Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Random Forest Regression
3. Results
3.1. Experimental Result
3.2. Prediction Results and Regression Equations of the RF Regression Model (1D)
3.3. Prediction Results and Regression Equations of Random Forest Regression Model (2D)
4. Discussion
5. Conclusions and Outlook
5.1. Conclusions
- (1)
- In order to study the correlation between the surface roughness of a typical Al alloy and the printing parameters, experiments were designed in which a total of 144 sets of samples were printed to study changes in surface roughness under the influence of key printing parameters. The lowest surface roughness achieved was 2.95 μm, indicating that it is possible to print Al alloys with a good surface quality by process optimization without using remelting.
- (2)
- Based on the obtained experimental data, Random Forest regression was built to regress and predict the results. After optimizing the model, a 2D prediction model was developed with high prediction accuracy. The R2 of the model is 0.907, with an MSE of 0.255, RMSE of 0.505, and MAE of 0.464. The specific relationship equation between the key printing parameters and surface roughness was also derived. A 2D RF model can maintain high prediction accuracy on both the training set and test set. The experimental parameters in the training set and test set cover the range of printing parameters of AlSi10Mg. This proves that the obtained ML model can provide accurate prediction results for the indicated roughness study of the aluminum alloy.
5.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Number | Laser Power (W) | Laser Scanning Speed (mm/s) | Hatch Distance (µm) | Surface Roughness (µm) |
---|---|---|---|---|
1 | 340 | 1100 | 0.15 | 5.72 |
2 | 325 | 1251 | 0.08 | 6.95 |
3 | 321 | 1281 | 0.15 | 8.40 |
4 | 348 | 1091 | 0.14 | 6.00 |
5 | 343 | 1176 | 0.08 | 6.42 |
6 | 375 | 1330 | 0.08 | 5.44 |
7 | 399 | 917 | 0.11 | 4.17 |
8 | 398 | 912 | 0.16 | 4.78 |
9 | 317 | 810 | 0.13 | 5.13 |
10 | 292 | 882 | 0.12 | 6.62 |
11 | 411 | 938 | 0.09 | 4.14 |
12 | 330 | 1239 | 0.12 | 6.63 |
13 | 354 | 1050 | 0.15 | 5.19 |
14 | 360 | 927 | 0.12 | 3.26 |
15 | 330 | 887 | 0.08 | 5.32 |
16 | 366 | 1172 | 0.16 | 7.01 |
17 | 270 | 1128 | 0.12 | 9.57 |
18 | 288 | 869 | 0.12 | 7.61 |
19 | 343 | 1047 | 0.12 | 5.69 |
20 | 328 | 1382 | 0.1 | 8.18 |
21 | 377 | 1120 | 0.08 | 5.33 |
22 | 376 | 1070 | 0.15 | 5.36 |
23 | 353 | 1048 | 0.12 | 4.92 |
24 | 357 | 1042 | 0.12 | 4.84 |
25 | 372 | 1150 | 0.16 | 6.49 |
26 | 395 | 1073 | 0.13 | 3.95 |
27 | 409 | 1133 | 0.12 | 5.13 |
28 | 352 | 861 | 0.12 | 4.41 |
29 | 311 | 1115 | 0.08 | 7.14 |
30 | 300 | 1013 | 0.14 | 7.24 |
31 | 273 | 955 | 0.12 | 8.13 |
32 | 322 | 839 | 0.1 | 4.92 |
33 | 382 | 959 | 0.15 | 4.23 |
34 | 303 | 1061 | 0.12 | 6.71 |
35 | 377 | 1017 | 0.09 | 5.20 |
36 | 324 | 989 | 0.1 | 6.71 |
37 | 374 | 852 | 0.08 | 4.70 |
38 | 286 | 1358 | 0.08 | 11.28 |
39 | 338 | 1211 | 0.14 | 6.80 |
40 | 381 | 1188 | 0.09 | 4.91 |
41 | 408 | 1048 | 0.1 | 5.95 |
42 | 370 | 1062 | 0.08 | 4.88 |
43 | 364 | 1074 | 0.08 | 5.03 |
44 | 414 | 861 | 0.12 | 3.15 |
45 | 327 | 1244 | 0.15 | 7.67 |
46 | 343 | 1302 | 0.08 | 6.60 |
47 | 285 | 1236 | 0.09 | 9.31 |
48 | 414 | 1079 | 0.09 | 3.76 |
49 | 385 | 1053 | 0.16 | 5.50 |
50 | 356 | 1167 | 0.08 | 6.09 |
51 | 284 | 807 | 0.11 | 8.28 |
52 | 356 | 1124 | 0.11 | 5.36 |
53 | 374 | 1139 | 0.12 | 4.84 |
54 | 275 | 1073 | 0.08 | 10.81 |
55 | 363 | 895 | 0.08 | 4.64 |
56 | 390 | 1317 | 0.08 | 5.72 |
57 | 367 | 1050 | 0.12 | 5.01 |
