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Abstract: As electronic packaging technology advances towards miniaturization and integration, the
issue of electromigration (EM) in lead-free solder joints has become a significant factor affecting solder
joint reliability. In this study, a Sn-3.0Ag-0.5Cu (SAC305) alloy was used as the base, and different Bi
content alloys, SAC305-xBi (x = 0, 0.5, 0.75, 1.0 wt.%), were prepared for tensile strength, hardness,
and wetting tests. Copper wire was used to prepare EM test samples, which were subjected to EM
tests at a current density of approximately 0.6 × 104 A/cm2 for varying durations. The interface
microstructure of the SAC305-xBi alloys after the EM test was observed using an optical microscope.
The results showed that the 0.5 wt.% Bi alloy exhibited the highest ultimate tensile strength and
microhardness, improving by 33.3% and 11.8% compared to SAC305, respectively, with similar
fracture strain. This alloy also displayed enhanced wettability. EM tests revealed the formation of
Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) at both the cathode and anode interfaces of
the solder alloy. The addition of Bi inhibited the diffusion rate of Sn in Cu6Sn5, resulting in similar
total IMC thickness at the anode interface across different Bi contents under the same test conditions.
However, the total IMC thickness at the cathode interface decreased and stabilized with increasing
EM time, with the SAC305-0.75Bi alloy demonstrating the best resistance to EM.

Keywords: lead-free solder; SAC305; Bi; electromigration; mechanical properties; wettability

1. Introduction

The traditional Pb-Sn solder has been restricted for use due to its environmental and
human health hazards, making the development and application of lead-free solder a
major trend. In recent years, the focus of research on low-temperature lead-free solder has
primarily focused on tin-based lead-free solders, including Sn-Ag [1], Sn-Cu [2], Sn-Zn [3],
Sn-Bi [4], Sn-Ag-Cu [5], etc. Among these, the Sn-3.0Ag-0.5Cu (SAC305) lead-free solder,
recommended by the Japan Electronics and Information Technology Industries Association
(JEITA), is one of the most representative lead-free solder alloys in the current market [6].

With the gradual development of electronic packaging technology towards minia-
turization and high integration, the spacing and size of each solder joint have decreased,
leading to an increase in current density within the solder joint [7]. As a result, the phe-
nomenon of electromigration (EM) at the solder joint interface becomes more pronounced
(As shown in Figure 1), making it prone to failure and significantly reducing the service life
of electronic products. Therefore, it is necessary to research lead-free solders with better
EM reliability.
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Figure 1. Schematic diagram of electromigration.

The current measures to mitigate the harmful effects of EM mainly involve the ad-
dition of trace alloying elements, doping with nanoparticles [8,9], or controlling current
density [10–16]. Incorporating suitable alloying elements or doping with nanoparticles
can enhance the resistance of solder joints to EM, thereby improving their reliability. Ma
et al. [10] investigated the influence of Co addition on the EM performance of Sn-3.0Ag-
0.5Cu solder, confirming that the addition of Co effectively suppressed the formation of
needle-like and plate-like Cu6Sn5 intermetallic compounds (IMCs), refined the microstruc-
ture, and significantly enhanced the reliability of the solder joints. Bashir M. et al. [11]
studied the effect of Zn nanoparticle doping on the EM performance of SAC305 and found
that the addition of 2 wt.% Zn suppressed the formation of voids and cracks at the cathode
interface and controlled the growth rate of IMCs at the anode interface. Youngseok Kim
et al. [12] investigated the effect of Co and Ni addition on the EM performance of Sn-Ag-Bi-
In alloy. They found that the addition of Co and Ni refined the grain structure, inhibited Cu
dissolution, and controlled IMC growth affected by grain boundary interference, thereby
improving the EM performance of Sn-Ag-Bi-In alloy.

