A Kinetic Model for Oxide–Carbonitride Inclusion Heterogeneous Nucleation and Precipitation during Superalloy Solidification
Abstract
:1. Introduction
2. Model Description and Assumption
2.1. Thermodynamics of Carbonitride Precipitation
2.2. Microsegregation Model
2.3. Kinetic Model of Inclusion Heterogeneous Nucleation and Precipitation
2.4. Calculation Procedure and Model Validation
3. Results and Discussion
3.1. Effect of Cooling Rate on the Final Particle Size of Oxide–Carbonitride Inclusions
3.2. Effect of Initial N Content on the Final Particle Size of Oxide–Carbonitride Inclusions
3.3. Effect of Primary Oxide Size on the Final Particle Size of Oxide–Carbonitride Inclusions
3.4. Validation and Application of the Model in Vacuum Arc Remelting Process
4. Conclusions
- (1)
- The growth of complex inclusions starts from the thermodynamic precipitation temperature of TiN, and the diffusion of the N element from the inclusion boundary layer to the inclusion interface is the limiting step.
- (2)
- Both the cooling rate and N content take significant effects on the final size of complex inclusions, as the former controls the total growth time and the latter determines the initial precipitation temperature. The initial particle size of primary oxides has only a slight effect on the final size of complex inclusions.
- (3)
- Further validation and application of the present model in precipitation of oxide–carbonitride was carried out in an industrial vacuum arc remelting experiment. The calculated particle sizes of precipitated complex inclusions are in good agreement with the experimental data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Chen, X.; Wang, Y.; Chen, K.; Zhu, Y.; Qin, J.; Wang, Z.; Zuo, L. Microstructural Evolution of Wrought-Nickel-Based Superalloy GH4169. Metals 2022, 12, 1936. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, H.; Dong, J.; Wang, J.; Jiang, H.; Zhou, B. Characterization of Hot Deformation Behavior and Dislocation Structure Evolution of an Advanced Nickel-Based Superalloy. Metals 2020, 10, 920. [Google Scholar] [CrossRef]
- Juillet, C.; Oudriss, A.; Balmain, J.; Feaugas, X.; Pedraza, F. Characterization and oxidation resistance of additive manufactured and forged IN718 Ni-based superalloys. Corros. Sci. 2018, 142, 266–276. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, Y.; Yang, S.; Liu, W.; Li, J.; Du, J. Study on the Molten Pool Behavior, Solidification Structure, and Inclusion Distribution in an Industrial Vacuum Arc Remelted Nickel-Based Superalloy. Metall. Mater. Trans. B 2023, 54, 698–711. [Google Scholar] [CrossRef]
- Hu, D.; Zhao, M.; Pan, J.; Liu, X.; Sun, H.; Wang, R. An LCF lifetime model for PM superalloy considering equivalent ellipsoidal inclusion. J. Mater. Res. Technol. 2022, 21, 1705–1713. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, E.; Xing, W.; Xue, Z.; Fan, W.; Zhao, Y.; Luo, Y.; Ge, C.; Xia, M. The Formation Mechanism of Oxide Inclusions in a High-Aluminum Ni-Based Superalloy during the Vacuum Induction Remelting Process. Metals 2024, 14, 654. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, L.; Li, J.; Zhang, L.; Qu, X. Non-metallic inclusions in a superalloy during refining through cold crucible levitation melting process. Metall. Res. Technol. 2022, 119, 207. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chen, C.; Li, J.; Li, X. Effect of a MgO-CaO-ZrO2-based refractory on the cleanliness of a K4169 Ni-based superalloy. Ceram. Int. 2023, 49, 117–125. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, L.; Qu, X.; Luan, Y.; Chen, X. Investigation on the formation mechanism of non-metallic inclusions in high-aluminum and titanium-alloyed Ni-based superalloy. Vacuum 2020, 177, 109409. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, H.; Dong, J.; Chen, Z. Effect of micron-scale nonmetallic inclusions on fatigue crack nucleation in a nickel-based superalloy. Int. J. Solids Struct. 2023, 279, 112368. [Google Scholar] [CrossRef]