58 | 409 | 896 | 0.16 | 4.23 |
59 | 396 | 841 | 0.11 | 4.23 |
60 | 403 | 854 | 0.12 | 5.71 |
61 | 355 | 1063 | 0.1 | 4.78 |
62 | 284 | 1244 | 0.12 | 8.92 |
63 | 291 | 804 | 0.15 | 5.65 |
64 | 343 | 1345 | 0.12 | 7.20 |
65 | 411 | 1236 | 0.09 | 5.26 |
66 | 331 | 940 | 0.1 | 5.14 |
67 | 302 | 1080 | 0.15 | 8.24 |
68 | 338 | 1172 | 0.14 | 6.67 |
69 | 391 | 987 | 0.11 | 3.65 |
70 | 354 | 1184 | 0.14 | 5.64 |
71 | 329 | 1311 | 0.12 | 8.22 |
72 | 285 | 983 | 0.15 | 9.63 |
73 | 275 | 1079 | 0.12 | 10.42 |
74 | 305 | 993 | 0.08 | 7.77 |
75 | 372 | 920 | 0.14 | 4.71 |
76 | 304 | 891 | 0.09 | 7.54 |
77 | 325 | 836 | 0.08 | 6.42 |
78 | 343 | 957 | 0.15 | 5.47 |
79 | 393 | 1269 | 0.1 | 4.90 |
80 | 318 | 810 | 0.08 | 5.81 |
81 | 321 | 935 | 0.12 | 5.48 |
82 | 339 | 1217 | 0.08 | 7.64 |
83 | 331 | 1275 | 0.15 | 7.14 |
84 | 351 | 1165 | 0.09 | 5.34 |
85 | 353 | 1053 | 0.11 | 4.91 |
86 | 373 | 933 | 0.12 | 4.94 |
87 | 397 | 1370 | 0.13 | 8.37 |
88 | 275 | 983 | 0.11 | 9.46 |
89 | 391 | 1184 | 0.15 | 7.10 |
90 | 370 | 1347 | 0.09 | 7.51 |
91 | 343 | 1386 | 0.08 | 7.70 |
92 | 272 | 1175 | 0.15 | 9.92 |
93 | 347 | 939 | 0.09 | 4.37 |
94 | 271 | 1151 | 0.13 | 9.59 |
95 | 413 | 891 | 0.11 | 4.06 |
96 | 419 | 1226 | 0.12 | 5.07 |
97 | 291 | 959 | 0.08 | 8.98 |
98 | 278 | 1190 | 0.09 | 9.88 |
99 | 335 | 868 | 0.09 | 7.79 |
100 | 295 | 803 | 0.1 | 7.84 |
101 | 402 | 1303 | 0.12 | 6.47 |
102 | 278 | 1020 | 0.13 | 8.15 |
103 | 298 | 1051 | 0.11 | 7.11 |
104 | 331 | 1062 | 0.12 | 6.54 |
105 | 368 | 1108 | 0.08 | 5.51 |
106 | 404 | 1318 | 0.11 | 9.23 |
107 | 323 | 1090 | 0.14 | 7.36 |
108 | 294 | 1177 | 0.11 | 9.78 |
109 | 328 | 858 | 0.12 | 5.37 |
110 | 354 | 872 | 0.12 | 4.70 |
111 | 395 | 1035 | 0.1 | 4.77 |
112 | 334 | 1142 | 0.08 | 8.11 |
113 | 378 | 1147 | 0.09 | 7.29 |
114 | 348 | 1040 | 0.1 | 5.26 |
115 | 405 | 1348 | 0.11 | 7.38 |
116 | 415 | 917 | 0.1 | 2.90 |
117 | 300 | 1368 | 0.12 | 7.54 |
118 | 317 | 1387 | 0.12 | 7.31 |
119 | 324 | 1259 | 0.12 | 6.77 |
120 | 335 | 836 | 0.1 | 6.91 |
121 | 366 | 1337 | 0.1 | 6.84 |
122 | 382 | 955 | 0.14 | 5.66 |
123 | 353 | 1132 | 0.15 | 4.83 |
124 | 330 | 1083 | 0.12 | 5.20 |
125 | 288 | 1187 | 0.09 | 10.01 |
126 | 316 | 1155 | 0.12 | 9.21 |
127 | 281 | 1023 | 0.09 | 10.18 |
128 | 292 | 1335 | 0.12 | 10.85 |
129 | 300 | 809 | 0.08 | 7.40 |
130 | 323 | 1109 | 0.11 | 6.45 |
131 | 393 | 1182 | 0.11 | 6.00 |
132 | 408 | 1208 | 0.1 | 5.43 |
133 | 280 | 1387 | 0.1 | 10.57 |
134 | 377 | 872 | 0.12 | 4.97 |
135 | 376 | 1396 | 0.11 | 7.33 |
136 | 359 | 1259 | 0.08 | 9.95 |
137 | 412 | 830 | 0.16 | 3.67 |
138 | 379 | 1291 | 0.08 | 6.11 |
139 | 378 | 1226 | 0.08 | 6.21 |
140 | 411 | 1396 | 0.1 | 7.06 |
141 | 285 | 828 | 0.14 | 8.46 |
142 | 408 | 1292 | 0.12 | 7.92 |
143 | 398 | 1236 | 0.08 | 5.98 |
144 | 328 | 1328 | 0.12 | 7.96 |
Sample Number | Surface Roughness (µm) | Predicted Value (µm) | Error (%) | Descriptor |
---|---|---|---|---|
1 | 5.72 | 6.65 | 16% | 3.45 × 10−3 |
2 | 6.95 | 7.86 | 13% | 4.15 × 10−3 |
3 | 8.40 | 8.15 | 3% | 4.31 × 10−3 |
4 | 6.00 | 6.35 | 6% | 3.28 × 10−3 |
5 | 6.42 | 6.89 | 7% | 3.59 × 10−3 |
6 | 5.44 | 6.51 | 20% | 3.38 × 10−3 |
7 | 4.17 | 4.25 | 2% | 2.09 × 10−3 |
8 | 4.78 | 4.25 | 11% | 2.08 × 10−3 |
9 | 5.13 | 5.78 | 13% | 2.96 × 10−3 |
10 | 6.62 | 7.23 | 9% | 3.79 × 10−3 |
11 | 4.14 | 4.11 | 1% | 2.01 × 10−3 |
12 | 6.63 | 7.62 | 15% | 4.01 × 10−3 |
13 | 5.19 | 5.98 | 15% | 3.07 × 10−3 |
14 | 7.01 | 6.17 | 60% | 3.18 × 10−3 |
15 | 9.57 | 9.87 | 10% | 5.30 × 10−3 |
16 | 7.61 | 7.31 | 12% | 3.83 × 10−3 |
17 | 5.69 | 6.30 | 3% | 3.25 × 10−3 |
