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Abstract: Surface quality represents a critical challenge in additive manufacturing (AM), with surface
roughness serving as a key parameter that influences this aspect. In the aerospace industry, the
surface roughness of the aviation components is a very important parameter. In this study, a typical
Al alloy, AlSi10Mg, was selected to study its surface roughness when using Laser Powder Bed Fusion
(LPBF). Two Random Forest (RF) models were established to predict the upper surface roughness
of printed samples based on laser power, laser scanning speed, and hatch distance. Through the
study, it is found that a two-dimensional (2D) RF model is successful in predicting surface roughness
values based on experimental data. The best and minimum surface roughness is 2.98 µm, which
is the minimum known without remelting. More than two-thirds of the samples had a surface
roughness of less than 7.7 µm. The maximum surface roughness is 11.28 µm. And the coefficient of
determination (R2) of the model was 0.9, also suggesting that the surface roughness of 3D-printed Al
alloys can be predicted using ML approaches such as the RF model. This study helps to understand
the relationship between printing parameters and surface roughness and helps print components
with better surface quality.

Keywords: laser powder bed fusion (3D printing); surface quality; surface roughness; random
forest; AlSi10Mg

1. Introduction

Additive manufacturing (AM), more commonly known as 3D printing, is a novel
processing approach distinct from traditional manufacturing. Compared to traditional
machining, its processing method is more flexible and rapid, and it can achieve rapid
printing and manufacturing without mold, thereby garnering considerable favor within
industries. AM has been extensively utilized in aerospace, medical, and other domains [1].
Some automotive engineers are also studying how to replace conventional cast metal
parts and stamped parts with parts produced by AM, which can help reduce mold costs,
reduce upfront trial production costs, improve material utilization, and shorten production
cycles [2].

Compared to traditional manufacturing, AM also has certain disadvantages. For
instance, compared to traditional machining, the precision of the parts produced by AM is
lower, which not only affects the quality of the parts themselves but also the assembly of
different parts, strength, sealing performance, etc. of the entire system. Some characteristics
of AM processing, such as the need to add a support structure during processing, will
also affect its surface accuracy. An important parameter for measuring accuracy is surface
roughness. Surface roughness refers to the micro-geometric characteristics composed of
small spacing and peaks and valleys on the machined surface. It is a micro-geometric error,
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also known as micro-unevenness. By using turning, grinding, and/or other processing
methods, the surface roughness can be reduced to less than 0.01 µm [3]. The surface
roughness of additively manufactured samples varies widely, ranging from 2 µm to 90 µm,
which is mainly related to the process parameters used, the materials used, and the settings
of the surface optimization parameters. In many kinds of additive manufacturing, Laser
Powder Bed Fusion (L-PBF) has the lowest accuracy and the lowest surface roughness of
the parts produced [4,5]. Gao et al. [6] have successfully reduced the surface roughness
of Al-Si alloy parts printed by selective laser melting to 2 µm, which is the lowest known
surface roughness of additively manufactured metal parts. Based on the results of their
experiments, it was also noticed that the printing parameters are the most influential factors
on the surface roughness of homogeneous metal parts.

To solve the specific relationship between the printing parameters and the surface
roughness, artificial intelligence such as machine learning (ML) is preferred because too
many variables are involved. ML is also capable of predicting based on obtained experimen-
tal results, where it represents the behavior of a computer that adapts its own computational
aspects through experience gained from cyclic computing [7].

Several researchers have used ML models to predict the surface roughness of samples
for AM. For instance, in order to predict the surface roughness of Ti-6Al-4V alloy samples
printed by L-PBF, Fotovvati and Chou [8] studied the influence of various L-PBF process
parameters on samples’ surface roughness; their results show that laser power has the
greatest influence on the surface roughness of a sample. Li et al. [9] predicted the surface
roughness of as-printed polylactic acid fabricated from fused deposition modeling. Yang
et al. [10] developed an artificial neural network model to predict the surface roughness
of printed 316L stainless steel samples in order to predict and improve the surface qual-
ity. They investigated the ensemble machine learning models to predict the mechanical
properties of the 3D-printed Polylactic Acid (PLA) specimens. Deb et al. [11] used a variety
of ML methods to predict the tensile strength and surface roughness of 3D-printed PLA
based on process parameters. The experimental results show that the surface roughness
of printed samples can be improved by adjusting the process parameters. Chen et al. [12]
propose a machine learning method based on Gaussian process regression to construct a
model between the Wire Arc Additive Manufacturing (WAAM) process parameters and top
surface roughness. Experimental results demonstrate that the proposed method achieves
less than 50 µm accuracy in surface roughness prediction. Gogulamudi et al. [13], to study
the surface roughness of L-PBF aluminum alloy, developed a model to predict the optimal
process parameters for producing AlSi10Mg components with desired surface roughness
and Vickers microhardness.

Existing research covers a variety of approaches to ML and AM. This brings some
inspiration to our research, but at the same time, there are several problems. For example,
the vast majority of studies print a small number of experimental samples, in most cases
fewer than 100 samples. Moreover, the surface roughness of the printed samples in most
experiments is too large, which means that the printed parts may have surface defects
and thus affect the surface roughness. This creates noisy labels in the data. These factors
affect the predictions of ML models. Therefore, this experiment increased the number of
experimental samples and reduced the surface defects of samples by controlling the range
of process parameters to improve the accuracy and generality of ML predictions.

There are various types of ML models. In order to make it easy to give a suitable
formula for predicting the process parameters’ effects on the surface roughness, Random
Forest (RF) regression was selected to use in this study. RF is an integrated learning based
on a decision tree algorithm. The decision trees approach is an important classification
and regression method in data mining techniques [14], which is a predictive analytic
model expressed in the form of binary and multinomial trees [15]. In the RF, each decision
tree is independent and trained on a randomly selected subsample, which effectively
reduces the risk of overfitting [16]. RF obtains the final regression results by averaging or
weighted averaging the predictions of multiple decision trees [17]. Furthermore, according
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to the different number of feature values corresponding to each set of data, RF can be
classified into different categories, such as one-dimensional (1D) RF regression models,
two-dimensional (2D) RF regression, and so on. Descriptors are vectors used to depict
the features of the data, which are mainly used to help ML models understand the data
features [18]. A model with one descriptor for a piece of data is a 1D RF model, and a
model with two descriptors for a piece of data is a 2D RF model.

