Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing
Abstract
:1. Introduction
2. Numerical Method
2.1. Simulation of GA Process
2.2. Simulation of Powder Flow
3. Experimental Details
3.1. The GA Experiment
3.2. Hall Flow Experiment
4. Results and Discussion
4.1. Materials
4.2. Simulation of GA Process
4.2.1. Computation Domain and Boundary Conditions
4.2.2. Dynamic Adaptive Grid
4.2.3. The Velocity and Temperature Fields
4.2.4. The Formation Process of Metal Powder Droplets
4.2.5. Particle-Size Distribution Analysis
4.3. Powder Flowability Simulation
4.3.1. Computation Domain and Input
4.3.2. Comparison between DEM Model and Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassym, K.; Perveen, A. Atomization processes of metal powders for 3D printing. Mater. Today Proc. 2020, 26, 1727–1733. [Google Scholar] [CrossRef]
- Ruan, G.; Liu, C.; Qu, H.; Guo, C.; Li, G.; Li, X.G.; Zhu, Q. A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process. Mater. Sci. Eng. A 2022, 850, 143589. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, C.; Liu, X.; Hao, J. Effect of gas Mach number on the flow field of close-coupled gas atomization, particle size and cooling rate of as-atomized powder: Simulation and experiment. Adv. Powder Technol. 2023, 34, 104007. [Google Scholar] [CrossRef]
- Riener, K.; Albrecht, N.; Ziegelmeier, S.; Ramakrishnan, R.; Haferkamp, L.; Spierings, A.B.; Leichtfried, G.J. Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF). Addit. Manuf. 2020, 34, 101286. [Google Scholar] [CrossRef]
- Mostafaei, A.; Rodriguez, D.E.; Vecchis, P.; Nettleship, I.; Chmielus, M. Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625. Mater. Des. 2019, 162, 375–383. [Google Scholar] [CrossRef]
- Pal, S.; Finšgar, M.; Bončina, T.; Lojen, G.; Brajlih, T.; Drstvenšek, I. Effect of surface powder particles and morphologies on corrosion of Ti-6Al-4 V fabricated with different energy densities in selective laser melting. Mater. Des. 2021, 211, 110184. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, S.; Tan, P.; Wang, J.; Xiang, C.; Tang, H. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018, 333, 38–46. [Google Scholar] [CrossRef]
- Lewis, G. Aspects of the Powder in Metal Additive Manufacturing: A Review. World J. Eng. Technol. 2022, 10, 363–409. [Google Scholar] [CrossRef]
- Wei, M.; Chen, S.; Sun, M.; Liang, J.; Liu, C.; Wang, M. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol. 2020, 367, 724–739. [Google Scholar] [CrossRef]
- Urionabarrenetxea, E.; Martín, J.M.; Avello, A.; Rivas, A. Simulation and validation of the gas flow in close-coupled gas atomisation process: Influence of the inlet gas pressure and the throat width of the supersonic gas nozzle. Powder Technol. 2022, 407, 117688. [Google Scholar] [CrossRef]
- Luo, S.; Ouyang, Y.; Wei, Q.; Lai, S.; Wu, Y.; Wang, H.; Wang, H. Understanding the breakup behaviors of liquid jet in gas atomization for powder production. Mater. Des. 2023, 227, 111793. [Google Scholar] [CrossRef]
- Qaddah, B.; Chapelle, P.; Bellot, J.P.; Jourdan, J.; Rimbert, N.; Deborde, A.; Hammes, R.; Franceschini, A. Swirling supersonic gas flow in an EIGA atomizer for metal powder production: Numerical investigation and experimental validation. J. Mater. Process. Technol. 2023, 311, 117814. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, X.-L.; Li, X.-G.; Chen, Z.-P.; Hu, Q.-P.; Wang, X.; Yu, Z.-Y. Numerical and experimental investigation of close-coupled twin-nozzle gas atomization towards fine high-entropy alloy powder production. J. Mater. Process. Technol. 2024, 324, 118238. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Wang, P.; Lv, Y.; Wang, C.; Zhang, J. Optimization of the gas system for gas–water combined atomization technique in FeSiBC amorphous powder production. Phys. Fluids 2024, 36, 73317. [Google Scholar] [CrossRef]
- Daskiran, C.; Liu, R.; Lee, K.; Katz, J.; Boufadel, M.C. Estimation of overall droplet size distribution from a local droplet size distribution for a jet in crossflow: Experiment and multiphase large eddy simulations. Int. J. Multiph. Flow 2022, 156, 104205. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Dong, Y.; Zhao, H.; Pang, J.; Zhang, J. Investigation on close-coupled gas atomization for Fe-based amorphous powder production via simulation and industrial trials: Part II. Particle flight and cooling during secondary atomization. J. Mater. Res. Technol. 2023, 26, 9480–9498. [Google Scholar] [CrossRef]
- Hua, J.; Gobber, F.S.; Grande, M.A.; Mortensen, D.; Odden, J.O. A numerical modeling framework for predicting the effects of operational parameters on particle size distribution in the gas atomization process for Nickel-Silicon alloys. Powder Technol. 2023, 435, 119408. [Google Scholar] [CrossRef]
- Greenshields, C. OpenFOAM v8 User Guide. CFD Direct. 22 July 2020. Available online: https://doc.cfd.direct/openfoam/user-guide-v8/bookindex (accessed on 23 June 2024).