18 | 8.18 | 8.28 | 4% | 4.38 × 10−3 |
19 | 5.33 | 5.66 | 11% | 2.89 × 10−3 |
20 | 5.36 | 5.47 | 1% | 2.78 × 10−3 |
21 | 4.92 | 6.00 | 6% | 3.08 × 10−3 |
22 | 4.84 | 5.85 | 2% | 3.00 × 10−3 |
23 | 6.49 | 5.91 | 22% | 3.03 × 10−3 |
24 | 5.13 | 4.96 | 21% | 2.49 × 10−3 |
25 | 4.41 | 5.05 | 9% | 2.54 × 10−3 |
26 | 7.14 | 7.79 | 27% | 4.11 × 10−3 |
27 | 7.24 | 7.70 | 3% | 4.06 × 10−3 |
28 | 8.13 | 8.63 | 14% | 4.59 × 10−3 |
29 | 4.92 | 5.81 | 9% | 2.97 × 10−3 |
30 | 4.23 | 4.82 | 6% | 2.41 × 10−3 |
31 | 6.71 | 7.84 | 6% | 4.14 × 10−3 |
32 | 5.20 | 5.21 | 18% | 2.63 × 10−3 |
33 | 6.71 | 6.63 | 14% | 3.44 × 10−3 |
34 | 4.70 | 4.45 | 17% | 2.20 × 10−3 |
35 | 11.28 | 10.14 | 0% | 5.45 × 10−3 |
36 | 6.80 | 7.21 | 1% | 3.78 × 10−3 |
37 | 4.91 | 5.82 | 5% | 2.98 × 10−3 |
38 | 4.88 | 5.59 | 10% | 2.85 × 10−3 |
39 | 5.03 | 5.80 | 6% | 2.97 × 10−3 |
40 | 3.15 | 3.69 | 19% | 1.77 × 10−3 |
41 | 7.67 | 7.75 | 22% | 4.09 × 10−3 |
42 | 6.60 | 7.41 | 14% | 3.89 × 10−3 |
43 | 9.31 | 9.61 | 15% | 5.15 × 10−3 |
44 | 3.76 | 4.65 | 17% | 2.31 × 10−3 |
45 | 5.50 | 5.17 | 1% | 2.61 × 10−3 |
46 | 6.09 | 6.44 | 12% | 3.34 × 10−3 |
47 | 8.28 | 7.04 | 3% | 3.68 × 10−3 |
48 | 5.36 | 6.25 | 24% | 3.23 × 10−3 |
49 | 4.84 | 5.81 | 6% | 2.98 × 10−3 |
50 | 10.81 | 9.27 | 6% | 4.95 × 10−3 |
51 | 4.64 | 4.95 | 15% | 2.49 × 10−3 |
52 | 5.72 | 6.06 | 17% | 3.12 × 10−3 |
53 | 5.01 | 5.61 | 20% | 2.86 × 10−3 |
54 | 4.23 | 3.96 | 14% | 1.92 × 10−3 |
55 | 4.23 | 3.93 | 7% | 1.90 × 10−3 |
56 | 8.92 | 9.71 | 6% | 5.20 × 10−3 |
57 | 5.65 | 6.71 | 12% | 3.49 × 10−3 |
58 | 7.20 | 7.57 | 6% | 3.98 × 10−3 |
59 | 5.26 | 5.29 | 7% | 2.68 × 10−3 |
60 | 5.14 | 6.12 | 26% | 3.15 × 10−3 |
61 | 8.24 | 7.99 | 9% | 4.22 × 10−3 |
62 | 6.67 | 7.04 | 19% | 3.68 × 10−3 |
63 | 3.65 | 4.74 | 5% | 2.37 × 10−3 |
64 | 5.64 | 6.57 | 1% | 3.41 × 10−3 |
65 | 8.22 | 7.96 | 19% | 4.20 × 10−3 |
66 | 10.42 | 9.30 | 3% | 4.97 × 10−3 |
67 | 7.77 | 7.38 | 6% | 3.87 × 10−3 |
68 | 4.71 | 4.86 | 30% | 2.43 × 10−3 |
69 | 7.54 | 6.79 | 17% | 3.54 × 10−3 |
70 | 6.42 | 5.69 | 3% | 2.91 × 10−3 |
71 | 5.47 | 5.84 | 11% | 2.99 × 10−3 |
72 | 4.90 | 5.82 | 5% | 2.98 × 10−3 |
73 | 5.81 | 5.75 | 3% | 2.94 × 10−3 |
74 | 5.48 | 6.43 | 10% | 3.33 × 10−3 |
75 | 7.64 | 7.20 | 11% | 3.77 × 10−3 |
76 | 7.14 | 7.73 | 7% | 4.07 × 10−3 |
77 | 5.34 | 6.58 | 19% | 3.42 × 10−3 |
78 | 4.91 | 6.02 | 1% | 3.10 × 10−3 |
79 | 4.94 | 4.90 | 17% | 2.46 × 10−3 |
80 | 8.37 | 6.06 | 6% | 3.12 × 10−3 |
81 | 9.46 | 8.71 | 8% | 4.63 × 10−3 |
82 | 7.10 | 5.56 | 23% | 2.83 × 10−3 |
83 | 7.51 | 6.71 | 23% | 3.49 × 10−3 |
84 | 7.70 | 7.73 | 1% | 4.07 × 10−3 |
85 | 9.92 | 10.02 | 8% | 5.38 × 10−3 |
86 | 4.37 | 5.62 | 11% | 2.87 × 10−3 |
87 | 9.59 | 9.94 | 0% | 5.34 × 10−3 |
88 | 4.06 | 3.86 | 1% | 1.86 × 10−3 |
89 | 8.98 | 7.78 | 29% | 4.10 × 10−3 |
90 | 9.88 | 9.76 | 4% | 5.23 × 10−3 |
91 | 7.84 | 6.54 | 5% | 3.39 × 10−3 |
92 | 6.47 | 5.72 | 0% | 2.93 × 10−3 |
93 | 8.15 | 8.79 | 13% | 4.68 × 10−3 |
94 | 7.11 | 8.01 | 1% | 4.23 × 10−3 |
95 | 6.54 | 6.77 | 12% | 3.52 × 10−3 |
96 | 5.51 | 5.84 | 8% | 3.00 × 10−3 |
97 | 7.36 | 7.19 | 13% | 3.77 × 10−3 |
98 | 5.37 | 5.73 | 4% | 2.93 × 10−3 |
99 | 4.70 | 5.06 | 6% | 2.55 × 10−3 |
100 | 4.77 | 4.87 | 2% | 2.44 × 10−3 |
101 | 8.11 | 7.04 | 9% | 3.68 × 10−3 |
102 | 7.38 | 5.80 | 7% | 2.97 × 10−3 |
103 | 7.31 | 8.75 | 8% | 4.66 × 10−3 |
104 | 6.77 | 7.93 | 2% | 4.19 × 10−3 |
105 | 6.84 | 6.80 | 16% | 3.54 × 10−3 |
106 | 10.01 | 9.21 | 1% | 4.92 × 10−3 |
107 | 10.18 | 8.65 | 15% | 4.60 × 10−3 |
108 | 7.40 | 6.39 | 8% | 3.31 × 10−3 |