To sum up, the aim of this study is to discover the relationship between surface rough-
ness and process parameters for L-PBF. To achieve this, several groups of experimental
samples were printed, a database was constructed, a RF model was established to predict
the surface roughness of the printed samples according to the printing parameters, and
the regression equations of both were given. The typical alloy selected in this experiment
is AlSi10Mg, which is one of the most commonly used alloys in L-PBF. Its surface quality,
however, is relatively poor, and its surface roughness is high [19], which is because Al
alloys tend to have low fluidity [20], high thermal conductivity, and high laser reflectiv-
ity [21]. Improvement of its surface roughness can enhance its surface quality and can
help avoid the necessity and cost of subsequent machining. Compared with the existing
experiments, the parameter setting range in this study is more reasonable, and there are
more experimental data. Machine learning has a larger database and a lower noise value of
the data. The prediction results are more accurate and reasonable.

2. Experimental
2.1. Materials and Methods

The instrument used for printing was an FS273M printer (Farsoon Technologies,
Changsha, China), and the surface roughness instrument used for the experiment was
the Surftest SJ-310 measuring instrument (Mitutoyo, Suzhou, China). Each sample was
measured three times, with each measurement taken at a distance of 0.8 µm. The three
measurement lines and the edge of the sample were parallel to each other. Measurement
lines 1 and 3 were 2 mm from the edge, respectively, and measurement line 2 was located
in the center of the sample. In the process of measurement, some references were made
to reduce measurement errors. [22,23] The surface profile of some samples was measured
by the Countor GT K 3D profiler (Bruker, Berlin, Germany). Laser energy density, B, was
used to describe the overall experimental parameters, as shown in the following formula
(Equation (1)) [4]:

B =
P

vth
(1)

where P is the laser power (W), v is the scanning speed (mm/s), h is the hatch distance
(µm), and t is the layer thickness (µm).

During the printing process, both too low and too high energy densities increase
the surface roughness during printing. If the energy density is too low, it may lead to
incomplete melting of the powder and make defects on the surface of the sample; if the
energy density is too high, it may lead to splashing of the liquid metal and affect the surface
roughness of the part [24,25]. The selected experimental variables were laser power, laser
scanning speed, and hatch distance; see Table 1. The basic parameters were the commonly
used AlSi10Mg printing parameters provided by the printer equipment manufacturer. On
this basis, the research articles on AlSi10Mg should be referred to [26,27]. The range of
parameter variation was given. In the experiment, the process parameters of sample 1 were
set as the basic parameters, and the remaining sample parameters were determined by
random selection. There was no replication of experimental data. Since the thickness of
the powder layer cannot be adjusted during printing, we have standardized the powder
layer thickness for all parts to 30 µm, as this is the most commonly used thickness for
this aluminum alloy. For printing, the sample placement is shown in the following figure
(Figure 1). A total of 144 different sets of experimental samples were designed. The samples
were rectangles 1.2 cm in width by 1 cm in height. We conducted all sample prints at once,
set all parts to the same scanning strategy, and eliminated the remelting process to minimize
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the influence of extraneous factors. Furthermore, the chosen printer was equipped with a
dynamic focusing function that mitigates deviations in the laser incidence angle caused by
varying positions of components on the substrate.

Table 1. Printing parameters were used in this study.

Parameter Basic Parameter Range of Variable

Laser power 340 W 270~420 W
Laser scanning speed 1100 mm/s 800~1400 mm/s
Hatch distance 0.15 µm 0.08~0.16 µm

 

Figure 1. The way the samples were placed during printing.

2.2. Random Forest Regression

As mentioned above, the RF regression is an algorithm based on bootstrap aggregation
(bagging). Multiple decision trees are predicted in parallel, and the average predicted value
of all decision trees is ultimately given [28]. The operation principle is also shown in
Figure 2.

Figure 2. Development procedure for the RF regression model.
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The RF model randomly extracts multiple samples from the original data set and
generates multiple subsets of data. For each subset of data, a regression tree is constructed
using the decision tree algorithm. When each node splits, some features are randomly
selected, and the best features (laser power, laser scanning speed, and hatch distance) are
selected for splitting. After all trees are trained, each decision tree is used to predict the
newly input data points, and then all the predicted results are averaged to obtain the final
predicted value. The equations for the RF model are as follows (Equation (2)) [29]:

y =
1
N ∑N

n=1 yn (2)

where y is the average prediction result, N is the number of decision trees, and yn is the
prediction result given by n-numbered decision trees (1 < n < N). The specific process of
each tree in the experiment is shown in Figure 3.

Figure 3. Decision tree prediction process.

After the prediction result is obtained, the regression equation can be obtained by
non-linear regression according to the split way of the decision tree. The regression method
is the least squares method. The equation for the least squares method is expressed as
follows (Equation (3)) [7]:

min ∑n
i=1 w|yi − ŷi|2 (3)

where yi denotes the true observation, ŷi denotes the predicted value, w denotes precision,
and n denotes the number of decision trees.

In this experiment, there were 144 sets of data in total, where the eigenvalues were
the printing parameters, and the three eigenvalues were the laser power, scanning speed,
and scanning spacing. The target variable was surface roughness. For a better regression, a
part of the data with a large noise value was removed, and the remaining data was set up
as a database. The number of decision trees was set to 1000. The depth of each tree was
set to 0. A 1D RF regression model and a 2D RF regression model were chosen to compare
the regression equations and prediction accuracy given by the two models. The software
used in this experiment was Anaconda (version 2.3.2). An RF model was built in Python
(version 3.7.0).
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The method of obtaining the regression equation was the standard equation method,
which aims to obtain the parameter θ that minimizes the value of the cost function. The
cost function formula was as follows:

To determine the prediction accuracy, some parameters, namely the mean square error
(MSE), root mean square error (RMSE), mean absolute error (MAE), and determination
coefficient (R2), were used, and they are described below [11].

The formula for R2 is as follows (Equation (4)):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

where yi denotes the true observation, ŷi denotes the predicted value, y denotes the mean
of the true observation, and n denotes the number of observations.

The formulas for MSE and RMSE are as follows (Equations (5) and (6)):

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (5)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (6)

where yi denotes the true observation, ŷi denotes the predicted value, and n denotes the
number of observations.

