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Abstract: Hybrid nanocomposites have emerged as a groundbreaking class of materials in the
aerospace industry, offering exceptional mechanical, thermal, and functional properties. These
materials, composed of a combination of metallic matrices (based on aluminum, magnesium, or tita-
nium) reinforced with a mixture of nanoscale particles, such as carbon nanotubes (CNTs), graphene,
and ceramic nanoparticles (SiC, Al2O3), provide a unique balance of high strength, low weight,
and enhanced durability. Recent advances in developing these nanocomposites have focused on
optimizing the dispersion and integration of nanoparticles within the matrix to achieve superior
material performance. Innovative fabrication techniques have ensured uniform distribution and
strong bonding between the matrix and the reinforcements, including advanced powder metallurgy,
stir casting, in situ chemical vapor deposition (CVD), and additive manufacturing. These methods
have enabled the production of hybrid nanocomposites with improved mechanical properties, such
as increased tensile strength, fracture toughness, wear resistance, and enhanced thermal stability and
electrical conductivity. Despite these advancements, challenges remain in preventing nanoparticle ag-
glomeration due to the high surface energy and van der Walls forces and ensuring consistent quality
and repeatability in large-scale production. Addressing these issues is critical for fully leveraging
the potential of hybrid nanocomposites in aerospace applications, where materials are subjected to
extreme conditions and rigorous performance standards. Ongoing research is focused on developing
novel processing techniques and understanding the underlying mechanisms that govern the behavior
of these materials under various operational conditions. This review highlights the recent progress
in the design, fabrication, and application of hybrid nanocomposites for aerospace applications.
It underscores their potential to revolutionize the industry by providing materials that meet the
demanding requirements for lightweight, high-strength, and multifunctional components.

Keywords: hybrid nanocomposites; aerospace applications; nanoparticles; carbon nanotubes; thermal
stability; mechanical properties; manufacturing techniques

1. Introduction

Hybrid nanocomposites represent a rapidly advancing area of materials science char-
acterized by combining two or more different types of micro- or nanoscale reinforcements
within a single matrix. This hybridization allows for the tailoring of material properties
to achieve a synergistic enhancement of mechanical, thermal, and functional character-
istics unattainable with traditional composites. By integrating metallic, ceramic, and
carbon-based nanoparticles, hybrid nanocomposites can offer improved strength, tough-
ness, electrical conductivity, and thermal stability, making them highly versatile for various
applications.

In recent years, the aerospace sector has been searching for materials that offer an
exceptional combination of lightness, mechanical strength, thermal stability, and wear resis-
tance. With increasing demands for energy efficiency, improved performance, and greater
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durability of aerospace structures, conventional materials have proved limited in meeting
these increasingly stringent requirements. Hybrid nanocomposites provide distinct advan-
tages over conventional metals in terms of mechanical and thermal performance, resistance
to wear and corrosion, reduced weight, multifunctionality, and cost-effectiveness, making
them ideal for next-generation aerospace applications. Figure 1 shows the percentage of
materials used in different Boeing aircraft [1].

Metals 2024, 14, x FOR PEER REVIEW 2 of 29 
 

 

resistance. With increasing demands for energy efficiency, improved performance, and 

greater durability of aerospace structures, conventional materials have proved limited in 

meeting these increasingly stringent requirements. Hybrid nanocomposites provide dis-

tinct advantages over conventional metals in terms of mechanical and thermal perfor-

mance, resistance to wear and corrosion, reduced weight, multifunctionality, and cost-

effectiveness, making them ideal for next-generation aerospace applications. Figure 1 

shows the percentage of materials used in different Boeing aircraft [1]. 

Metal matrix hybrid composites, such as those with aluminum, magnesium, or tita-

nium matrices combined with silicon carbide (SiC), boron carbide (B4C), or carbon fibers, 

provide an ideal combination of properties that support the rigorous demands of ad-

vanced aircraft applications. These materials contribute to weight savings, enhanced 

structural integrity, and improved reliability in critical aircraft components, especially in 

areas exposed to high loads, temperatures, and wear conditions. Aluminum alloys play a 

key role in this application, but composites are also increasingly predominant. In this con-

text, hybrid nanocomposites have emerged as a promising solution, offering superior 

properties by integrating multiple reinforcing phases into a matrix, such as nanoparticles, 

nanofibers, and nanotubes, to create multifunctional materials with optimized character-

istics. 

 

Figure 1. Percentage of the materials used in some Boeing aircraft. Adapted from [1]. 

One of the primary materials used in metal matrix hybrid composites (MMHCs) is 

aluminum, specifically alloys such as 7075 and 6061. These alloys are favored for their 

high strength-to-weight ratio, making them ideal for aircraft applications. For instance, 

aluminum 7075 is known for its hardness and excellent wear resistance, crucial for high-

stress and high-fatigue components such as aircraft wings and fuselage structures [2–4]. 