Sun et al. [13] investigated the effects of Bi and Ni on the EM performance of Sn-0.7Ag-
0.5Cu solder joints. They found that the addition of Bi and Ni lowered the melting point of
the Sn-0.7Ag-0.5Cu solder, improved its wetting with the Cu substrate, reduced the grain
size of IMCs, and enhanced EM performance. Wang et al. [14] studied the influence of
Cu on the EM performance of Sn-Ag eutectic solder joints. They observed a significant
reduction in the growth of anode interface IMCs in the solder joints when the Cu content
was 2 wt.%, effectively mitigating the harmful effects of EM. Liang et al. [15], while studying
the effects of current density and Joule heating on EM, found that appropriately reducing
the current density can mitigate the detrimental effects of EM. Additionally, Wang et al. [16]
deposited a Ni/Ag (1 µm/1.5 µm) barrier layer on the solder pad above the solder joint.
During the EM process, this layer formed a thin layer of Ag3Sn serving as a barrier to
suppress current-induced Cu dissolution, thereby significantly improving the reliability of
the solder joint.

The addition of Bi can lower the melting point of SAC305 solder and increase its
wettability on Cu substrates [17]. However, the existing research only focuses on the effects
of high Bi content on the mechanical properties and wettability of SAC305. There have
been no reports on the impact of Bi addition on the EM performance of SAC305 solder.
Therefore, this study aims to add different amounts of Bi to SAC305 through micro-alloying.
On the one hand, it investigates the influence of trace Bi on its mechanical properties and
wettability; on the other hand, it seeks to confirm whether it can have a positive effect on
the EM performance of SAC305 solder and inhibit EM failure behavior. This is of significant
importance for improving the EM resistance of SAC305.

2. Materials and Methods

The experimental materials used in this study are the widely used lead-free solder
Sn-3.0Ag-0.5Cu and high-purity (99.99%) Bi. A certain mass ratio of SAC305 solder and
pure Bi was melted and cast into a mold to obtain lead-free solder alloys SAC305-xBi
(x = 0, 0.5, 0.75, 1.0 wt.%) upon cooling in the mold (as shown in Figure 2). The melting
temperature for the material casting process is 500 ◦C. During this period, the mold is
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heated together with the material. Once the composition of the molten metal is uniform, it
is poured into the mold and allowed to cool naturally at room temperature.
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Figure 2. Schematic diagram of material casting.

The SAC305-xBi solder castings were machined to obtain cylindrical tensile samples,
as shown in Figure 3. Tensile tests were conducted using a computer-controlled universal
testing machine (WDW-50E, the equipment comes from Jinan, Shandong, China) at a strain
rate of 0.02 mm/min, and the tensile curves were subsequently analyzed. Additionally,
hardness tests were performed using a Vickers hardness tester (FM-700, the equipment
comes from FUTURE TECH in Tokyo, Japan) with a load of 50 gf and a dwell time of 10 s.
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A rosin alcohol solution containing 5 wt.% ZnCl2 was used as a flux for solder wet-
tability testing and the preparation of EM test specimens. For the wettability test, copper
substrates with dimensions of 15 × 15 × 1 mm were used, with a solder amount of 100 mg.
The copper substrates were polished and leveled using sandpaper, cleaned with a 5% (v/v)
HCl solution, anhydrous ethanol, and deionized water, and then dried. Soldering was
performed at 250 ◦C, and after the experiment, the spreading area and wetting angle of the
solder were measured.

Copper wire with a diameter of 0.5 mm and 20 mg solder were used to prepare the
sample for the EM experiment, maintaining a distance between the two copper wires of
1.1–1.3 mm. Before preparing the sample, the end faces of the copper wires were leveled,
and both the wires and solder were cleaned using a 5% (v/v) HCl solution, anhydrous
ethanol, and deionized water, and then dried. Subsequently, the EM test specimens were
prepared using a mold on a heating platform at a soldering temperature of 250 ◦C.

The solder was subjected to EM experiments using the direct current power supply
unit PWR801L over durations of 0, 24, 48, and 72 h. Chen et al. [18] found that the theo-
retical critical current density for interconnect leads in electronic packaging can approach
105 A/cm2, while the actual critical current density in electronic packaging is around
104 A/cm2. Considering the materials used in the experiment, a current of 12.2 A was
applied, resulting in an interface current density of approximately 0.6 × 104 A/cm2. Under
these conditions, the samples meet the criteria for electromigration. Furthermore, the
experiments will be conducted at room temperature to ensure that the heat generated
by resistance at the solder joints can dissipate effectively, thereby reducing the impact of
Joule heating on the experimental results. The microstructure of the solder–copper wire
interface following the EM experiment was observed using an optical microscope, and the
morphology and thickness changes in the IMC at the solder joint and copper interface were
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analyzed. The impact of the Bi element on the EM performance of SAC305-xBi solders was
also analyzed.