The equation for MAE is expressed as follows (Equation (7)):

MAE =
1
n ∑n

i=1 | yi − ŷi | (7)

where yi denotes the true observation, ŷi denotes the predicted value, and n denotes the
number of observations.

3. Results
3.1. Experimental Result

The surface morphology and surface roughness of the printed parts were measured.
The surface morphology of some parts was shown in Figure 4.

It can be seen from the surface profiles of some extracted samples that the surface
profiles of the samples are relatively smooth, without major surface defects, and will not
affect the measurement of surface roughness.

The printing parameters of the experimental samples were set in Table 2. After printing,
the surface roughness values of all samples were measured and organized into a histogram
(Figure 5). From the histogram, it can be seen that the surface roughness values ranged
from 2.90 µm to 11.30 µm. Most of the samples had surface roughness values clustered
between 4.10 µm and 7.70 µm. We set the lower limit at 2.9 µm and the upper limit at
11.3 µm, dividing the range into seven equal intervals, each with a width of 1.2 µm. The
printing parameters of the five best samples are organized in Table 3, and the rest of the
data are included in Appendix A.

Two points can be found in Table 3: Firstly, the energy density of several points with
the lowest roughness is very high, e.g., ~130–150 J/mm3. Secondly, the best hatch distance
is around 0.12 µm. This means that a combination of high laser power, low scanning speed,
high laser energy density, and suitable hatch distance can reduce the surface roughness of
the printed AlSi10Mg samples.
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Figure 4. Surface profiles of the experimental samples: (a,b) show the surface profile of sample 1;
(c,d) show the surface profile of sample 2.
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Table 2. Process parameters of the samples (part).

Sample Number Laser Power (W) Laser Scanning
Speed (mm/s)

Hatch Distance
(µm)

Laser Energy
Density (J/mm3)

1 340 1100 0.15 68.7
2 325 1251 0.08 108.2
3 321 1281 0.15 55.7
4 348 1091 0.14 75.9
5 343 1176 0.08 121.5
6 375 1330 0.08 117.5
7 399 917 0.11 131.9
8 398 912 0.16 90.9
9 317 810 0.13 100.3
10 292 882 0.12 92
11 411 938 0.09 162.3
12 330 1239 0.12 74
13 354 1050 0.15 74.9
14 360 927 0.12 107.9
15 330 887 0.08 155
16 366 1172 0.16 65.1
17 270 1128 0.12 66.5
18 288 869 0.12 92.1
19 343 1047 0.12 91
20 328 1382 0.1 79.1
. . . . . . . . . . . . . . .

Figure 5. Surface roughness histogram.

Table 3. The best printing parameters and corresponding surface roughness (see Appendix Table A1
for the complete table).

Sample
Number

Surface
Roughness

(µm)

Laser
Power (W)

Laser Scanning
Speed (mm/s)

Hatch
Distance

(µm)

Laser Energy
Density
(J/mm3)

14 3.26 360 927 0.12 107.9
26 3.95 395 1073 0.13 94.4
44 3.15 414 861 0.12 133.6
48 3.76 414 1079 0.09 142.1

116 2.98 415 917 0.1 150.9
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To further compare the relationship between surface roughness and laser energy
density, the corresponding laser energy density and surface roughness of all 144 samples
were counted and prepared as a scatter plot (Figure 6). The R2 for this linear fit is 0.22. It
can be seen from the figure that the laser energy density is indeed inversely proportional to
the surface roughness as a whole, and the higher the laser energy density, the lower the
surface roughness of the sample. The relationship between them is weakly and inversely
correlated. However, the relationship between laser energy density and surface roughness
is very complex, so this part is only a simple reasoning of the relationship between the two.
The relationship between process parameters, laser energy density, and surface roughness
also needs to be inferred from the ML prediction results.

Figure 6. Scatter plot for surface roughness–laser energy density.

Meanwhile, from the corresponding linear fitting, some data distribution is relatively
discrete. This is most likely because of uncontrollable factors during the printing process.
For example, the airflow field can impact the roughness of the printed parts [30]. The
printer’s blower device can blow up fine spray powder during printing, which may splash
onto other nearby sample surfaces, affecting surface forming and roughness. The surface
roughness of individual samples fluctuates within a range of 1–2 µm, making predictions
challenging when the surface roughness is excessively low. This leads to training data
that is noisy, which affects the prediction results of the model [31]. To reduce errors in
the regression prediction and improve the accuracy of the machine learning model, data
that are too discrete are removed, and the remaining data are used as a database for the
following ML regression.

3.2. Prediction Results and Regression Equations of the RF Regression Model (1D)

A 1D RF prediction model was run with a corresponding descriptor for each eigen-
value. The model is used to predict the training set and test set, respectively. The training
set is used to estimate the parameters in the model so that the model reflects reality, while
the test set is used to evaluate the predictive performance of the model. The comparison
table between the predicted value and the real value is also sorted out, and part of the data
are shown in Table 4.
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Table 4. Random Forest Regression (1D) prediction results (part).

Sample Number Surface
Roughness (µm)

Predicted Value
(µm) Error (%) Descriptor

1 5.72 6.65 16% 3.45 × 10−3

2 6.95 7.86 13% 4.15 × 10−3

3 8.40 8.15 3% 4.31 × 10−3

4 6.00 6.35 6% 3.28 × 10−3

5 6.42 6.89 7% 3.59 × 10−3

6 5.44 6.51 20% 3.38 × 10−3

7 4.17 4.25 2% 2.09 × 10−3

8 4.78 4.25 11% 2.08 × 10−3

9 5.13 5.78 13% 2.96 × 10−3

10 6.62 7.23 9% 3.79 × 10−3

11 4.14 4.11 1% 2.01 × 10−3

12 6.63 7.62 15% 4.01 × 10−3

13 5.19 5.98 15% 3.07 × 10−3

14 3.26 5.20 60% 2.63 × 10−3

15 5.32 5.84 10% 3.00 × 10−3

16 7.01 6.17 12% 3.18 × 10−3

17 9.57 9.87 3% 5.30 × 10−3

18 7.61 7.31 4% 3.83 × 10−3

19 5.69 6.30 11% 3.25 × 10−3

20 8.18 8.28 1% 4.38 × 10−3

. . . . . . . . . . . . . . .

In the regression, the first 100 sets of data are used as the test set, and the last 20 sets of
data are used as the training set. The data, including the real values and predicted values,
as well as the corresponding eigenvalue of each data, are included in Appendix Table A2
The predicted and true values given by the model were sorted into graphs for the training
set and the test set, respectively (Figure 7).