- Long, L.; Chen, C.; Li, J.; Wang, L.; Li, X. New Insights Into the Formation Mechanism of TiN-Al2O3 Composite Inclusions in Nickel-Based Superalloys Based on Density Functional Theory. Metall. Mater. Trans. B 2023, 54, 3078–3091. [Google Scholar] [CrossRef]
- Dong, L.; You, X.; Dong, G.; Han, W.; Yiliti, Y.; Wang, Y. Study on the metallurgical mechanisms of inclusions in the FGH4096 alloy during electron beam smelting. Sep. Purif. Technol. 2024, 349, 127835. [Google Scholar] [CrossRef]
- Yang, S.; Tian, Q.; Yang, S.; Yi, K.W.; Liu, W.; Li, J.; Zhao, M. Study on the nucleation mechanism of carbonitrides on LaAlO3 in GH4742 superalloy. J. Mater. Res. Technol. 2023, 26, 5309–5320. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, C.; Park, J.H. Effect of complex inclusion particles on the solidification structure of Fe-Ni-Mn-Mo alloy. Mater. Sci. Eng. B 2012, 43, 1550–1564. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, G.; Gorley, M.J.; Lee, T.L.; Li, Z.; Xiao, C.; Tang, C.C. Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction. Mater. Des. 2021, 207, 109861. [Google Scholar] [CrossRef]
- Liang, W.; Wu, R.; Yuan, Q.; Hu, J. Investigation on Precipitation Behavior and Morphology of TiN Particles in High-Ti Low-Carbon High-Strength Steel. Trans. Indian Inst. Met. 2020, 73, 151–159. [Google Scholar] [CrossRef]
- Gao, S.; Wang, M.; Guo, J.; Wang, H.; Zhi, J.; Bao, Y. Extraction, Distribution, and Precipitation Mechanism of TiN-MnS Complex Inclusions in Al-Killed Titanium Alloyed Interstitial Free Steel. Met. Mater. Int. 2021, 27, 1306–1314. [Google Scholar] [CrossRef]
- Shu, Q.; Visuri, V.-V.; Alatarvas, T.; Fabritius, T. A Kinetic Model for Precipitation of TiN Inclusions From Both Homogeneous and Heterogeneous Nucleation During Solidification of Steel. Metall. Mater. Trans. B 2022, 53, 2321–2333. [Google Scholar] [CrossRef]
- Shu, Q.; Visuri, V.-V.; Alatarvas, T.; Fabritius, T. Model for Inclusion Precipitation Kinetics During Solidification of Steel Applications in MnS and TiN Inclusions. Metall. Mater. Trans. B 2020, 51, 2905–2916. [Google Scholar] [CrossRef]
- You, D.; Michelic, S.K.; Wieser, G.; Bernhard, C. Modeling of manganese sulfide formation during the solidification of steel. J. Mater. Sci. 2017, 52, 1797–1812. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, G.G.; Li, S.J.; Zhao, M.; Feng, G.P. Generation Mechanism of TiN Inclusion for GCr15SiMn during Electroslag Remelting Process. ISIJ Int. 2015, 55, 1901–1905. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Z.; Zhu, H.; Lei, J. Thermodynamic analysis of precipitation behavior of Ti-bearing inclusions in SWRH 92A tire cord steel. Results Phys. 2019, 14, 102428. [Google Scholar] [CrossRef]
- Duan, S.; Li, C.; Guo, X.; Guo, H.; Guo, J.; Yang, W. A thermodynamic model for calculating manganese distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmak. Steelmak. 2018, 45, 655–664. [Google Scholar] [CrossRef]
- Aleksandrov, A.; Dashevskii, V.; Leont’ev, L. Thermodynamics of oxygen solutions in nickel melts containing aluminum and titanium. Steel Transl. 2016, 46, 479–483. [Google Scholar] [CrossRef]