109 | 6.45 | 7.29 | 10% | 3.82 × 10−3 |
110 | 6.00 | 5.50 | 13% | 2.80 × 10−3 |
111 | 5.43 | 5.26 | 8% | 2.66 × 10−3 |
112 | 10.57 | 10.61 | 3% | 5.71 × 10−3 |
113 | 7.33 | 6.71 | 0% | 3.49 × 10−3 |
114 | 3.67 | 3.57 | 10% | 1.70 × 10−3 |
115 | 6.11 | 6.26 | 8% | 3.23 × 10−3 |
116 | 6.21 | 6.05 | 3% | 3.11 × 10−3 |
117 | 7.06 | 5.81 | 2% | 2.98 × 10−3 |
118 | 7.92 | 5.55 | 3% | 2.83 × 10−3 |
119 | 5.98 | 5.58 | 7% | 2.85 × 10−3 |
120 | 7.96 | 8.06 | 1% | 4.26 × 10−3 |
Sample Number | Surface Roughness (µm) | Predicted Value (µm) | Error (%) | Descriptor 1 | Descriptor 2 |
---|---|---|---|---|---|
1 | 5.72 | 6.25 | 9% | 2.14 × 101 | −3.76 × 102 |
2 | 6.95 | 7.80 | 12% | 2.06 × 101 | −2.09 × 102 |
3 | 8.40 | 7.88 | 6% | 2.12 × 101 | −3.92 × 102 |
4 | 6.00 | 5.91 | 1% | 2.14 × 101 | −3.66 × 102 |
5 | 6.42 | 6.73 | 5% | 2.08 × 101 | −2.18 × 102 |
6 | 5.44 | 6.29 | 16% | 2.12 × 101 | −3.05 × 102 |
7 | 4.17 | 3.81 | 9% | 2.17 × 101 | −3.48 × 102 |
8 | 4.78 | 4.53 | 5% | 2.21 × 101 | −4.99 × 102 |
9 | 5.13 | 5.60 | 9% | 2.10 × 101 | −2.10 × 102 |
10 | 6.62 | 7.50 | 8% | 2.06 × 101 | −1.86 × 102 |
11 | 4.14 | 3.82 | 8% | 2.17 × 101 | −3.23 × 102 |
12 | 6.63 | 7.17 | 8% | 2.11 × 101 | −3.19 × 102 |
13 | 5.19 | 5.60 | 20% | 2.16 × 101 | −3.92 × 102 |
14 | 7.01 | 6.58 | 6% | 2.18 × 101 | −5.05 × 102 |
15 | 9.57 | 9.84 | 3% | 2.03 × 101 | −2.14 × 102 |
16 | 7.61 | 7.70 | 1% | 2.05 × 101 | −1.79 × 102 |
17 | 5.69 | 5.75 | 1% | 2.12 × 101 | −2.92 × 102 |
18 | 8.18 | 7.88 | 4% | 2.09 × 101 | −2.94 × 102 |
19 | 5.33 | 5.33 | 0% | 2.12 × 101 | −2.61 × 102 |
20 | 5.36 | 5.55 | 4% | 2.18 × 101 | −4.64 × 102 |
21 | 4.92 | 5.45 | 11% | 2.13 × 101 | −3.11 × 102 |
22 | 4.84 | 5.30 | 10% | 2.14 × 101 | −3.17 × 102 |
23 | 6.49 | 6.42 | 1% | 2.18 × 101 | −5.16 × 102 |
24 | 5.13 | 5.78 | 13% | 2.19 × 101 | −5.11 × 102 |
25 | 4.41 | 4.45 | 1% | 2.13 × 101 | −2.54 × 102 |
26 | 7.14 | 8.14 | 14% | 2.04 × 101 | −1.73 × 102 |
27 | 7.24 | 7.35 | 2% | 2.08 × 101 | −2.59 × 102 |
28 | 8.13 | 9.02 | 11% | 2.03 × 101 | −1.84 × 102 |
29 | 4.92 | 6.04 | 23% | 2.08 × 101 | −1.72 × 102 |
30 | 4.23 | 4.64 | 10% | 2.19 × 101 | −4.34 × 102 |
31 | 6.71 | 7.59 | 13% | 2.07 × 101 | −2.36 × 102 |
32 | 5.20 | 4.76 | 8% | 2.13 × 101 | −2.66 × 102 |
33 | 6.71 | 6.52 | 3% | 2.08 × 101 | −2.05 × 102 |
34 | 4.70 | 4.27 | 9% | 2.12 × 101 | −1.94 × 102 |
35 | 11.28 | 10.32 | 9% | 2.01 × 101 | −1.85 × 102 |
36 | 6.80 | 6.89 | 1% | 2.13 × 101 | −3.82 × 102 |
37 | 4.91 | 5.52 | 13% | 2.14 × 101 | −3.20 × 102 |
38 | 4.88 | 5.29 | 8% | 2.11 × 101 | −2.35 × 102 |
39 | 5.03 | 5.54 | 10% | 2.11 × 101 | −2.28 × 102 |
40 | 3.15 | 3.54 | 12% | 2.20 × 101 | −4.06 × 102 |
41 | 7.67 | 7.49 | 2% | 2.13 × 101 | −3.94 × 102 |
42 | 6.60 | 7.17 | 9% | 2.08 × 101 | −2.42 × 102 |
43 | 9.31 | 9.78 | 5% | 2.02 × 101 | −1.89 × 102 |
44 | 3.76 | 4.75 | 26% | 2.17 × 101 | −3.82 × 102 |
45 | 5.50 | 5.69 | 3% | 2.20 × 101 | −5.20 × 102 |
46 | 6.09 | 6.18 | 2% | 2.10 × 101 | −2.35 × 102 |
47 | 8.28 | 7.97 | 4% | 2.04 × 101 | −1.50 × 102 |
48 | 5.36 | 5.77 | 8% | 2.13 × 101 | −3.11 × 102 |
49 | 4.84 | 5.58 | 15% | 2.16 × 101 | −3.89 × 102 |
50 | 10.81 | 10.36 | 4% | 1.99 × 101 | −1.39 × 102 |
51 | 4.64 | 4.87 | 5% | 2.11 × 101 | −1.89 × 102 |
52 | 5.72 | 6.00 | 5% | 2.13 × 101 | −3.38 × 102 |
53 | 5.01 | 5.12 | 2% | 2.15 × 101 | −3.42 × 102 |
54 | 4.23 | 4.64 | 10% | 2.22 × 101 | −5.39 × 102 |
55 | 4.23 | 3.30 | 22% | 2.17 × 101 | −3.11 × 102 |
56 | 8.92 | 9.38 | 5% | 2.05 × 101 | −2.52 × 102 |
57 | 5.65 | 6.75 | 19% | 2.08 × 101 | −2.11 × 102 |