Figure 7. Cont.



Metals 2024, 14, 1148 11 of 26

Figure 7. Cont.
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Figure 7. Comparison of the surface roughness prediction results given by one-dimensional Random
Forest Regression: (a,b) are the predicted surface roughness values and the real observed values in
the training set; (c,d) are the predicted surface roughness values and the real observed values in the
test set.

The formula for the regressed surface roughness, R, is as follows (Equation (8)):

R = ln
(

1752.6a
b2

)
+ 0.6 (8)

where a is the laser scanning speed (mm/s), and b is the laser power (W). The image
of the equation is shown in Figure 8. According to the established equation, the surface
roughness is proportional to laser scanning speed and inversely proportional to laser
power, suggesting that the higher the laser power, the lower the scanning speed, the
lower the surface roughness, and the better the surface performance of the printed sample.
This is consistent with previous experimental findings that surface roughness is inversely
proportional to laser energy density.

The regression equation does not contain all the features, which indicates that there
are some problems in the pruning process of the decision tree, resulting in a lack of features.
To solve this phenomenon, it is necessary to add data descriptors so that the RF model
can understand the data more accurately and make the model more complex to avoid the
influence of single decision tree pruning errors.
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Figure 8. Regression equation of the surface roughness using the 1D RF model.

3.3. Prediction Results and Regression Equations of Random Forest Regression Model (2D)

Table 5 compares some of the experimental and predicted values in the 2D RF model.
The complete data of the samples, as well as the eigenvalues corresponding to each data
point, are listed in Appendix Table A3.

Table 5. Random Forest Regression (2D) prediction results (part).

Sample
Number

Surface
Roughness

(µm)

Predicted
Value (µm) Error (%) Descriptor 1 Descriptor 2

1 5.72 6.25 9% 2.14 × 101 −3.76 × 102

2 6.95 7.80 12% 2.06 × 101 −2.09 × 102

3 8.40 7.88 6% 2.12 × 101 −3.92 × 102

4 6.00 5.91 1% 2.14 × 101 −3.66 × 102

5 6.42 6.73 5% 2.08 × 101 −2.18 × 102

6 5.44 6.29 16% 2.12 × 101 −3.05 × 102

7 4.17 3.81 9% 2.17 × 101 −3.48 × 102

8 4.78 4.53 5% 2.21 × 101 −4.99 × 102

9 5.13 5.60 9% 2.10 × 101 −2.10 × 102

10 6.62 7.50 8% 2.06 × 101 −1.86 × 102

11 4.14 3.82 8% 2.17 × 101 −3.23 × 102

12 6.63 7.17 8% 2.11 × 101 −3.19 × 102

13 5.19 5.60 20% 2.16 × 101 −3.92 × 102

14 7.01 6.57 6% 2.18 × 101 −5.05 × 102

15 9.56 9.84 3% 2.03 × 101 −2.14 × 102

16 7.60 7.70 1% 2.05 × 101 −1.79 × 102

17 5.69 5.75 1% 2.12 × 101 −2.92 × 102

18 8.17 7.88 4% 2.09 × 101 −2.94 × 102

19 5.33 5.33 0% 2.12 × 101 −2.61 × 102

20 5.359 5.55 4% 2.18 × 101 −4.64 × 102

. . . . . . . . . . . . . . . . . .
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Furthermore, the predicted values and experimental values given by the model on the
training set and the test set were organized into line plots and scatter plots, respectively,
see Figure 9.

Figure 9. Cont.
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Figure 9. Comparison of surface roughness prediction results given by 2D RF: (a,b) are the predicted
surface roughness values for the training set; (c,d) are the predicted surface roughness values for the
test set.

The regressed surface roughness, R, using the 2D RF model is as follows (Equation (9)):

R = −5.786 ln
(

b4

c

)
+

0.0187ac
sin(ln b)

+ 141.138 (9)
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where a is the laser scanning speed (mm/s), b is the laser power (W), and c is the hatch
distance (µm). It can be seen that the regression equation given by the 2D RF regression
model is different from that of the 1D model. Since there are three variables in this regression
equation, it is not possible to draw the function diagram directly. After setting the hatch
distance to 0.01 µm, the function diagram is presented in Figure 10.

Figure 10. Regression equation of the surface roughness using the RF 2D model.

By checking the regression equation, it can be found that the value of sin(ln b) in the
equation has a small change (0.097–0.105) in the laser power range (270 W–420 W) given in
this experiment, which can be regarded as a constant. Based on this, the surface roughness
of the printed samples shows a tendency of decreasing with the increase in laser power
and increasing with the increase in laser scanning speed, while the relationship between
the surface roughness and the hatch distance depends on the specific parameters.

4. Discussion

By comparing the prediction accuracy of the two different models, the reference
coefficients for the 1D and 2D RF models are sorted in Table 6. From the table, it can be seen
that, in comparison, the 2D RF regression model has lower values of MSE, RMSE, and MAE,
and its R2 is closer to 1. All four evaluation parameters are better than the 1D RF regression
model, indicating that the 2D RF regression model gives a more accurate prediction.

Table 6. Comparison of evaluation parameters between the 1D model and 2D model.

Evaluation Parameter R2 MSE RMSE MAE

Argument (1D model) 0.865 0.350 0.592 0.582
Argument (2D model) 0.907 0.255 0.505 0.464

Based on the regression equations obtained above, it was found that the two equations
have similar resulting images and patterns of change, but the regression equation given
by the 2D RF regression model includes the variable of hatch distance. This is because
by adding a descriptor, the ML process learns more features, which helps understand
the relationship between the input features and the real observations. A more reasonable
regression equation is therefore realized by the 2D RF regression; also, the regression
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equation given by the 2D RF regression model contains all the eigenvalue variables. Based
on the 2D RF regression equation, it can be observed that surface roughness decreases
as laser power increases and increases as scanning speed increases. Additionally, the
relationship between surface roughness and hatch distance varies based on the specific
value of the hatch distance. Similar patterns can also be derived from the 1D RF regression
equation. As laser power increases, scanning speed decreases, leading to an increase in laser
energy density and a decrease in surface roughness. The conclusion aligns with our findings
at the end of Chapter 3.1. However, it is important to note that this conclusion may not
hold true when the process parameters fall outside the range specified in this experiment.
Additionally, the surface roughness could be impacted by uncontrollable external factors,
leading to a small margin of error. By further comparing the results of this study with
previous studies (Table 7), it is evident that our results are among the best ones, achieving
a minimum surface roughness of below 3 µm [6,13]. The experimental results show that
surface defects have less impact, leading to more accurate predictions. Additionally, the
machine learning database used in this study is larger, allowing for a wider range of
predictions. This experiment also obtained regression equations for AlSi10Mg surface
roughness and process parameters, a first in known research. This contributes to a better
understanding of the relationship between surface roughness and process parameters.