3. Results and Discussion
3.1. Mechanical Property

Figure 4 displays the microhardness of the SAC305-xBi alloys. It can be observed from
the figure that the microhardness of the SAC305 alloy, without the addition of Bi element,
measures 17.1 HV. The experimental results are close to the SAC305 hardness obtained by
REN et al. [19]. As the Bi content increases, the microhardness of the SAC305-xBi alloys
shows an increasing trend, followed by a decline. However, the microhardness of the
SAC305-xBi alloys does not exhibit a significant decrease even with the addition of Bi.

Metals 2024, 14, x FOR PEER REVIEW 4 of 12 
 

 

Joule heating on the experimental results. The microstructure of the solder–copper wire 

interface following the EM experiment was observed using an optical microscope, and the 

morphology and thickness changes in the IMC at the solder joint and copper interface 

were analyzed. The impact of the Bi element on the EM performance of SAC305-xBi 

solders was also analyzed. 

3. Results and Discussion 

3.1. Mechanical Property 

Figure 4 displays the microhardness of the SAC305-xBi alloys. It can be observed 

from the figure that the microhardness of the SAC305 alloy, without the addition of Bi 

element, measures 17.1 HV. The experimental results are close to the SAC305 hardness 

obtained by REN et al. [19]. As the Bi content increases, the microhardness of the SAC305-

xBi alloys shows an increasing trend, followed by a decline. However, the microhardness of 

the SAC305-xBi alloys does not exhibit a significant decrease even with the addition of Bi. 

Figure 5 shows the stress–strain curve of SAC305-xBi, while Figure 6 shows the 

variations in ultimate tensile strength and fracture strain across different Bi content. From 

Figures 5 and 6, it can be concluded that with the addition of Bi, the ultimate tensile 

strength of the SAC305 solder first increases and then decreases, while the fracture strain 

first decreases gradually and then decreases sharply. The ultimate tensile strength and 

fracture strain of the SAC305 alloy are about 37.5 MPa and 42.5%, respectively. The 

experimental results are similar to those measured by Tu et al. [20] 

The ultimate tensile strength of the SAC305 alloy is enhanced with the increase in Bi 

content. When the Bi content was 0.5%, the ultimate tensile strength of the alloy reached 

about 50 MPa. Moreover, the ultimate tensile strength of solder alloys with a Bi content of 

0.75% and 1.0% both exceeded 40 MPa, which is higher than that of the SAC305 alloy. 

With the increase in Bi content, the fracture strain decreases sharply at 1.0% Bi content. 

However, the fracture strain of solder alloys with a Bi content of 0.5% and 0.75% is lower 

than that of SAC305, but they showed good plasticity. 

0.0 0.2 0.4 0.6 0.8 1.0
10

12

14

16

18

20

22

V
ic

k
er

s 
h

ar
d

n
es

s/
H

V

Mass fraction of Bi in SAC305-xBi(wt.%)

 

Figure 4. Vickers hardness of SAC305-xBi alloys. 

  

Figure 4. Vickers hardness of SAC305-xBi alloys.

Figure 5 shows the stress–strain curve of SAC305-xBi, while Figure 6 shows the
variations in ultimate tensile strength and fracture strain across different Bi content. From
Figures 5 and 6, it can be concluded that with the addition of Bi, the ultimate tensile
strength of the SAC305 solder first increases and then decreases, while the fracture strain
first decreases gradually and then decreases sharply. The ultimate tensile strength and
fracture strain of the SAC305 alloy are about 37.5 MPa and 42.5%, respectively. The
experimental results are similar to those measured by Tu et al. [20]
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Figure 5. Stress–strain curves of SAC305-xBi alloys.