58 | 7.20 | 7.31 | 1% | 2.12 × 101 | −3.75 × 102 |
59 | 5.26 | 5.74 | 9% | 2.17 × 101 | −4.25 × 102 |
60 | 5.14 | 5.98 | 16% | 2.09 × 101 | −2.03 × 102 |
61 | 8.24 | 7.55 | 8% | 2.09 × 101 | −2.99 × 102 |
62 | 6.67 | 6.66 | 0% | 2.13 × 101 | −3.69 × 102 |
63 | 3.65 | 4.34 | 19% | 2.17 × 101 | −3.51 × 102 |
64 | 5.64 | 6.39 | 13% | 2.15 × 101 | −4.12 × 102 |
65 | 8.22 | 7.55 | 8% | 2.11 × 101 | −3.36 × 102 |
66 | 10.42 | 9.33 | 10% | 2.03 × 101 | −2.09 × 102 |
67 | 7.77 | 8.15 | 5% | 2.04 × 101 | −1.49 × 102 |
68 | 4.71 | 4.29 | 9% | 2.17 × 101 | −3.62 × 102 |
69 | 7.54 | 7.55 | 0% | 2.05 × 101 | −1.49 × 102 |
70 | 6.42 | 6.51 | 1% | 2.06 × 101 | −1.40 × 102 |
71 | 5.47 | 5.24 | 4% | 2.15 × 101 | −3.33 × 102 |
72 | 4.90 | 6.00 | 23% | 2.16 × 101 | −4.17 × 102 |
73 | 5.81 | 6.83 | 18% | 2.05 × 101 | −1.30 × 102 |
74 | 5.48 | 6.12 | 12% | 2.10 × 101 | −2.29 × 102 |
75 | 7.64 | 7.04 | 8% | 2.08 × 101 | −2.21 × 102 |
76 | 7.14 | 7.56 | 6% | 2.13 × 101 | −4.13 × 102 |
77 | 5.34 | 6.22 | 16% | 2.10 × 101 | −2.56 × 102 |
78 | 4.91 | 5.49 | 12% | 2.13 × 101 | −2.86 × 102 |
79 | 4.94 | 4.28 | 13% | 2.16 × 101 | −3.16 × 102 |
80 | 8.37 | 7.75 | 7% | 2.19 × 101 | −6.04 × 102 |
81 | 9.46 | 9.19 | 3% | 2.03 × 101 | −1.75 × 102 |
82 | 7.10 | 6.72 | 5% | 2.20 × 101 | −5.74 × 102 |
83 | 7.51 | 6.49 | 14% | 2.12 × 101 | −3.36 × 102 |
84 | 7.70 | 7.46 | 3% | 2.08 × 101 | −2.57 × 102 |
85 | 9.92 | 9.64 | 3% | 2.05 × 101 | −2.81 × 102 |
86 | 4.37 | 5.46 | 25% | 2.10 × 101 | −2.01 × 102 |
87 | 9.59 | 9.74 | 1% | 2.04 × 101 | −2.38 × 102 |
88 | 4.06 | 3.64 | 10% | 2.19 × 101 | −3.82 × 102 |
89 | 8.98 | 8.96 | 0% | 2.02 × 101 | −1.34 × 102 |
90 | 9.88 | 10.11 | 2% | 2.01 × 101 | −1.76 × 102 |
91 | 7.84 | 7.52 | 4% | 2.04 × 101 | −1.43 × 102 |
92 | 6.47 | 6.97 | 8% | 2.19 × 101 | −5.53 × 102 |
93 | 8.15 | 8.77 | 8% | 2.05 × 101 | −2.18 × 102 |
94 | 7.11 | 7.97 | 12% | 2.06 × 101 | −2.09 × 102 |
95 | 6.54 | 6.28 | 4% | 2.11 × 101 | −2.75 × 102 |
96 | 5.51 | 5.54 | 1% | 2.11 × 101 | −2.42 × 102 |
97 | 7.36 | 6.69 | 9% | 2.11 × 101 | −3.15 × 102 |
98 | 5.37 | 5.43 | 1% | 2.11 × 101 | −2.19 × 102 |
99 | 4.70 | 4.44 | 6% | 2.14 × 101 | −2.60 × 102 |
100 | 4.77 | 4.55 | 5% | 2.16 × 101 | −3.45 × 102 |
101 | 8.11 | 7.02 | 8% | 2.07 × 101 | −2.01 × 102 |
102 | 7.38 | 7.02 | 5% | 2.18 × 101 | −5.38 × 102 |
103 | 7.31 | 8.34 | 14% | 2.09 × 101 | −3.32 × 102 |
104 | 6.77 | 7.49 | 11% | 2.10 × 101 | −3.14 × 102 |
105 | 6.84 | 6.59 | 4% | 2.13 × 101 | −3.60 × 102 |
106 | 10.01 | 9.45 | 6% | 2.02 × 101 | −1.84 × 102 |
107 | 10.18 | 9.44 | 7% | 2.01 × 101 | −1.53 × 102 |
108 | 7.40 | 7.96 | 8% | 2.03 × 101 | −1.18 × 102 |
109 | 6.45 | 6.91 | 7% | 2.09 × 101 | −2.52 × 102 |
110 | 6.00 | 5.64 | 6% | 2.17 × 101 | −4.27 × 102 |
111 | 5.43 | 5.75 | 6% | 2.17 × 101 | −4.50 × 102 |
112 | 10.57 | 10.35 | 2% | 2.02 × 101 | −2.30 × 102 |
113 | 7.33 | 6.97 | 5% | 2.15 × 101 | −4.43 × 102 |
114 | 3.67 | 3.98 | 8% | 2.23 × 101 | −5.12 × 102 |
115 | 6.11 | 6.04 | 1% | 2.12 × 101 | −3.05 × 102 |
116 | 6.21 | 5.77 | 7% | 2.12 × 101 | −2.87 × 102 |
117 | 7.06 | 7.15 | 1% | 2.18 × 101 | −5.34 × 102 |
118 | 7.92 | 7.08 | 11% | 2.19 × 101 | −5.77 × 102 |
119 | 5.98 | 5.53 | 8% | 2.14 × 101 | −3.38 × 102 |
120 | 7.96 | 7.67 | 4% | 2.11 × 101 | −3.39 × 102 |
References
- Debroy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process. structure and properties. Prog. Mater. Sci. 2018, 12, 112–224. [Google Scholar] [CrossRef]
