Magnetostrictive Behavior of Severe Plastically Deformed Nanocrystalline Fe-Cu Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Magnetic Characterization
4. Conclusions
- A nanocrystalline microstructure was present in all the samples after the second HPT-deformation step. The microstructural morphology changed from equiaxed grains at low Cu-contents to a lamellar microstructure at Cu-contents of 15 at.% and higher.
- In both samples with a nominal Cu-content of 5 at.%, a single-phase bcc structure was obtained after HPT-deformation.
- For compositions containing 15 at.% Cu or higher, a Fe-Cu nanocomposite was formed by HPT-deformation as bcc Fe and fcc Cu peaks were observed by WAXS measurements.
- The saturation magnetization Ms and the saturation magnetostriction λs of Fe-Cu nanocomposites decreased linearly with increasing Cu-content in the Fe-Cu nanocomposites, while the measured coercivities Hc strongly increased.
- In contrast, a stronger reduction in λs and Hc was observable in bcc single-phase Fe-Cu alloys. These results indicate that single-phase Fe-Cu alloys with up to 25 at.% Cu dissolved in the Fe-matrix might possess improved soft magnetic properties.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Dapino, M.J. On magnetostrictive materials and their use in adaptive structures. Struct. Eng. Mech. 2004, 17, 303–329. [Google Scholar] [CrossRef]
- Ekreem, N.B.; Olabi, A.G.; Prescott, T.; Rafferty, A.; Hashmi, M.S.J. An overview of magnetostriction, its use and methods to measure these properties. J. Mater. Process. Technol. 2007, 191, 96–101. [Google Scholar] [CrossRef]
- Bormio-Nunes, C.; Tirelli, M.A.; Sato Turtelli, R.; Grössinger, R.; Müller, H.; Wiesinger, G.; Sassik, H.; Reissner, M. Volume magnetostriction and structure of copper mold-cast polycrystalline Fe–Ga alloys. J. Appl. Phys. 2005, 97, 033901. [Google Scholar] [CrossRef]
- Sato Turtelli, R.; Vlasak, G.; Kubel, F.; Mehmood, N.; Kriegisch, M.; Grossinger, R.; Sassik, H. Effect of Rapid Solidification on Magnetostriction and Microstructure in Melt-Spun Fe-Al Ribbons. IEEE Trans. Magn. 2010, 46, 483–486. [Google Scholar] [CrossRef]
- Mehmood, N.; Sato Turtelli, R.; Grössinger, R.; Kriegisch, M. Magnetostriction of polycrystalline Fe100−xAlx (x = 15, 19, 25). J. Magn. Magn. Mater. 2010, 322, 1609–1612. [Google Scholar] [CrossRef]
- Bormio-Nunes, C.; Serra, J.P.; Barbosa, F.S.; Dias, M.B.S.; Turtelli, R.S.; Atif, M.; Grossinger, R. Magnetostriction of Fe–Cr and Fe–Cr–B Alloys. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Weissitsch, L.; Wurster, S.; Paulischin, A.; Stückler, M.; Pippan, R.; Bachmaier, A. Nanocrystalline FeCr alloys synthesised by severe plastic deformation–A potential material for exchange bias and enhanced magnetostriction. J. Magn. Magn. Mater. 2021, 534, 168017. [Google Scholar] [CrossRef]
- Turtelli, R.S.; Grijalva, C.; Kubel, F.; Geist, D.; Grössinger, R.; Kriegisch, M.; Sorta, S.; Zehetbauer, M.; Mehmood, N. Low magnetostriction in Fe 100-x Mn x (x = 45, 48, 50, 52, 55) alloys. IOP Conf. Ser. Mater. Sci. Eng. 2014, 60, 012006. [Google Scholar] [CrossRef]