- Sigworth, G.; Elliott, J.; Vaughn, G.; Geiger, G. The thermodynamics of dilute liquid nickel alloys. Can. Metall. Q. 1977, 16, 104–110. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Li, J.; Chen, C.; Yang, S.; Li, X. Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys. J. Alloys Compd. 2022, 906, 164281. [Google Scholar] [CrossRef]
- Qian, K.; Chen, B.; Zhao, P.; Zhang, M.; Liu, K. Solubility of Nitrogen in Liquid Ni, Ni-Nb, Ni-Cr-Nb, Ni-Fe-Nb, and Ni-Cr-Fe--Nb Systems. ISIJ Int. 2019, 59, 2220–2227. [Google Scholar] [CrossRef]
- Mitchell, A. Nitrogen in superalloys. High Temp. Mater. Process. 2005, 24, 101–110. [Google Scholar] [CrossRef]
- Clyne, T.; Kurz, W. Solute redistribution during solidification with rapid solid state diffusion. Metall. Mater. Trans. A 1981, 12, 965–971. [Google Scholar] [CrossRef]
- Yang, S.; Yang, S.; Liu, W.; Li, J.; Gao, J.; Wang, Y. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. Int. J. Miner. Metall. Mater. 2023, 30, 939–948. [Google Scholar] [CrossRef]
- Huang, Z.; He, X.K.; Chen, K.; Wang, X.T. Effect of different cooling rates on the segregation of C700R-1 alloy during solidification. J. Mater. Sci 2023, 58, 3307–3322. [Google Scholar] [CrossRef]
- Ruan, J.; Ueshima, N.; Oikawa, K. Phase transformations and grain growth behaviors in superalloy 718. J. Alloys Compd. 2018, 737, 83–91. [Google Scholar] [CrossRef]
- Arifin, R.; Winardi, Y.; Wicaksono, Y.; Poriwikawa, L.; Darminto; Selamat, A.; Putra, W.; Malyadi, M. Atomic diffusion at the Ni-Ti liquid interface using molecular dynamics simulations. Can. Metall. Q. 2022, 61, 359–365. [Google Scholar] [CrossRef]
j | Al | Co | Cr | Mo | Nb | Ti | C | N |
---|---|---|---|---|---|---|---|---|
0.037 | - | 0.015 | 0.016 | - | 0.013 | −0.165 | −0.1982 | |
0 | −0.0054 | −0.101 | −0.04 | −0.075 | −0.20 | - | - | |
0.027 | −0.005 | −0.011 | −0.001 | −0.014 | −0.022 | 0.42 | - |
Cooling Rate °C/s | Co | Cr | Mo | Nb | Ti | C | N |
---|---|---|---|---|---|---|---|
0.019 | 1.04592 | 1.0754 | 0.91959 | 0.4964 | 0.74594 | 1.0587 | 0.89434 |
0.038 | 1.05101 | 1.08196 | 0.93337 | 0.4837 | 0.70492 | 0.99996 | 0.98009 |
0.076 | 1.09037 | 1.07426 | 0.89592 | 0.36363 | 0.60161 | 0.95269 | 0.90398 |
0.152 | 1.1154 | 1.09431 | 0.8605 | 0.3622 | 0.55801 | 0.90482 | 0.89371 |
0.304 | 1.06625 | 1.07222 | 0.90944 | 0.41758 | 0.62936 | 1.09711 | 0.90559 |
Parameter | (g/mol) | (g/mol) | (kg/m3) | (kg/m3) |
---|---|---|---|---|
Value | 61.87 | 14 | 7290 | 5430 |
Parameter | (m3/mol) | (m2/s) | (m2/s) | (N/m) |
Value | 1.18 × 10−5 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Yang, S.; Gu, Y.; Liu, W.; Yang, S. A Kinetic Model for Oxide–Carbonitride Inclusion Heterogeneous Nucleation and Precipitation during Superalloy Solidification. Metals 2024, 14, 1150. https://doi.org/10.3390/met14101150
Zhao P, Yang S, Gu Y, Liu W, Yang S. A Kinetic Model for Oxide–Carbonitride Inclusion Heterogeneous Nucleation and Precipitation during Superalloy Solidification. Metals. 2024; 14(10):1150. https://doi.org/10.3390/met14101150
Chicago/Turabian StyleZhao, Peng, Shulei Yang, Yu Gu, Wei Liu, and Shufeng Yang. 2024. "A Kinetic Model for Oxide–Carbonitride Inclusion Heterogeneous Nucleation and Precipitation during Superalloy Solidification" Metals 14, no. 10: 1150. https://doi.org/10.3390/met14101150
APA StyleZhao, P., Yang, S., Gu, Y., Liu, W., & Yang, S. (2024). A Kinetic Model for Oxide–Carbonitride Inclusion Heterogeneous Nucleation and Precipitation during Superalloy Solidification. Metals, 14(10), 1150. https://doi.org/10.3390/met14101150