- Wang, K.; Xie, G.Q.; Xiang, J.Y.; Li, T.; Peng, Y.; Wang, J.; Zhang, H.H. Materials selection of 3D printed polyamide-based composites at different strain rates: A case study of automobile front bumpers. J. Manuf. Process. 2022, 84, 1449–1462. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.Z.P.L.; Yu, Z.S.; Li, C.G.; Xu, P.Q.; Lu, Y.L. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold. Surf. Coat. Technol. 2013, 232, 362–369. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Rashid, R.A.R.; Masood, S.H.; Ruan, D.; Palanisamy, S. Mechanical Properties of SLM-Printed Aluminium Alloys: A Review. Materials 2020, 13, 4301. [Google Scholar] [CrossRef]
- Cottam, R.; Palanisamy, S.; Jarvis, T.; Cuiuri, D.; Leary, M.; Singh, M.; Rashid, R.A.R. Post-processing and machining of Ti6Al4V coupons fabricated using various metal additive manufacturing technologies. Compr. Mater. Process. 2024, 9, 132–147. [Google Scholar] [CrossRef]
- Gao, C.; Tang, H.; Zhang, S.; Ma, Z.; Bi, Y.; Rao, J.-H. Process Optimization for Up-Facing Surface Finish of AlSi10Mg Alloy Produced by Laser Powder Bed Fusion. Metals 2022, 12, 2053. [Google Scholar] [CrossRef]
- Xie, X.Y.; Ho, J.W.K.; Murphy, C.; Kaiser, G.; Xu, B.W.; Chen, T.Y. Testing and validating machine learning classifiers by metamorphic testing. J. Syst. Softw. 2011, 84, 544–558. [Google Scholar] [CrossRef]
- Fotovvati, B.; Chou, K. Build surface study of single-layer raster scanning in selective laser melting: Surface roughness prediction using deep learning. Manuf. Lett. 2022, 33, 701–711. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, Z.Y.; Shi, J.C.; Wu, D.Z. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput. Integr. Manuf. 2019, 57, 488–495. [Google Scholar] [CrossRef]
- Yang, D.H.; MA, L.; Huang, W.D. Component′s Surface Quality Predictions by Laser Rapid Forming Based on Artificial Neural Networks. Chin. J. Lasers 2011, 38, 83–88. [Google Scholar] [CrossRef]
- Deb, J.; Chowdhury, S.; Ali, N.M. An investigation of the ensemble machine learning techniques for predicting mechanical properties of printed parts in additive manufacturing. Decis. Anal. J. 2024, 12, 100492. [Google Scholar] [CrossRef]
- Chen, H.; Yaseer, A.; Zhang, Y. Top Surface Roughness Modeling for Robotic Wire Arc Additive Manufacturing. J. Manuf. Mater. Process. 2022, 6, 39. [Google Scholar] [CrossRef]
- Gogulamudi, B.; Bandlamudi, R.K.; Bhanavathu, B.; Guttula, V.S.K. A Prediction Model for Additive Manufacturing of AlSi10Mg Alloy. Trans. Indian Inst. Met. 2023, 76, 571–579. [Google Scholar] [CrossRef]
- Loreti, D.; Visani, G. Parallel approaches for a decision tree-based explainability algorithm. Future Gener. Comput. Syst. 2024, 158, 308–322. [Google Scholar] [CrossRef]
- Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.M. Random forests for global sensitivity analysis: A selective review. Reliab. Eng. Syst. Saf. 2020, 206, 107312. [Google Scholar] [CrossRef]
- Dorian, V.; Louis, G.; Elodie, C.; Louise, T.-M.; Sébastien, D. Machine Learning Based Fault Anticipation for 3D Printing. IFAC-PapersOnLine 2023, 56, 2927–2932. [Google Scholar] [CrossRef]
- Lu, Y.X.; Rai, R.W.; Nitin, N. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Food Res. Int. 2023, 173, 113384. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.H.; Liu, S.L.; Wu, T.Y.; Jin, P. A method for classifying tube structures based on shape descriptors and a random forest classifier. Measurement 2020, 158, 107705. [Google Scholar] [CrossRef]
- Huang, J.W.; Zhang, H.O.; Li, R.S.; Zhao, X.S.; Lin, H.; Zhai, W.Z.; Wang, G.L.; Fu, Y.H. Hybrid in-situ hot rolling and wire arc additive manufacturing of Al-Si alloy: Microstructure. mechanical properties and strengthening mechanism. J. Manuf. Process. 2024, 127, 328–339. [Google Scholar] [CrossRef]