Incorporating reinforcements like silicon carbide (SiC) and titanium carbide (TiC) into 

aluminum matrices significantly enhances their mechanical properties, improving perfor-

mance in demanding aerospace environments. Due to these superior properties, hybrid 

nanocomposites are increasingly explored in critical aerospace components like fuselage 

panels, engine parts, and structural reinforcements. Figure 2 shows the parts of the aircraft 

constructions that required composite materials. These materials help reduce aircraft 

weight and improve operational efficiency and longevity, leading to lower maintenance 

costs and enhanced performance under harsh environmental conditions. In addition, the 

ability to incorporate additional functionalities, such as self-repair and integrated sensing, 

further expands the application potential of these materials in the next generation of air-

craft and spacecraft. 

Figure 1. Percentage of the materials used in some Boeing aircraft. Adapted from [1].

Metal matrix hybrid composites, such as those with aluminum, magnesium, or tita-
nium matrices combined with silicon carbide (SiC), boron carbide (B4C), or carbon fibers,
provide an ideal combination of properties that support the rigorous demands of advanced
aircraft applications. These materials contribute to weight savings, enhanced structural in-
tegrity, and improved reliability in critical aircraft components, especially in areas exposed
to high loads, temperatures, and wear conditions. Aluminum alloys play a key role in
this application, but composites are also increasingly predominant. In this context, hybrid
nanocomposites have emerged as a promising solution, offering superior properties by
integrating multiple reinforcing phases into a matrix, such as nanoparticles, nanofibers,
and nanotubes, to create multifunctional materials with optimized characteristics.

One of the primary materials used in metal matrix hybrid composites (MMHCs) is
aluminum, specifically alloys such as 7075 and 6061. These alloys are favored for their
high strength-to-weight ratio, making them ideal for aircraft applications. For instance, alu-
minum 7075 is known for its hardness and excellent wear resistance, crucial for high-stress
and high-fatigue components such as aircraft wings and fuselage structures [2–4]. Incorpo-
rating reinforcements like silicon carbide (SiC) and titanium carbide (TiC) into aluminum
matrices significantly enhances their mechanical properties, improving performance in
demanding aerospace environments. Due to these superior properties, hybrid nanocompos-
ites are increasingly explored in critical aerospace components like fuselage panels, engine
parts, and structural reinforcements. Figure 2 shows the parts of the aircraft constructions
that required composite materials. These materials help reduce aircraft weight and improve
operational efficiency and longevity, leading to lower maintenance costs and enhanced
performance under harsh environmental conditions. In addition, the ability to incorporate
additional functionalities, such as self-repair and integrated sensing, further expands the
application potential of these materials in the next generation of aircraft and spacecraft.
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composite materials.

This review provides a comprehensive overview of recent advances in hybrid nanocom-
posites aimed at aerospace applications. It will discuss the main types of hybrid reinforce-
ments used, such as ceramic nanoparticles, carbon nanotubes, and graphene, as well as the
most common matrices and innovative processing methods. In addition, the review will
address current challenges in the manufacture and characterization of these nanocompos-
ites, including the uniform dispersion of nanomaterials, interfacility between matrix and
reinforcements, and issues related to scalability and sustainability. Finally, future trends and
prospects for applying these materials in aerospace structures will be explored, highlighting
their potential to revolutionize the sector and develop more efficient, safe, and durable
aerospace systems. Additionally, the review will explore the key challenges and limitations
associated with producing and implementing these materials in aerospace applications. By
examining current research trends and identifying potential future directions, this review
highlights the significant potential of hybrid nanocomposites to revolutionize aerospace
material design and provide a roadmap for future innovations in this field.

2. Hybrid Metal Matrix Nanocomposites

Hybrid metal matrix nanocomposites (HMMNCs) are advanced composite materials
that combine multiple nanometer-scale reinforcing phases within a matrix to improve the
resulting material’s physical, chemical, and mechanical properties. By integrating different
types of nanomaterials, such as nanoparticles, nanotubes, nanofibers, and nanoplatelets,
it is possible to exploit synergistic effects that lead to superior performance compared to
conventional nanocomposites that use a single type of reinforcement. This hybrid approach
allows for greater customization of the material’s properties for specific applications,
making hybrid nanocomposites an attractive solution for high-demand applications, such
as in the aerospace industry [2–4].

These nanoscale reinforcements can significantly alter the base matrix’s physical, me-
chanical, and functional properties, resulting in materials that exhibit superior performance
characteristics compared to their conventional counterparts. The unique properties of
nanocomposites arise from the nanoparticles’ high surface area to volume ratio and their
ability to enhance interfacial interactions within the matrix.