Table 7. Surface roughness results obtained in this study and other references [4,23].

Reference Study Our Study

Minimum surface roughness 2.5 µm [6]
8.67 µm [13] 2.95 µm

Machine learning model Deep learning [13] Random forest
Regression equation Excluded Contained

5. Conclusions and Outlook
5.1. Conclusions

The main results obtained in this study are summarized as follows:

(1) In order to study the correlation between the surface roughness of a typical Al alloy
and the printing parameters, experiments were designed in which a total of 144 sets
of samples were printed to study changes in surface roughness under the influence
of key printing parameters. The lowest surface roughness achieved was 2.95 µm,
indicating that it is possible to print Al alloys with a good surface quality by process
optimization without using remelting.

(2) Based on the obtained experimental data, Random Forest regression was built to
regress and predict the results. After optimizing the model, a 2D prediction model
was developed with high prediction accuracy. The R2 of the model is 0.907, with an
MSE of 0.255, RMSE of 0.505, and MAE of 0.464. The specific relationship equation
between the key printing parameters and surface roughness was also derived. A 2D
RF model can maintain high prediction accuracy on both the training set and test
set. The experimental parameters in the training set and test set cover the range of
printing parameters of AlSi10Mg. This proves that the obtained ML model can provide
accurate prediction results for the indicated roughness study of the aluminum alloy.

5.2. Outlook

In comparison to existing experimental results, this experiment collected a larger
amount of data, with a total of 144 groups of experimental data being designed. The surface
roughness of the samples was also lower. The experiment used the common printing
parameter interval for AlSi10Mg. The average prediction error was less than 0.5 µm,
indicating higher prediction accuracy across a wider range of applications. The regression
equation between process parameters and surface roughness was also proposed in this
experiment, which helps us to understand the relationship between the two. However,
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there are some drawbacks to this experiment. Even though the data set used for machine
learning in this experiment was already much larger than the data set in the existing
research results, to predict the results more accurately, it is still necessary to build a data set
containing more experimental data. If a data set of more than a thousand printed parts can
be included, then the prediction accuracy of the model will surpass all known results.
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Appendix A

Table A1. Process parameters and surface roughness of the printed sample.

Sample Number Laser Power (W) Laser Scanning
Speed (mm/s)

Hatch Distance
(µm)

Surface
Roughness (µm)

1 340 1100 0.15 5.72
2 325 1251 0.08 6.95
3 321 1281 0.15 8.40
4 348 1091 0.14 6.00
5 343 1176 0.08 6.42
6 375 1330 0.08 5.44
7 399 917 0.11 4.17
8 398 912 0.16 4.78
9 317 810 0.13 5.13
10 292 882 0.12 6.62
11 411 938 0.09 4.14
12 330 1239 0.12 6.63
13 354 1050 0.15 5.19
14 360 927 0.12 3.26
15 330 887 0.08 5.32
16 366 1172 0.16 7.01
17 270 1128 0.12 9.57
18 288 869 0.12 7.61
19 343 1047 0.12 5.69
20 328 1382 0.1 8.18
21 377 1120 0.08 5.33
22 376 1070 0.15 5.36
23 353 1048 0.12 4.92
24 357 1042 0.12 4.84
25 372 1150 0.16 6.49
26 395 1073 0.13 3.95
27 409 1133 0.12 5.13
28 352 861 0.12 4.41
29 311 1115 0.08 7.14
30 300 1013 0.14 7.24
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Table A1. Cont.

Sample Number Laser Power (W) Laser Scanning
Speed (mm/s)

Hatch Distance
(µm)

Surface
Roughness (µm)

31 273 955 0.12 8.13
32 322 839 0.1 4.92
33 382 959 0.15 4.23
34 303 1061 0.12 6.71
35 377 1017 0.09 5.20
36 324 989 0.1 6.71
37 374 852 0.08 4.70
38 286 1358 0.08 11.28
39 338 1211 0.14 6.80
40 381 1188 0.09 4.91
41 408 1048 0.1 5.95
42 370 1062 0.08 4.88
43 364 1074 0.08 5.03
44 414 861 0.12 3.15
45 327 1244 0.15 7.67
46 343 1302 0.08 6.60
47 285 1236 0.09 9.31
48 414 1079 0.09 3.76
49 385 1053 0.16 5.50
50 356 1167 0.08 6.09
51 284 807 0.11 8.28
52 356 1124 0.11 5.36
53 374 1139 0.12 4.84
54 275 1073 0.08 10.81
55 363 895 0.08 4.64
56 390 1317 0.08 5.72
57 367 1050 0.12 5.01
58 409 896 0.16 4.23
59 396 841 0.11 4.23
60 403 854 0.12 5.71
61 355 1063 0.1 4.78
62 284 1244 0.12 8.92
63 291 804 0.15 5.65
64 343 1345 0.12 7.20
65 411 1236 0.09 5.26
66 331 940 0.1 5.14
67 302 1080 0.15 8.24
68 338 1172 0.14 6.67
69 391 987 0.11 3.65
70 354 1184 0.14 5.64
71 329 1311 0.12 8.22
72 285 983 0.15 9.63
73 275 1079 0.12 10.42
74 305 993 0.08 7.77
75 372 920 0.14 4.71
76 304 891 0.09 7.54
77 325 836 0.08 6.42
78 343 957 0.15 5.47
79 393 1269 0.1 4.90
80 318 810 0.08 5.81
81 321 935 0.12 5.48
82 339 1217 0.08 7.64
83 331 1275 0.15 7.14
84 351 1165 0.09 5.34
85 353 1053 0.11 4.91
86 373 933 0.12 4.94
87 397 1370 0.13 8.37
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Table A1. Cont.