The ultimate tensile strength of the SAC305 alloy is enhanced with the increase in Bi
content. When the Bi content was 0.5%, the ultimate tensile strength of the alloy reached
about 50 MPa. Moreover, the ultimate tensile strength of solder alloys with a Bi content of
0.75% and 1.0% both exceeded 40 MPa, which is higher than that of the SAC305 alloy. With
the increase in Bi content, the fracture strain decreases sharply at 1.0% Bi content. However,
the fracture strain of solder alloys with a Bi content of 0.5% and 0.75% is lower than that of
SAC305, but they showed good plasticity.
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3.2. Wettability of SAC305-xBi Alloys

The wetting properties of solder can be evaluated by the spreading area of the solder
on the substrate and the contact angle [21,22]. Figure 7 shows the wetting performance
of the SAC305-xBi alloys on a Cu substrate. It can be observed that the addition of Bi
element has improved the wetting properties of the alloy to a certain extent. The spreading
area and contact angle of the alloy without Bi element are approximately 27 mm2 and
52◦, respectively. With the increase in Bi content, the spreading area of the solder alloy on
the Cu substrate initially increases and then decreases, while the contact angle shows an
initial decrease followed by an increase. When the Bi element content is 0.5 wt.%, the alloy
exhibits the largest spreading area and the smallest contact angle, with improvements of
11.1% and 4.0%, respectively, compared to the SAC305 alloy. The wettability of lead-free
solder is closely related to the surface tension during the soldering process. Generally, a
smaller surface tension results in better wettability. The addition of Bi affects the formation
of intermetallic compounds (IMCs) between the solder and the substrate, which in turn
influences the surface tension. As the IMC thickness increases, the surface tension also
increases, leading to poorer wettability. The alloy with 0.5% Bi forms the thinnest IMC layer,
resulting in optimal wettability. The wettability of other alloy compositions also correlates
with the thickness of the IMC. This phenomenon has also been observed by Qu et al. [23].
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3.3. Electromigration Properties

During the EM process, in the SAC305 alloy, Cu atoms migrate from the cathode to
the anode, causing the growth and thickening of the IMC on the anode side, while the
thickness of the IMC on the cathode side decreases, accompanied by the appearance of
voids and other defects [24]. Figure 8 shows the microstructure of the IMC at the interface
after soldering the SAC305 alloy and copper wire. Through the EDS line scan data, it
can be observed that two types of intermetallic compounds (IMCs) are formed at the
soldering interface. According to the research by Chantaramanee, S. et al. [25] on the
microstructure of the SAC305-xBi and Cu interconnect interface, it can be determined that
these two types of IMCs are Cu6Sn5 and Cu3Sn, with Cu3Sn in contact with the Cu side
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and Cu6Sn5 in contact with the solder side. The study added Bi wt.% ≥ 1 wt.%, and the
welding time was 2 min, which is longer than the 30 s used in this research. Therefore,
when the Bi addition content is the same at 1 wt.%, the measured IMC thickness reported
by Chantaramanee, S. et al. [25] is much greater than the results of this experiment.
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Figure 8. Microstructure of IMC at the interface between SAC305 alloy and copper wire after welding.

The effects of different EM experiment durations on SAC305-xBi are shown in
Figures 9–12a–h, where Figures 9–12a–d depict the microstructure of the cathode interface
IMC after 0 h, 24 h, 48 h, and 72 h of EM experiments, respectively, and Figures 9–12e–h
show the microstructure of the anode interface IMC after 0 h, 24 h, 48 h, and 72 h of EM
experiments, respectively. It can be observed that, after different durations of EM experi-
ments, the total thickness of the IMC at the cathode interface of the SAC305 alloy decreased
from 4.27 µm to 2.95 µm, 2.73 µm, and 2.65 µm, while the total thickness of the IMC at the
anode interface increased from 4.27 µm to 4.42 µm, 4.76 µm, and 5.00 µm.
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Figure 9. Interconnection interface microstructure of SAC305 alloy after EM test across different
times. (a–d): Cathode; (e–h): anode; (a,e): 0 h; (b,f): 24 h; (c,g) 48 h; (d,h): 72 h.

As the Bi content increases, the total thickness of the IMC at the cathode interface of
the SAC305-0.5Bi alloy decreased from 3.83 µm to 3.23 µm, 3.15 µm, and 2.74 µm across the
different durations of EM experiments, while the total thickness of the IMC at the anode
interface increased from 3.83 µm to 4.11 µm, 4.76 µm, and 4.84 µm. For the SAC305-0.75Bi
alloy, the total thickness of the IMC at the cathode interface decreased from 4.14 µm to
4.11 µm, 4.05 µm, and 3.71 µm; at the anode interface, it increased from 4.14 µm to 4.32 µm,
4.84 µm, and 5.02 µm. In the case of the SAC305-1.0Bi alloy, the total thickness of the IMC
at the cathode interface decreased from 4.00 µm to 3.62 µm, 3.39 µm, and 3.31 µm; while at
the anode interface, it increased from 4.00 µm to 4.76 µm, 4.84 µm, and 5.05 µm.
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Figure 10. Interconnection interface microstructure of SAC305-0.5Bi alloy after EM test across different
times. (a–d): Cathode; (e–h): anode; (a,e): 0 h; (b,f): 24 h; (c,g): 48 h; (d,h): 72 h.
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Figure 13. Change in IMC thickness at the interface of SAC305-xBi alloys (a): cathode (b): anode. 

