 —023 059 045 062 012 075 —077 —075 070 —045 071
X16 038 —011 011 071 08 070 —024 095 063 011 —024 003 022 -020 060 —023 029
X17  —007 033 047 080 076 031 016 077 098 027 015 —039 —016 015 012 018 062 074
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The correlation analysis among independent variables revealed significant correla-
tions, with a correlation coefficient of 0.96 between X1 and X15, 0.95 between X6 and
X16, 0.98 between X7 and X17, —0.96 between X9 and X11, and —0.97 between X11 and
X12. Such high correlation values indicate strong relationships among the variables, and
caution should be exercised when including them in the regression model. The regression
model used the remaining factors, excluding X6, X11, X12, X15, and X17, with correlation
coefficients exceeding 0.95 among the independent variables.

5.2. Regression Model for S—-N Curve Prediction

The selected weld shape parameters were normalized and used as independent vari-
ables. Multi-linear regression analysis was conducted using the backward elimination
method, a technique employed in regression analysis to simplify models by iteratively
removing non-significant variables based on their p-value. Furthermore, the approach
allows for a more interpretable model and assists in preventing overfitting.

The variables were systematically eliminated from the regression model based on the
criteria of partial correlation coefficients and the significance level of regression coefficients
with a threshold of 0.05. The accuracy of the regression model was assessed using the
adjusted coefficient of determination and the standard error of the estimates. The adjusted
coefficient of determination was particularly valuable as it accounted for model complexity
and is often preferred over traditional coefficients. Equations (6)—(8) were used to represent
the coefficient of determination, adjusted coefficient of determination, and standard error
of the estimates, respectively.

n )2
i1 (i =)
=1 ()5 ”
VG —w)
SE(e) = n—k—1 ®)

where n denotes the number of samples, k represents the number of independent variables,
y; is the i-th actual measurement data, y; is the predicted value for the i-th data point, and
y represents the mean value of the dependent variable y.

Table 6 presents the backward elimination regression analysis results for Model Ipg,,.
A total of eight steps were performed, and the variables X7, X13, X2, X3, X8, X1, and X5
were removed in higher order of their p-values, which exceeded 0.05. Despite reducing
the number of independent variables, Rﬁ dj remained unchanged at 0.86 and the final SE(¢)
value was 0.170, the same as it was in step 1. Therefore, the model from step 8 was presented
as the final regression equation for predicting BS; using linear multiple regression analysis.
Table 7 presents the regression analysis results obtained using the backward elimination
method for Model Iy, which followed the same procedure as BSy;. A total of eight steps
resulted in removing variables in the following order: X13, X8, X9, X3, X2, X5, and X1. After
eight steps, RL% dj remained at 0.838, and SE(¢) was 7.461. Accordingly, the regression model
is represented as Equation (9).

Model Igs,, = 3.326 — 0.86X4 — 0.26X9 + 0.90X10 — 0.85X14 + 1.00X16 )
Model I;g,c = —47.9 +51.44X4 + 17.40X7 — 28.72X10 + 54.70X14 — 36.03X16

The variables X4, X10, X14, and X16 were observed to simultaneously satisfy the
significance level of 0.05 for both BSy; and ogrg. The standardized regression coefficient
was utilized to examine the contributions of the variables used to determine the fatigue
characteristics. The contributions are presented in Table 8. The standardized regression
coefficients revealed that X14 had the most significant influence, followed by X4, X10, X16,
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and X9 as the critical factors for predicting BSy;. For osrs, the order of importance for
factors was X14, X4, X10, X16, and X7.

Table 6. Significance provability values of regression coefficients for the back elimination method

and its result for Model Igg,,.

Step
p-Value
#1 #2 #3 #4 #5 #6 #7 #8
X1 0.20 0.20 0.21 0.16 0.11 0.18 - -
X2 0.73 0.74 0.83 - - - - -
X3 0.35 0.34 0.33 0.29 - - - -
X4 0.07 0.06 0.01 0.00 0.00 0.00 0.00 0.00
X5 0.24 0.24 0.19 0.11 0.10 0.09 0.14 -
X7 0.83 - - - - - - -
X8 0.26 0.23 0.24 0.23 0.19 - - -
X9 0.05 0.05 0.04 0.01 0.01 0.03 0.03 0.03
X10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13 0.075 0.76 - - - - - -
X14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16 0.11 0.10 0.11 0.08 0.00 0.00 0.00 0.00
Rﬁdj 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
SE(e) 0.170 0.169 0.168 0.167 0.167 0.167 0.169 0.170
Table 7. Significance provability values of regression coefficients for the back elimination method
and its result for Model I, .
Step
p-Value
#1 #2 #3 #4 #5 #6 #7 #8
X1 0.62 0.61 0.60 0.24 0.10 0.07 0.07 -
X2 0.59 0.53 0.52 0.52 0.53 - - -
X3 0.78 0.74 0.73 0.83 - - - -
X4 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5 0.37 0.25 0.24 0.20 0.18 0.09 - -
X7 0.10 0.09 0.08 0.08 0.06 0.06 0.03 0.01
X8 0.97 0.97 - - - - - -
X9 0.80 0.78 0.78 - - - - -
X10 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
X13 0.98 - - - - - - -
X14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16 0.23 0.02 0.02 0.02 0.10 0.00 0.00 0.00
Ridj 0.84 0.84 0.84 0.84 0.85 0.85 0.84 0.84
SE(e) 7.474 7424 7.375 7.331 7.286 7.258 7.348 7.461
Table 8. Standardized regression coefficients of Model L.
X4 X7 X9 X10 X14 X16
Model Igs,, —0.50 - —0.14 0.50 —0.50 0.40
Model Iogy 0.50 0.14 - -0.38 0.66 ~0.36