- Fulop, G.O.; Dias, M.B.S.; Sandim, H.R.Z.; Bormio-Nunes, C. High saturation magnetic induction and low magnetostriction of a novel ferritic Fe-Ti alloy compared to a non-oriented silicon steel. J. Magn. Magn. Mater. 2021, 527, 167702. [Google Scholar] [CrossRef]
- Chang, C.; Bye, R.; Laxmanan, V.; Das, S. Texture and magnetic properties of rapidly quenched Fe-6.5wt%Si ribbon. IEEE Trans. Magn. 1984, 20, 553–558. [Google Scholar] [CrossRef]
- Awano, H.; Taniguchi, O.; Katayama, T.; Inoue, F.; Itoh, A.; Kawanishi, K. Magnetostriction of 3 d -transition metal/noble metal compositionally modulated multilayer films. J. Appl. Phys. 1988, 64, 6107–6109. [Google Scholar] [CrossRef]
- Kozono, Y.; Komuro, M.; Narishige, S.; Hanazono, M.; Sugita, Y. Structures and magnetic properties of Fe/Cu multilayered films fabricated by a magnetron sputtering method. J. Appl. Phys. 1987, 61, 4311–4313. [Google Scholar] [CrossRef]
- Gorria, P.; Martínez-Blanco, D.; Blanco, J.A.; Hernando, A.; Garitaonandia, J.S.; Fernández Barquín, L.; Campo, J.; Smith, R.I. Invar effect in fcc- FeCu solid solutions. Phys. Rev. B 2004, 69, 214421. [Google Scholar] [CrossRef]
- Gorria, P.; Martínez-Blanco, D.; Iglesias, R.; Palacios, S.L.; Pérez, M.J.; Blanco, J.A.; Fernández Barquín, L.; Hernando, A.; González, M.A. Magneto-volume effects in Fe–Cu solid solutions. J. Magn. Magn. Mater. 2006, 300, 229–233. [Google Scholar] [CrossRef]
- Chien, C.L.; Liou, S.H.; Kofalt, D.; Yu, W.; Egami, T.; Watson, T.J.; McGuire, T.R. Magnetic properties of Fe x Cu 100 − x solid solutions. Phys. Rev. B 1986, 33, 3247–3250. [Google Scholar] [CrossRef]
- Sumiyama, K.; Yoshitake, T.; Nakamura, Y. Magnetic Properties of Metastable bcc and fcc Fe–Cu Alloys Produced by Vapor Quenching. J. Phys. Soc. Jpn. 1984, 53, 3160–3165. [Google Scholar] [CrossRef]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Bachmaier, A.; Kerber, M.; Setman, D.; Pippan, R. The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion. Acta Mater. 2012, 60, 860–871. [Google Scholar] [CrossRef]
- Scheriau, S.; Kriegisch, M.; Kleber, S.; Mehboob, N.; Grössinger, R.; Pippan, R. Magnetic characteristics of HPT deformed soft-magnetic materials. J. Magn. Magn. Mater. 2010, 322, 2984–2988. [Google Scholar] [CrossRef]
- Weissitsch, L.; Staab, F.; Durst, K.; Bachmaier, A. Magnetic Materials via High-Pressure Torsion of Powders. Mater. Trans. 2023, 64, 1537–1550. [Google Scholar] [CrossRef]
- Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J.P.; Karkoulis, D.; Picca, F.E.; Kieffer, J. The fast azimuthal integration Python library: pyFAI. J. Appl. Cryst. 2015, 48, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Kapitza, P.L. The study of the magnetic properties of matter in strong magnetic fields. Part V.—Experiments on magnetostriction in dia- and para-magnetic substances. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1997, 135, 568–600. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE/Wiley: Hoboken, NJ, USA, 2009; p. 243. ISBN 978-0-471-47741-9. [Google Scholar]