Figure 11. Interconnection interface microstructure of SAC305-0.75Bi alloy after EM test across
different times. (a–d): Cathode; (e–h): anode; (a,e): 0 h; (b,f): 24 h; (c,g): 48 h; (d,h): 72 h.
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Figure 13. Change in IMC thickness at the interface of SAC305-xBi alloys (a): cathode (b): anode. 

Figure 12. Interconnection interface microstructure of SAC305-1.0Bi alloys after EM test across
different times. (a–d): Cathode; (e–h): anode; (a,e): 0 h; (b,f): 24 h; (c,g): 48 h; (d,h): 72 h.

The graph in Figure 13 represents the variation in the thickness of the IMC at the
cathode and anode interfaces of SAC305-xBi alloys after different durations of EM experi-
ments. Before the EM experiments, the interface IMC thickness of the SAC305 solder was
4.27 µm. With an increase in the Bi element content, the total thickness of the interface
IMC of the SAC305-xBi alloys decreased. Specifically, the interface IMC total thickness
corresponding to Bi element contents of 0.5 wt.%, 0.75 wt.%, and 1.0 wt.% was 3.83 µm,
4.14 µm, and 4.00 µm, respectively. These experimental results align with those reported
by Chantaramanee, S. et al. [25], indicating that the addition of Bi reduces copper solubility
and slows down the reaction rate between SAC305-xBi alloys and Cu, thereby reducing the
total thickness of interface IMC.
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Figure 13. Change in IMC thickness at the interface of SAC305-xBi alloys (a): cathode (b): anode. Figure 13. Change in IMC thickness at the interface of SAC305-xBi alloys (a): cathode (b): anode.

Figure 13 depicts the variation in the total thickness of the IMC at the cathode and
anode interfaces of SAC305-xBi alloys over different EM durations. Figure 14 shows the
changes in the thickness at the cathode and anode of the interface IMC of SAC305-xBi alloys
after 72 h of EM compared to SAC305. An analysis of the experimental data reveals that, for
SAC305-xBi alloys with different Bi contents, the growth rate of total IMC thickness at the
anode interface after 72 h of EM is not particularly significant. However, the reduction in
total IMC thickness at the cathode interface is noticeably inhibited, and the inhibitory effect
varies with the Bi content. When the Bi element content is 0.75 wt.%, the total thickness
of IMC at the cathode interface hardly decreases during the EM experiment, indicating a
significant improvement in the EM performance.
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Figure 14. Interface IMC thickness change in SAC305-xBi alloy after 72 h of EM. 

During the soldering process, the Bi element in SAC305-xBi alloys does not react with 

Cu atoms but only consumes Sn atoms, resulting in the interface IMC total thickness of 

the Bi-containing alloy being smaller than that of SAC305 before EM experiments [26]. 

When electromigration occurs at the solder joint, the Cu element migrates from the 

cathode to the anode under the influence of the current. This process causes the 

decomposition of Cu6Sn5 and Cu3Sn on the cathode side, ultimately leading to a reduction 

in the thickness of the intermetallic compound (IMC) at the cathode. One of the 

fundamental factors affecting this process is the grain orientation. When the c-axis of the 

β-Sn grains is aligned with the direction of the current, the diffusion rate of Cu under the 

influence of the current is faster [27]. This is because the diffusion coefficient of Cu atoms 

along the c-axis of β-Sn grains is about 500 times that along the a-axis and b-axis [28]. 

Additionally, the Bi element, existing in solid solution within the SAC305 alloy, refines 

the β-Sn grains through solid solution strengthening. By increasing the orientation of Sn 

grains and the number of grain boundaries through this method, as shown in Figure 15, 

the distribution of angular γ between [001]Sn and the direction of the current is different 

at different points. The diffusion of Cu from the cathode to the anode can be suppressed, 
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Figure 14. Interface IMC thickness change in SAC305-xBi alloy after 72 h of EM.