- Bisht, M.S.; Gaur, V.; Singh, I.V. On mechanical properties of L-PBF Al–Si alloy: Role of heat treatment-induced evolution of silicon morphology. Mater. Sci. Eng. A 2022, 858, 144157. [Google Scholar] [CrossRef]
- Olakanmi, E.O. Selective laser sintering/melting (SLS/L-PBF) of pure Al; Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013, 213, 1387–1405. [Google Scholar] [CrossRef]
- Pawlus, P.; Reizer, R.; Wieczorowski, M.; Krolczyk, G.M. Study of surface texture measurement errors. Measurement 2023, 210, 112568. [Google Scholar] [CrossRef]
- Podulka, P.; Macek, W.; Branco, R.; Kubit, A. Laser-textured cross-hatched surface topography analysis with evaluation of high-frequency measurement noise. Measurement 2024, 235, 114988. [Google Scholar] [CrossRef]
- Brudler, S.; Medvedev, A.E.; Pandelidi, C.; Piegert, S.; Illston, T.; Qian, M.; Brandt, M. Systematic investigation of performance and productivity in Laser Powder Bed Fusion of Ti6Al4V up to 300 µm layer thickness. J. Mater. Process. Technol. 2024, 330, 118450. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hu, Q.; Zhang, J.H.; Liu, Y.J.; Sheng, Y.W.; Zhao, X.M. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg. Powder Metall. Technol. 2022, 40, 152–158. [Google Scholar] [CrossRef]
- Gong, D.L.; Bian, H.K.; Pan, D.; Xu, S.H.; Yang, X.; Yang, H.P. Research advances in powder bed fusion additive manufacturing AlSi10Mg alloy. Chin. J. Nonferrous Met. 2024, 34, 1091–1112. [Google Scholar] [CrossRef]
- Leis, A.; Traunecker, D.; Weber, R.; Graf, T. Tuning the Hardness of Produced Parts by Adjusting the Cooling Rate during Laser-Based Powder Bed Fusion of AlSi10Mg by Adapting the Process Parameters. Metals 2022, 12, 2000. [Google Scholar] [CrossRef]
- Zhang, X.J.; Chu, D.M.; Zhao, X.Y.; Gao, C.Y.; Lu, L.X.; He, Y.; Bai, W.J. Machine learning-driven. Appl. Mater. Today 2024, 39, 102306. [Google Scholar] [CrossRef]
- Geng, S.Y.; Mei, L.; Cheng, B.Y.; Luo, Q.L.; Xiong, C.; Long, W.J. Revolutionizing 3D concrete printing: Leveraging RF model for precise printability and rheological prediction. J. Build. Eng. 2024, 88, 109127. [Google Scholar] [CrossRef]
- Zhang, W.H.; Ma, H.L.; Zhang, Q.; Fan, S.Q. Prediction of powder bed thickness by spatter detection from coaxial optical images in selective laser melting of 316L stainless steel. Mater. Des. 2022, 213, 110301. [Google Scholar] [CrossRef]
- Lacy, F.; Ruiz-Reyes, A.; Brescia, A. Machine learning for low signal-to-noise ratio detection. Pattern Recognit. Lett. 2024, 179, 115–122. [Google Scholar] [CrossRef]
Parameter | Basic Parameter | Range of Variable |
---|---|---|
Laser power | 340 W | 270~420 W |
Laser scanning speed | 1100 mm/s | 800~1400 mm/s |
Hatch distance | 0.15 µm | 0.08~0.16 µm |
Sample Number | Laser Power (W) | Laser Scanning Speed (mm/s) | Hatch Distance (µm) | Laser Energy Density (J/mm3) |
---|---|---|---|---|
1 | 340 | 1100 | 0.15 | 68.7 |
2 | 325 | 1251 | 0.08 | 108.2 |
3 | 321 | 1281 | 0.15 | 55.7 |
4 | 348 | 1091 | 0.14 | 75.9 |
5 | 343 | 1176 | 0.08 | 121.5 |
6 | 375 | 1330 | 0.08 | 117.5 |
7 | 399 | 917 | 0.11 | 131.9 |
8 | 398 | 912 | 0.16 | 90.9 |
9 | 317 | 810 | 0.13 | 100.3 |
10 | 292 | 882 | 0.12 | 92 |
11 | 411 | 938 | 0.09 | 162.3 |
12 | 330 | 1239 | 0.12 | 74 |
13 | 354 | 1050 | 0.15 | 74.9 |
14 | 360 | 927 | 0.12 | 107.9 |
15 | 330 | 887 | 0.08 | 155 |
16 | 366 | 1172 | 0.16 | 65.1 |