Another regression model was considered for predicting fatigue characteristics, uti-
lizing the same dependent and independent variables. The non-linear regression model
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involved taking the logarithm of the 17 variables extracted from the welded geometry for
analysis and back-transforming them to obtain a form similar to Equation (10).

Y = ﬁ0~X151 .X2B2.x3B3.x4P4 . .. . X17P17 (10)

As revealed during the examination of the linear regression model that considered
issues including model overfitting and complexity, backward elimination proved to be
more effective in constructing the regression model. Therefore, only the results obtained
through the method were considered for the non-linear regression model. The results are
presented in Equation (11).

Model IIgg,, = 10.23-X4~46.x10%42.X137038. x147035. X164 an
Model Iy, = 0.000995-X37072. x41:04. x9078.x10~104. X14202. X 16187

Among the critical factors in the non-linear regression model for predicting BSy,
and ospg, X4, X10, X14, and X16 were significant in both prediction models. Rid]- for
Model Ilgs,, and Model Il in the multiple non-linear regression model was 0.863 and
0.860, respectively. Additionally, SE(¢) values were 0.024 and 0.071, respectively.

The standardized regression coefficients were calculated for Model 11, a non-linear
regression model, using the same method as Model I to examine the influence of inde-
pendent variables on the dependent variable. These results are presented in Table 9. In
both Model 11gs,, and Model 11, the standardized regression coefficients for X4 and
X16 were highest. It was observed that the independent variables X4, X10, X14, and X16
intersect in the non-linear models predicting BS; and osrs. Based on the standardized
coefficients of the multi linear regression model and non-linear regression model, which
predict the S-N curve (BSy and ogrs) through weld geometry factors (independent vari-
ables) in a lap weld, it was determined that weld geometry factors X4, X10, X14, and X16
are significant variables.

Table 9. Standardized regression coefficients of Model I1.

X3 X4 X9 X10 X13 X14 X16
Model 11gs,, - —0.518 - 0.483 —0.372 —0.409 0.458
Model 1o —0.237 0.365 0.287 ~0.408 - 0.781 0.785

Model I11gs,,
Model 11,

Finally, a second-order polynomial regression model was applied to predict BS»; and
osrs. Considering complexity and analysis, only four independent variables (X4, X10, X14,
X16) were used, and backward elimination was applied to enhance the model performance,
as shown in Equation (12).

= 3.0240.97X4 +0.94X10 — 1.08X14 — 1.01X16 — 1.07X4% 4+ 1.25X14-X16
= 491 — 624X4 — 26.27X10 — 464X 14 +491X16 + 142.4X4% + 112.6X14% + 291.4X-X14 (12)
—145.9X14-X16 — 186X14-X16

The regression analysis showed that the R2, j values for Model 111s,,, and Model 111y,

were 0.863 and 0.851, respectively. The values of SE(¢) were 0.168 and 7.158, respectively.
Although the second-order polynomial regression model introduced a more complex
structure, compared with the multiple linear and non-linear models, the coefficient of
determination and standard error were not improved.

Various regression analyses were employed to statistically analyze the impact of weld
joint geometry on fatigue characteristics and propose diverse fatigue property prediction
models. While slight variations did exist among the models used, up to 86% of the total
variability could be explained collectively. Figure 9 compares the measured and predicted
values of BS) and osrs, with the quantified results presented in Tables 10 and 11.
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Figure 9. Relationship between measured value and estimated value by regression models.

Table 10. Coefficient of determination and standard error of the estimate for the BS) estimation models.

BSy Model 1 Model 1T Model II1
Ry 0.863 0.867 0.863
SE(e) 0.170 0.024 0.168

Table 11. Coefficient of determination and standard error of the estimate for the ogrg estimation models.