During the soldering process, the Bi element in SAC305-xBi alloys does not react with
Cu atoms but only consumes Sn atoms, resulting in the interface IMC total thickness of the
Bi-containing alloy being smaller than that of SAC305 before EM experiments [26]. When
electromigration occurs at the solder joint, the Cu element migrates from the cathode to the
anode under the influence of the current. This process causes the decomposition of Cu6Sn5
and Cu3Sn on the cathode side, ultimately leading to a reduction in the thickness of the
intermetallic compound (IMC) at the cathode. One of the fundamental factors affecting
this process is the grain orientation. When the c-axis of the β-Sn grains is aligned with
the direction of the current, the diffusion rate of Cu under the influence of the current
is faster [27]. This is because the diffusion coefficient of Cu atoms along the c-axis of
β-Sn grains is about 500 times that along the a-axis and b-axis [28]. Additionally, the Bi
element, existing in solid solution within the SAC305 alloy, refines the β-Sn grains through
solid solution strengthening. By increasing the orientation of Sn grains and the number of
grain boundaries through this method, as shown in Figure 15, the distribution of angular
γ between [001]Sn and the direction of the current is different at different points. The
diffusion of Cu from the cathode to the anode can be suppressed, thereby reducing the
decomposition of Cu6Sn5 and Cu3Sn on the cathode side [29]. Furthermore, the addition
of Bi inhibits the diffusion rate of Sn in Cu6Sn5 [30]. This results in a slower reduction in
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the total thickness of the IMC at the cathode interface in Bi-containing alloys under the
influence of current, with a smaller effect at the anode interface. When the Bi content reaches
1%, the EM resistance of the alloy diminishes, and the improvement in EM performance
does not increase with the increase in Bi content. The mechanism behind this phenomenon
has not been fully confirmed, and further research is needed.
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Figure 15. The distribution of the angle γ between [001]Sn and the current direction [29].

Bi, as an environmentally friendly green element with a low cost, can be used as an
alloying element to enhance the performance of SAC305. This not only contributes to
environmental protection but also reduces production costs. Additionally, by comparing it
with the addition of elements such as Zn, In, Ni, and Co [8,10,11,31] from other studies, the
potential optimization directions for SAC305 solder can be further refined.

4. Conclusions

With the addition of Bi, the ultimate tensile strength and microhardness of the SAC305
solder alloy initially increase and then decrease. When the content of Bi was 0.5%, the alloy
showed the highest ultimate tensile strength and microhardness. However, the fracture
strain first decreased gradually and then decreased sharply. When the content of Bi was
0.5% and 0.75%, the ultimate tensile strength of the SAC305 alloy enhanced and it also
maintained good plasticity.

The wettability of SAC305-xBi solder alloys initially increased and then decreased
with the addition of Bi. When the content of Bi was 0.5%, the wettability was at its best, and
the solder alloy demonstrated the largest spreading area and the smallest wetting angle.

After the EM experiment of SAC305-xBi solder alloys, two kinds of IMCs, Cu6Sn5 and
Cu3Sn, formed at the interface between the anode and cathode. The addition of Bi had
little effect on the growth of IMC at the anode interface during EM of the SAC305 solder
alloy, and the total thickness of IMC at the anode interface of the alloy containing Bi was
not much different from SAC05 at the same EM experiment time. However, the addition of
Bi notably inhibited the reduction in the total thickness of IMC at the cathode interface; in
particular, when the content of Bi was 0.75%, the inhibition effect was the most prominent
and the EM performance was improved.

Through this study, we found that adding trace amounts of Bi to SAC305 can enhance
its electromigration resistance, while also improving its mechanical properties and wet-
tability to some extent compared to the SAC305 alloy. Therefore, when optimizing the
performance of the SAC305 alloy or developing the next generation of lead-free solder, Bi
can be considered as an additive alloy. Due to the limited research methods in this paper
and the trace amounts of Bi added, the effects of higher Bi content in the alloy, especially
when the Bi content exceeds 1 wt.%, which leads to a decline in both mechanical properties
and electromigration resistance, require further investigation.
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