Sample Number Laser Power (W) Laser Scanning
Speed (mm/s)

Hatch Distance
(µm)

Surface
Roughness (µm)

88 275 983 0.11 9.46
89 391 1184 0.15 7.10
90 370 1347 0.09 7.51
91 343 1386 0.08 7.70
92 272 1175 0.15 9.92
93 347 939 0.09 4.37
94 271 1151 0.13 9.59
95 413 891 0.11 4.06
96 419 1226 0.12 5.07
97 291 959 0.08 8.98
98 278 1190 0.09 9.88
99 335 868 0.09 7.79

100 295 803 0.1 7.84
101 402 1303 0.12 6.47
102 278 1020 0.13 8.15
103 298 1051 0.11 7.11
104 331 1062 0.12 6.54
105 368 1108 0.08 5.51
106 404 1318 0.11 9.23
107 323 1090 0.14 7.36
108 294 1177 0.11 9.78
109 328 858 0.12 5.37
110 354 872 0.12 4.70
111 395 1035 0.1 4.77
112 334 1142 0.08 8.11
113 378 1147 0.09 7.29
114 348 1040 0.1 5.26
115 405 1348 0.11 7.38
116 415 917 0.1 2.90
117 300 1368 0.12 7.54
118 317 1387 0.12 7.31
119 324 1259 0.12 6.77
120 335 836 0.1 6.91
121 366 1337 0.1 6.84
122 382 955 0.14 5.66
123 353 1132 0.15 4.83
124 330 1083 0.12 5.20
125 288 1187 0.09 10.01
126 316 1155 0.12 9.21
127 281 1023 0.09 10.18
128 292 1335 0.12 10.85
129 300 809 0.08 7.40
130 323 1109 0.11 6.45
131 393 1182 0.11 6.00
132 408 1208 0.1 5.43
133 280 1387 0.1 10.57
134 377 872 0.12 4.97
135 376 1396 0.11 7.33
136 359 1259 0.08 9.95
137 412 830 0.16 3.67
138 379 1291 0.08 6.11
139 378 1226 0.08 6.21
140 411 1396 0.1 7.06
141 285 828 0.14 8.46
142 408 1292 0.12 7.92
143 398 1236 0.08 5.98
144 328 1328 0.12 7.96
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Table A2. Random Forest Regression(1D) prediction results. Note: groups 1–100 are the training set
data, and groups 101–120 are the test set data.

Sample Number Surface
Roughness (µm)

Predicted Value
(µm) Error (%) Descriptor

1 5.72 6.65 16% 3.45 × 10−3

2 6.95 7.86 13% 4.15 × 10−3

3 8.40 8.15 3% 4.31 × 10−3

4 6.00 6.35 6% 3.28 × 10−3

5 6.42 6.89 7% 3.59 × 10−3

6 5.44 6.51 20% 3.38 × 10−3

7 4.17 4.25 2% 2.09 × 10−3

8 4.78 4.25 11% 2.08 × 10−3

9 5.13 5.78 13% 2.96 × 10−3

10 6.62 7.23 9% 3.79 × 10−3

11 4.14 4.11 1% 2.01 × 10−3

12 6.63 7.62 15% 4.01 × 10−3

13 5.19 5.98 15% 3.07 × 10−3

14 7.01 6.17 60% 3.18 × 10−3

15 9.57 9.87 10% 5.30 × 10−3

16 7.61 7.31 12% 3.83 × 10−3

17 5.69 6.30 3% 3.25 × 10−3

18 8.18 8.28 4% 4.38 × 10−3

19 5.33 5.66 11% 2.89 × 10−3

20 5.36 5.47 1% 2.78 × 10−3

21 4.92 6.00 6% 3.08 × 10−3

22 4.84 5.85 2% 3.00 × 10−3

23 6.49 5.91 22% 3.03 × 10−3

24 5.13 4.96 21% 2.49 × 10−3

25 4.41 5.05 9% 2.54 × 10−3

26 7.14 7.79 27% 4.11 × 10−3

27 7.24 7.70 3% 4.06 × 10−3

28 8.13 8.63 14% 4.59 × 10−3

29 4.92 5.81 9% 2.97 × 10−3

30 4.23 4.82 6% 2.41 × 10−3

31 6.71 7.84 6% 4.14 × 10−3

32 5.20 5.21 18% 2.63 × 10−3

33 6.71 6.63 14% 3.44 × 10−3

34 4.70 4.45 17% 2.20 × 10−3

35 11.28 10.14 0% 5.45 × 10−3

36 6.80 7.21 1% 3.78 × 10−3

37 4.91 5.82 5% 2.98 × 10−3

38 4.88 5.59 10% 2.85 × 10−3

39 5.03 5.80 6% 2.97 × 10−3

40 3.15 3.69 19% 1.77 × 10−3

41 7.67 7.75 22% 4.09 × 10−3

42 6.60 7.41 14% 3.89 × 10−3

43 9.31 9.61 15% 5.15 × 10−3

44 3.76 4.65 17% 2.31 × 10−3

45 5.50 5.17 1% 2.61 × 10−3

46 6.09 6.44 12% 3.34 × 10−3

47 8.28 7.04 3% 3.68 × 10−3

48 5.36 6.25 24% 3.23 × 10−3

49 4.84 5.81 6% 2.98 × 10−3

50 10.81 9.27 6% 4.95 × 10−3

51 4.64 4.95 15% 2.49 × 10−3

52 5.72 6.06 17% 3.12 × 10−3

53 5.01 5.61 20% 2.86 × 10−3
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Table A2. Cont.