- Li, X.-G.; Fritsching, U. Process modeling pressure-swirl-gas-atomization for metal powder production. J. Mater. Process. Technol. 2017, 239, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Xia, M.; Wu, J.; Ge, C. Nozzle Clogging in Vacuum Induction Melting Gas Atomization: Influence of the Delivery-Tube and Nozzle Coupling. Arch. Met. Mater. 2022, 67, 1359–1370. [Google Scholar] [CrossRef]
- Sethian, J.A. Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numer. 1996, 5, 309–395. [Google Scholar] [CrossRef]
- Arienti, M.; Li, X.; Soteriou, M.C.; Eckett, C.A.; Sussman, M.; Jensen, R.J. Coupled Level-Set/Volume-of-Fluid Method for Simulation of Injector Atomization. J. Propuls. Power 2013, 29, 147–157. [Google Scholar] [CrossRef]
- Sussman, M.; Smith, K.; Hussaini, M.; Ohta, M.; Zhi-Wei, R. A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 2007, 221, 469–505. [Google Scholar] [CrossRef]
- Li, X.; Soteriou, M. High-fidelity simulation of fuel atomization in a realistic swirling flow injector. At. Sprays 2013, 23, 1049–1078. [Google Scholar] [CrossRef]
- Chang, J.; He, L.; Chen, L.; Shen, Z.; Chuah, L.F.; Bokhari, A.; Klemeš, J.J.; Han, N. Numerical simulation of liquid jet atomization in subsonic crossflow. Energy 2022, 257, 124676. [Google Scholar] [CrossRef]
- Spierings, A.B.; Voegtlin, M.; Bauer, T.; Wegener, K. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog. Addit. Manuf. 2015, 1, 9–20. [Google Scholar] [CrossRef]
- Wensrich, C.M.; Katterfeld, A.; Sugo, D. Characterisation of the effects of particle shape using a normalised contact eccentricity. Granul. Matter 2013, 16, 327–337. [Google Scholar] [CrossRef]
- Dai, L.; Sorkin, V.; Vastola, G.; Zhang, Y. Dynamics calibration of particle sandpile packing characteristics via discrete element method. Powder Technol. 2019, 347, 220–226. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Yim, S.; Bian, H.; Aoyagi, K.; Yamanaka, K.; Chiba, A. Effect of powder morphology on flowability and spreading behavior in powder bed fusion additive manufacturing process: A particle-scale modeling study. Addit. Manuf. 2023, 72, 103612. [Google Scholar] [CrossRef]
- Dai, L.; Chan, Y.; Vastola, G.; Khan, N.; Raghavan, S.; Zhang, Y. Characterizing the intrinsic properties of powder-A combined discrete element analysis and Hall flowmeter testing study. Adv. Powder Technol. 2021, 32, 80–87. [Google Scholar] [CrossRef]
- Wensrich, C.; Katterfeld, A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 2012, 217, 409–417. [Google Scholar] [CrossRef]
- Ai, J.; Chen, J.-F.; Rotter, J.M.; Ooi, J.Y. Assessment of rolling resistance models in discrete element simulations. Powder Technol. 2011, 206, 269–282. [Google Scholar] [CrossRef]
- Ketterhagen, W.R.; Am Ende, M.T.; Hancock, B.C. Process Modeling in the Pharmaceutical Industry using the Discrete Element Method. J. Pharm. Sci. 2009, 98, 442–470. [Google Scholar] [CrossRef] [PubMed]
- Mankoc, C.; Janda, A.; Arévalo, R.; Pastor, J.M.; Zuriguel, I.; Garcimartín, A.; Maza, D. The flow rate of granular materials through an orifice. arXiv 2007, arXiv:0707.4550. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Huber, N. Experimental analysis and modelling of particle-wall collisions. Int. J. Multiph. Flow 1999, 25, 1457–1489. [Google Scholar] [CrossRef]
- Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A. A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray. Coatings 2015, 5, 576–645. [Google Scholar] [CrossRef]
- Feldmeier, A. Theoretical Fluid Dynamics; Springer Nature: Dordrecht, The Netherlands, 2019; ISBN 9781447172826. Available online: http://link.springer.com/10.1007/978-3-030-31022-6 (accessed on 30 July 2024).
C | Mn | P | S | Si | Cr | Ni | Fe |
---|---|---|---|---|---|---|---|
0.08 | 2 | 0.045 | 0.03 | 1 | 19 | 9 | 68.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Liu, X.; Xu, S.; Fan, E.; Zhao, L.; Chen, C.; Ren, Z. Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing. Metals 2024, 14, 1124. https://doi.org/10.3390/met14101124
Du Y, Liu X, Xu S, Fan E, Zhao L, Chen C, Ren Z. Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing. Metals. 2024; 14(10):1124. https://doi.org/10.3390/met14101124
Chicago/Turabian StyleDu, Yonglong, Xin Liu, Songzhe Xu, Enxiang Fan, Lixiao Zhao, Chaoyue Chen, and Zhongming Ren. 2024. "Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing" Metals 14, no. 10: 1124. https://doi.org/10.3390/met14101124
APA StyleDu, Y., Liu, X., Xu, S., Fan, E., Zhao, L., Chen, C., & Ren, Z. (2024). Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing. Metals, 14(10), 1124. https://doi.org/10.3390/met14101124