- Paulischin, A. Magnetostrictive Behavior of Severe Plastically Deformed, Nanocrystalline Materials. Master’s Thesis, Monatnuniversität Leoben, Leoben, Austria, 2021. [Google Scholar]
- Jacob, K.T.; Raj, S.; Rannesh, L. Vegard’s law: A fundamental relation or an approximation? Int. J. Mater. Res. 2007, 98, 776–779. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-521-81614-4. [Google Scholar]
- Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013, 61, 718–734. [Google Scholar] [CrossRef]
- Stückler, M.; Wurster, S.; Pippan, R.; Bachmaier, A. In situ AC-hysteresis measurements of SPD-processed Cu 20 (Fe 15 Co 85) 80. AIP Adv. 2021, 11, 015033. [Google Scholar] [CrossRef]
- Herzer, G. Soft magnetic nanocrystalline materials. Scr. Metall. Mater. 1995, 33, 1741–1756. [Google Scholar] [CrossRef]
- Rameš, M.; Kopecký, V.; Heczko, O. Compositional Dependence of Magnetocrystalline Anisotropy in Fe-, Co-, and Cu-Alloyed Ni-Mn-Ga. Metals 2022, 12, 133. [Google Scholar] [CrossRef]
- Todt, J.; Keckes, J.; Winter, G.; Staron, P.; Hohenwarter, A. Gradient residual strain and stress distributions in a high pressure torsion deformed iron disk revealed by high energy X-ray diffraction. Scr. Mater. 2018, 146, 178–181. [Google Scholar] [CrossRef]
Specimen | Deformation Step | Pressure [GPa] | Number of Rotations | Deformation Temperature [°C] |
---|---|---|---|---|
Fe | 1 | 7 | 20 | RT |
Fe95Cu5 No. 1 | 1 2 | 4 5 | 50 50 | 500 RT |
Fe95Cu5 No. 2 | 1 2 | 4 5 | 50 50 | 500 RT |
Fe85Cu15 No. 1 * | 1 2 | 5.7 5 | 10 100 | RT 300 |
Fe85Cu15 No. 2 | 1 2 | 4 5 | 50 1 | 500 RT |
Fe70Cu30 | 1 2 | 4 5 | 50 50 | 500 RT |
Specimen | Hc [A m−1] | Ms [emu g−1] | λs [µm m−1] | Cu-Content (Ms) [at.%] | Cu-Content (EDS) [at.%] |
---|---|---|---|---|---|
Fe | 954 | 217.3 | −7.9 ± 0.4 | 0 | |
Fe95Cu5 No. 1 | 41 | 203.1 | −3.4 ± 0.3 | 5.8 | 5.5 ± 2.4 |
Fe95Cu5 No. 2 | 140 | 202.2 | −1.8 ± 0.4 | 6.2 | 7.2 ± 2.2 |
Fe85Cu15 No. 1 * | 1508 | 178.8 | −6.4 ± 0.3 | 15.9 | 14.3 ± 1.1 |
Fe85Cu15 No. 2 | 2209 | 160.1 | −5.9 ± 0.3 | 23.9 | 19.8 ± 2.4 |
Fe70Cu30 | 6059 | 135.8 | −5.1 ± 0.3 | 34.6 | 36.3 ± 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulischin, A.; Wurster, S.; Krenn, H.; Bachmaier, A. Magnetostrictive Behavior of Severe Plastically Deformed Nanocrystalline Fe-Cu Materials. Metals 2024, 14, 1157. https://doi.org/10.3390/met14101157
Paulischin A, Wurster S, Krenn H, Bachmaier A. Magnetostrictive Behavior of Severe Plastically Deformed Nanocrystalline Fe-Cu Materials. Metals. 2024; 14(10):1157. https://doi.org/10.3390/met14101157
Chicago/Turabian StylePaulischin, Alexander, Stefan Wurster, Heinz Krenn, and Andrea Bachmaier. 2024. "Magnetostrictive Behavior of Severe Plastically Deformed Nanocrystalline Fe-Cu Materials" Metals 14, no. 10: 1157. https://doi.org/10.3390/met14101157
APA StylePaulischin, A., Wurster, S., Krenn, H., & Bachmaier, A. (2024). Magnetostrictive Behavior of Severe Plastically Deformed Nanocrystalline Fe-Cu Materials. Metals, 14(10), 1157. https://doi.org/10.3390/met14101157