17 | 270 | 1128 | 0.12 | 66.5 |
18 | 288 | 869 | 0.12 | 92.1 |
19 | 343 | 1047 | 0.12 | 91 |
20 | 328 | 1382 | 0.1 | 79.1 |
… | … | … | … | … |
Sample Number | Surface Roughness (µm) | Laser Power (W) | Laser Scanning Speed (mm/s) | Hatch Distance (µm) | Laser Energy Density (J/mm3) |
---|---|---|---|---|---|
14 | 3.26 | 360 | 927 | 0.12 | 107.9 |
26 | 3.95 | 395 | 1073 | 0.13 | 94.4 |
44 | 3.15 | 414 | 861 | 0.12 | 133.6 |
48 | 3.76 | 414 | 1079 | 0.09 | 142.1 |
116 | 2.98 | 415 | 917 | 0.1 | 150.9 |
Sample Number | Surface Roughness (µm) | Predicted Value (µm) | Error (%) | Descriptor |
---|---|---|---|---|
1 | 5.72 | 6.65 | 16% | 3.45 × 10−3 |
2 | 6.95 | 7.86 | 13% | 4.15 × 10−3 |
3 | 8.40 | 8.15 | 3% | 4.31 × 10−3 |
4 | 6.00 | 6.35 | 6% | 3.28 × 10−3 |
5 | 6.42 | 6.89 | 7% | 3.59 × 10−3 |
6 | 5.44 | 6.51 | 20% | 3.38 × 10−3 |
7 | 4.17 | 4.25 | 2% | 2.09 × 10−3 |
8 | 4.78 | 4.25 | 11% | 2.08 × 10−3 |
9 | 5.13 | 5.78 | 13% | 2.96 × 10−3 |
10 | 6.62 | 7.23 | 9% | 3.79 × 10−3 |
11 | 4.14 | 4.11 | 1% | 2.01 × 10−3 |
12 | 6.63 | 7.62 | 15% | 4.01 × 10−3 |
13 | 5.19 | 5.98 | 15% | 3.07 × 10−3 |
14 | 3.26 | 5.20 | 60% | 2.63 × 10−3 |
15 | 5.32 | 5.84 | 10% | 3.00 × 10−3 |
16 | 7.01 | 6.17 | 12% | 3.18 × 10−3 |
17 | 9.57 | 9.87 | 3% | 5.30 × 10−3 |
18 | 7.61 | 7.31 | 4% | 3.83 × 10−3 |
19 | 5.69 | 6.30 | 11% | 3.25 × 10−3 |
20 | 8.18 | 8.28 | 1% | 4.38 × 10−3 |
… | … | … | … | … |
Sample Number | Surface Roughness (µm) | Predicted Value (µm) | Error (%) | Descriptor 1 | Descriptor 2 |
---|---|---|---|---|---|
1 | 5.72 | 6.25 | 9% | 2.14 × 101 | −3.76 × 102 |
2 | 6.95 | 7.80 | 12% | 2.06 × 101 | −2.09 × 102 |
3 | 8.40 | 7.88 | 6% | 2.12 × 101 | −3.92 × 102 |
4 | 6.00 | 5.91 | 1% | 2.14 × 101 | −3.66 × 102 |
5 | 6.42 | 6.73 | 5% | 2.08 × 101 | −2.18 × 102 |
6 | 5.44 | 6.29 | 16% | 2.12 × 101 | −3.05 × 102 |
7 | 4.17 | 3.81 | 9% | 2.17 × 101 | −3.48 × 102 |
8 | 4.78 | 4.53 | 5% | 2.21 × 101 | −4.99 × 102 |
9 | 5.13 | 5.60 | 9% | 2.10 × 101 | −2.10 × 102 |
10 | 6.62 | 7.50 | 8% | 2.06 × 101 | −1.86 × 102 |
11 | 4.14 | 3.82 | 8% | 2.17 × 101 | −3.23 × 102 |
12 | 6.63 | 7.17 | 8% | 2.11 × 101 | −3.19 × 102 |
13 | 5.19 | 5.60 | 20% | 2.16 × 101 | −3.92 × 102 |
14 | 7.01 | 6.57 | 6% | 2.18 × 101 | −5.05 × 102 |
15 | 9.56 | 9.84 | 3% | 2.03 × 101 | −2.14 × 102 |
16 | 7.60 | 7.70 | 1% | 2.05 × 101 | −1.79 × 102 |
17 | 5.69 | 5.75 | 1% | 2.12 × 101 | −2.92 × 102 |
18 | 8.17 | 7.88 | 4% | 2.09 × 101 | −2.94 × 102 |
19 | 5.33 | 5.33 | 0% | 2.12 × 101 | −2.61 × 102 |
20 | 5.359 | 5.55 | 4% | 2.18 × 101 | −4.64 × 102 |
… | … | … | … | … | … |
Evaluation Parameter | R2 | MSE | RMSE | MAE |
---|---|---|---|---|
Argument (1D model) | 0.865 | 0.350 | 0.592 | 0.582 |
Argument (2D model) | 0.907 | 0.255 | 0.505 | 0.464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, X.; Gao, C.; Rao, J.H.; Wu, M.; Yan, M.; Bi, Y. Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy. Metals 2024, 14, 1148. https://doi.org/10.3390/met14101148
Shan X, Gao C, Rao JH, Wu M, Yan M, Bi Y. Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy. Metals. 2024; 14(10):1148. https://doi.org/10.3390/met14101148
Chicago/Turabian StyleShan, Xuepeng, Chaofeng Gao, Jeremy Heng Rao, Mujie Wu, Ming Yan, and Yunjie Bi. 2024. "Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy" Metals 14, no. 10: 1148. https://doi.org/10.3390/met14101148
APA StyleShan, X., Gao, C., Rao, J. H., Wu, M., Yan, M., & Bi, Y. (2024). Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy. Metals, 14(10), 1148. https://doi.org/10.3390/met14101148