Sample Number Surface
Roughness (µm)

Predicted Value
(µm) Error (%) Descriptor

54 4.23 3.96 14% 1.92 × 10−3

55 4.23 3.93 7% 1.90 × 10−3

56 8.92 9.71 6% 5.20 × 10−3

57 5.65 6.71 12% 3.49 × 10−3

58 7.20 7.57 6% 3.98 × 10−3

59 5.26 5.29 7% 2.68 × 10−3

60 5.14 6.12 26% 3.15 × 10−3

61 8.24 7.99 9% 4.22 × 10−3

62 6.67 7.04 19% 3.68 × 10−3

63 3.65 4.74 5% 2.37 × 10−3

64 5.64 6.57 1% 3.41 × 10−3

65 8.22 7.96 19% 4.20 × 10−3

66 10.42 9.30 3% 4.97 × 10−3

67 7.77 7.38 6% 3.87 × 10−3

68 4.71 4.86 30% 2.43 × 10−3

69 7.54 6.79 17% 3.54 × 10−3

70 6.42 5.69 3% 2.91 × 10−3

71 5.47 5.84 11% 2.99 × 10−3

72 4.90 5.82 5% 2.98 × 10−3

73 5.81 5.75 3% 2.94 × 10−3

74 5.48 6.43 10% 3.33 × 10−3

75 7.64 7.20 11% 3.77 × 10−3

76 7.14 7.73 7% 4.07 × 10−3

77 5.34 6.58 19% 3.42 × 10−3

78 4.91 6.02 1% 3.10 × 10−3

79 4.94 4.90 17% 2.46 × 10−3

80 8.37 6.06 6% 3.12 × 10−3

81 9.46 8.71 8% 4.63 × 10−3

82 7.10 5.56 23% 2.83 × 10−3

83 7.51 6.71 23% 3.49 × 10−3

84 7.70 7.73 1% 4.07 × 10−3

85 9.92 10.02 8% 5.38 × 10−3

86 4.37 5.62 11% 2.87 × 10−3

87 9.59 9.94 0% 5.34 × 10−3

88 4.06 3.86 1% 1.86 × 10−3

89 8.98 7.78 29% 4.10 × 10−3

90 9.88 9.76 4% 5.23 × 10−3

91 7.84 6.54 5% 3.39 × 10−3

92 6.47 5.72 0% 2.93 × 10−3

93 8.15 8.79 13% 4.68 × 10−3

94 7.11 8.01 1% 4.23 × 10−3

95 6.54 6.77 12% 3.52 × 10−3

96 5.51 5.84 8% 3.00 × 10−3

97 7.36 7.19 13% 3.77 × 10−3

98 5.37 5.73 4% 2.93 × 10−3

99 4.70 5.06 6% 2.55 × 10−3

100 4.77 4.87 2% 2.44 × 10−3

101 8.11 7.04 9% 3.68 × 10−3

102 7.38 5.80 7% 2.97 × 10−3

103 7.31 8.75 8% 4.66 × 10−3

104 6.77 7.93 2% 4.19 × 10−3

105 6.84 6.80 16% 3.54 × 10−3

106 10.01 9.21 1% 4.92 × 10−3

107 10.18 8.65 15% 4.60 × 10−3
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Table A2. Cont.

Sample Number Surface
Roughness (µm)

Predicted Value
(µm) Error (%) Descriptor

108 7.40 6.39 8% 3.31 × 10−3

109 6.45 7.29 10% 3.82 × 10−3

110 6.00 5.50 13% 2.80 × 10−3

111 5.43 5.26 8% 2.66 × 10−3

112 10.57 10.61 3% 5.71 × 10−3

113 7.33 6.71 0% 3.49 × 10−3

114 3.67 3.57 10% 1.70 × 10−3

115 6.11 6.26 8% 3.23 × 10−3

116 6.21 6.05 3% 3.11 × 10−3

117 7.06 5.81 2% 2.98 × 10−3

118 7.92 5.55 3% 2.83 × 10−3

119 5.98 5.58 7% 2.85 × 10−3

120 7.96 8.06 1% 4.26 × 10−3

Table A3. Random Forest Regression(2D) prediction results. Note: groups 1–100 are the training set
data, and groups 101–120 are the test set data.

Sample
Number

Surface
Roughness

(µm)

Predicted
Value (µm) Error (%) Descriptor 1 Descriptor 2

1 5.72 6.25 9% 2.14 × 101 −3.76 × 102

2 6.95 7.80 12% 2.06 × 101 −2.09 × 102

3 8.40 7.88 6% 2.12 × 101 −3.92 × 102

4 6.00 5.91 1% 2.14 × 101 −3.66 × 102

5 6.42 6.73 5% 2.08 × 101 −2.18 × 102

6 5.44 6.29 16% 2.12 × 101 −3.05 × 102

7 4.17 3.81 9% 2.17 × 101 −3.48 × 102

8 4.78 4.53 5% 2.21 × 101 −4.99 × 102

9 5.13 5.60 9% 2.10 × 101 −2.10 × 102

10 6.62 7.50 8% 2.06 × 101 −1.86 × 102

11 4.14 3.82 8% 2.17 × 101 −3.23 × 102

12 6.63 7.17 8% 2.11 × 101 −3.19 × 102

13 5.19 5.60 20% 2.16 × 101 −3.92 × 102

14 7.01 6.58 6% 2.18 × 101 −5.05 × 102

15 9.57 9.84 3% 2.03 × 101 −2.14 × 102

16 7.61 7.70 1% 2.05 × 101 −1.79 × 102

17 5.69 5.75 1% 2.12 × 101 −2.92 × 102

18 8.18 7.88 4% 2.09 × 101 −2.94 × 102

19 5.33 5.33 0% 2.12 × 101 −2.61 × 102

20 5.36 5.55 4% 2.18 × 101 −4.64 × 102

21 4.92 5.45 11% 2.13 × 101 −3.11 × 102

22 4.84 5.30 10% 2.14 × 101 −3.17 × 102

23 6.49 6.42 1% 2.18 × 101 −5.16 × 102

24 5.13 5.78 13% 2.19 × 101 −5.11 × 102

25 4.41 4.45 1% 2.13 × 101 −2.54 × 102

26 7.14 8.14 14% 2.04 × 101 −1.73 × 102

27 7.24 7.35 2% 2.08 × 101 −2.59 × 102

28 8.13 9.02 11% 2.03 × 101 −1.84 × 102

29 4.92 6.04 23% 2.08 × 101 −1.72 × 102

30 4.23 4.64 10% 2.19 × 101 −4.34 × 102

31 6.71 7.59 13% 2.07 × 101 −2.36 × 102

32 5.20 4.76 8% 2.13 × 101 −2.66 × 102

33 6.71 6.52 3% 2.08 × 101 −2.05 × 102
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Table A3. Cont.