OSES Model 1 Model IT Model IIT
RZy; 0.838 0.860 0.851
SE(e) 7.461 0.071 7.158

5.3. Fatigue Life Prediction Using Statistical Models

BSp and osps were derived using the Basquin eqation and predicted through statisti-
cal modeling. Measuring the weld size allowed for the prediction of the slope of the S-N
curve and the endurance limit (2 x 10° cycles). In this study, we aim to predict the fatigue
characteristics of chassis components by determining fatigue and endurance limits for au-
tomobile chassis parts. The chassis comprise various components, and the magnitude and
nature of stress were confirmed to vary depending on these components. In evaluating the
fatigue life of chassis components, durability assessments were conducted by maintaining
a constant load control value rather than assessing the component fatigue life based on
fatigue load variations, as typically undertaken when deriving the S-N curve. Thus, a
minimum fatigue life of 100,000-300,000 cycles was required. As a result, predicting fatigue
life through weld configuration and fatigue stress could assist in assessing the fatigue
characteristics of chassis components.

The main derived factors (X4, X10, X14, X16) and the applied stress (o) were selected
as independent variables, while fatigue life was designated as the dependent variable. A
regression model for predicting fatigue life was developed using the backward elimination
method. Equations (13)-(15) represent the results of regression models for predicting fatigue
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Model VI : N = 17.46 — 0.010, — 7.63X4 — 4.96X10 — 9.87X14 + 6.40X16 + 1.90X4% + 0.77X10%

life, including multiple linear (Model 1V), multiple non-linear (Model V), second-order
polynomial (Model VI) models.

Model 1V : logN = 4.257 — 0.010, + 0.71X4 — 0.34X10 4 0.96X14 (13)

Model V : N = 6.19-0,310.x4239. 10~ 1-64. X143 (14)

+2.06X14% 4 3.55X4-X14 — 1.96X4-X16 + 1.60X10-X14 — 2.18X14-X16 (15)

Table 12 presents the results of regression analysis. The R?, j value for Model V was
the highest at 0.955. Model IV and Model VI had R2, j value of 0.904 and 0.906, respectively.
Furthermore, the SE(¢) value for Model 1V, Model V, and Model VI were 0.301, 0.206,
and 0.299, respectively. With the highest Rﬁdj and lowest SE(¢) values, Model V proved
superior for predicting fatigue life among the models. The results of predicting fatigue life
based on these load and key factor variables are presented in Figure 10.

Table 12. Coefficient of determination and standard error of the estimate for the N estimation models.

N Model IV Model V Model VI
Ra; 0.904 0.955 0.906
SE(e) 0.301 0.206 0.299

| Model V | Model VI

o

20 3.0 40 50 60 7020 3.0 40 50 6.0 7020 3.0 40 50 6.0 7.0

Measured log N

Figure 10. Relationship between measured number of cycles to failure (logN) and estimated number
of cycles to failure (logN) by regression model.

5.4. Analysis of Significant Weld Geometry Affecting Fatigue Characteristics

X4, X10, X14, and X16 were considered significant factors in predicting fatigue behavior
for lap welds that include a gap. Fatigue fracture in lap joints occurs in two forms [36]. In
one case, a fatigue crack initiates at the weld toe on the top surface of the bottom plate and
propagates to the bottom surface of the bottom plate, leading to failure (Figure 11a). In the
other case, a fatigue crack initiates at the weld root and propagates to the top surface of
the top plate, resulting in failure (Figure 11b). Figure 12 illustrates a schematic of the stress
distribution at area A (c4), B (t3), C (1) when subjected to tensile forces in lap welds [37].
During load application, stress distribution in the weld joint was not uniform (Figure 12a).
Herein, t represents the material thickness (2.3 mm) and ! denotes the width of the fatigue
specimen (10 mm). The same stress acted in area A, where thickness and width were
uniform (Equation (16)). The force acting on area B resulted in shear stress (73); and, as
X4 increased, Tp decreased (Equation (17)). Finally, at area C, stress concentration was the
greatest at the red point on the bottom plate, and an increase in angle X10 led to an increase
in shear stress on the welded toe surface of the bottom plate (Equation (18)). The additional
bending stress occurred at the joint in tension due to the eccentricity between one-side lap
welds and the applied force, as depicted in Figure 12b.
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Figure 11. Schematic of fatigue fracture in lap joint welds. (a) Weld toe fracture and (b) weld
root fracture.
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Figure 12. Stress distribution of lap welds during loading. (a) Stress distribution field and (b) bending
morphology at weld toe and root stress concentration.

The higher the stress, the greater the bending force, thereby increasing stress concen-
tration at the weld root. Therefore, the magnitude of X14 was considered to be crucial.
Additionally, the magnitude of X16 was expected to be determined by X4, X10, and X14.
In conclusion, the four factors (X4, X10, X14, and X16) derived from the regression 