Sample
Number

Surface
Roughness

(µm)

Predicted
Value (µm) Error (%) Descriptor 1 Descriptor 2

34 4.70 4.27 9% 2.12 × 101 −1.94 × 102

35 11.28 10.32 9% 2.01 × 101 −1.85 × 102

36 6.80 6.89 1% 2.13 × 101 −3.82 × 102

37 4.91 5.52 13% 2.14 × 101 −3.20 × 102

38 4.88 5.29 8% 2.11 × 101 −2.35 × 102

39 5.03 5.54 10% 2.11 × 101 −2.28 × 102

40 3.15 3.54 12% 2.20 × 101 −4.06 × 102

41 7.67 7.49 2% 2.13 × 101 −3.94 × 102

42 6.60 7.17 9% 2.08 × 101 −2.42 × 102

43 9.31 9.78 5% 2.02 × 101 −1.89 × 102

44 3.76 4.75 26% 2.17 × 101 −3.82 × 102

45 5.50 5.69 3% 2.20 × 101 −5.20 × 102

46 6.09 6.18 2% 2.10 × 101 −2.35 × 102

47 8.28 7.97 4% 2.04 × 101 −1.50 × 102

48 5.36 5.77 8% 2.13 × 101 −3.11 × 102

49 4.84 5.58 15% 2.16 × 101 −3.89 × 102

50 10.81 10.36 4% 1.99 × 101 −1.39 × 102

51 4.64 4.87 5% 2.11 × 101 −1.89 × 102

52 5.72 6.00 5% 2.13 × 101 −3.38 × 102

53 5.01 5.12 2% 2.15 × 101 −3.42 × 102

54 4.23 4.64 10% 2.22 × 101 −5.39 × 102

55 4.23 3.30 22% 2.17 × 101 −3.11 × 102

56 8.92 9.38 5% 2.05 × 101 −2.52 × 102

57 5.65 6.75 19% 2.08 × 101 −2.11 × 102

58 7.20 7.31 1% 2.12 × 101 −3.75 × 102

59 5.26 5.74 9% 2.17 × 101 −4.25 × 102

60 5.14 5.98 16% 2.09 × 101 −2.03 × 102

61 8.24 7.55 8% 2.09 × 101 −2.99 × 102

62 6.67 6.66 0% 2.13 × 101 −3.69 × 102

63 3.65 4.34 19% 2.17 × 101 −3.51 × 102

64 5.64 6.39 13% 2.15 × 101 −4.12 × 102

65 8.22 7.55 8% 2.11 × 101 −3.36 × 102

66 10.42 9.33 10% 2.03 × 101 −2.09 × 102

67 7.77 8.15 5% 2.04 × 101 −1.49 × 102

68 4.71 4.29 9% 2.17 × 101 −3.62 × 102

69 7.54 7.55 0% 2.05 × 101 −1.49 × 102

70 6.42 6.51 1% 2.06 × 101 −1.40 × 102

71 5.47 5.24 4% 2.15 × 101 −3.33 × 102

72 4.90 6.00 23% 2.16 × 101 −4.17 × 102

73 5.81 6.83 18% 2.05 × 101 −1.30 × 102

74 5.48 6.12 12% 2.10 × 101 −2.29 × 102

75 7.64 7.04 8% 2.08 × 101 −2.21 × 102

76 7.14 7.56 6% 2.13 × 101 −4.13 × 102

77 5.34 6.22 16% 2.10 × 101 −2.56 × 102

78 4.91 5.49 12% 2.13 × 101 −2.86 × 102

79 4.94 4.28 13% 2.16 × 101 −3.16 × 102

80 8.37 7.75 7% 2.19 × 101 −6.04 × 102

81 9.46 9.19 3% 2.03 × 101 −1.75 × 102

82 7.10 6.72 5% 2.20 × 101 −5.74 × 102

83 7.51 6.49 14% 2.12 × 101 −3.36 × 102

84 7.70 7.46 3% 2.08 × 101 −2.57 × 102

85 9.92 9.64 3% 2.05 × 101 −2.81 × 102

86 4.37 5.46 25% 2.10 × 101 −2.01 × 102

87 9.59 9.74 1% 2.04 × 101 −2.38 × 102
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Table A3. Cont.

Sample
Number

Surface
Roughness

(µm)

Predicted
Value (µm) Error (%) Descriptor 1 Descriptor 2

88 4.06 3.64 10% 2.19 × 101 −3.82 × 102

89 8.98 8.96 0% 2.02 × 101 −1.34 × 102

90 9.88 10.11 2% 2.01 × 101 −1.76 × 102

91 7.84 7.52 4% 2.04 × 101 −1.43 × 102

92 6.47 6.97 8% 2.19 × 101 −5.53 × 102

93 8.15 8.77 8% 2.05 × 101 −2.18 × 102

94 7.11 7.97 12% 2.06 × 101 −2.09 × 102

95 6.54 6.28 4% 2.11 × 101 −2.75 × 102

96 5.51 5.54 1% 2.11 × 101 −2.42 × 102

97 7.36 6.69 9% 2.11 × 101 −3.15 × 102

98 5.37 5.43 1% 2.11 × 101 −2.19 × 102

99 4.70 4.44 6% 2.14 × 101 −2.60 × 102

100 4.77 4.55 5% 2.16 × 101 −3.45 × 102

101 8.11 7.02 8% 2.07 × 101 −2.01 × 102

102 7.38 7.02 5% 2.18 × 101 −5.38 × 102

103 7.31 8.34 14% 2.09 × 101 −3.32 × 102

104 6.77 7.49 11% 2.10 × 101 −3.14 × 102

105 6.84 6.59 4% 2.13 × 101 −3.60 × 102

106 10.01 9.45 6% 2.02 × 101 −1.84 × 102

107 10.18 9.44 7% 2.01 × 101 −1.53 × 102

108 7.40 7.96 8% 2.03 × 101 −1.18 × 102

109 6.45 6.91 7% 2.09 × 101 −2.52 × 102

110 6.00 5.64 6% 2.17 × 101 −4.27 × 102

111 5.43 5.75 6% 2.17 × 101 −4.50 × 102

112 10.57 10.35 2% 2.02 × 101 −2.30 × 102

113 7.33 6.97 5% 2.15 × 101 −4.43 × 102

114 3.67 3.98 8% 2.23 × 101 −5.12 × 102

115 6.11 6.04 1% 2.12 × 101 −3.05 × 102

116 6.21 5.77 7% 2.12 × 101 −2.87 × 102

117 7.06 7.15 1% 2.18 × 101 −5.34 × 102

118 7.92 7.08 11% 2.19 × 101 −5.77 × 102

119 5.98 5.53 8% 2.14 × 101 −3.38 × 102

120 7.96 7.67 4% 2.11 × 101 −3.39 × 102
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