These nanocomposites typically comprise a matrix into which different nanomaterials
are incorporated as reinforcing phases. The matrix serves as a load transfer medium
and distributes the reinforcements evenly, while the reinforcements act as strengthening
agents, improving the material’s mechanical, thermal, and functional properties. In hybrid
nanocomposites, the combination of two or more types of nanomaterial, such as carbon
nanotubes (CNTs) and ceramic nanoparticles (e.g., SiO2, Al2O3), makes it possible to achieve
a variety of properties, such as high tensile strength, thermal stability, and adjustable
electrical conductivity. Figure 3 shows some reinforcements that can be combined to
produce hybrid nanocomposites.
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The aerospace industry increasingly focuses on reducing weight while maintaining or
enhancing strength and durability. HMMNCs, often based on aluminum or magnesium
matrices, exhibit a remarkable strength-to-weight ratio, which is crucial for aerospace
applications [5]. The addition of nanoparticles, such as carbon nanotubes (CNTs) or boron
carbide (B4C), has been shown to significantly improve the wear resistance and mechanical
properties of aluminum-based composites [6]. For example, studies have demonstrated that
aluminum 5083 composites reinforced with CNTs and B4C exhibit superior creep behavior
and wear resistance compared to their non-hybrid composites [6]. This is particularly
important in aerospace applications where components are subjected to high stresses (100
to 400 MPa) and temperatures (200 to 400 ◦C).

Moreover, the hybridization of reinforcements in metal matrix composites allows for
the synergistic enhancement of properties. The combination of micro- and nanosized rein-
forcements can lead to improved mechanical performance due to the different mechanisms
of strengthening they provide. The morphology of micro- and nanosized reinforcements
in hybrid nanocomposites affects the balance of properties by providing complementary
strengthening mechanisms: nanoscale particles contribute to hardness and thermal stability.
In contrast, microscale reinforcements improve load-bearing capacity and wear resistance.
Tailored morphology enhances the composite’s adaptability to demanding environments
such as high-stress and high-temperature applications. For instance, while microsized
particles may enhance load-bearing capacity, nanosized reinforcements can improve tough-
ness and ductility [7]. This dual reinforcement strategy enhances the mechanical properties
and contributes to better thermal stability and resistance to fatigue, which are critical for
aerospace applications [8].

The reinforcement mechanisms in hybrid nanocomposites are complex and depend
on the interaction between the matrix and the different reinforcements and the interactions
between the reinforcement phases. Generally, reinforcement is achieved through three
main mechanisms: (a) Dislocation blocking: nanomaterials can hinder the movement of
dislocations in the matrix, increasing mechanical strength; carbon nanotubes and ceramic
nanoparticles are effective in this mechanism due to their high modulus of elasticity and
strength. (b) Fiber bridges and nanoparticles: the combination of different reinforcements,
such as nanofibers and nanoplatelets, can create a three-dimensional network within the
matrix, which helps to improve impact resistance and toughness by preventing the propaga-
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tion of cracks. (c) Effective load transfer: for hybrid nanocomposites to be effective, efficient
load transfer between the matrix and the reinforcements is essential. Functionalizing the
surface of nanomaterials can improve interfacial adhesion, resulting in a more uniform
distribution of stresses and greater overall strength of the composite.

The hybridization of nanocomposites offers significant advantages, such as multifunc-
tional properties, improved thermal stability, and property customization. Incorporating
different nanomaterials makes it possible to obtain multifunctional properties, such as high
mechanical strength combined with electrical and thermal conductivity. This is particularly
useful in aerospace applications, where multifunctional materials can reduce structural
weight and greater efficiency. Combining reinforcements, such as ceramic nanoparticles
and carbon nanofibers, can increase the composite’s thermal stability, a crucial characteris-
tic for applications in extreme aerospace environments. By carefully selecting the matrix
and nano-reinforcements, it is possible to design hybrid nanocomposites with customized
properties to meet specific requirements, such as impact resistance, flexibility, or stiffness,
resulting in a more uniform distribution of stresses and greater overall strength. The pro-
cessing techniques employed in fabricating HMMNCs also play a vital role in determining
their final properties. Methods such as powder metallurgy, stir casting, and spark plasma
sintering have produced uniform reinforcements within the metal matrix [9,10]. These
techniques allow for precise control over the microstructure, which is essential for optimiz-
ing the mechanical properties of the composites. For example, spark plasma sintering has
been shown to produce HMMNCs with fine microstructures and enhanced mechanical
properties due to the rapid heating and consolidation processes involved [11].

Despite the advantages, the manufacture of hybrid nanocomposites presents chal-
lenges. The homogeneous dispersion of the nanomaterials in the matrix is crucial to avoid
agglomerations that can compromise the mechanical and thermal properties. In addition,
interfacial compatibility between the matrix and the different types of reinforcement is a
critical aspect since poor interfacial interaction can result in poor load transfer and, conse-
quently, reduced performance of the composite. Surface functionalization methods and
advanced processing techniques, such as additive manufacturing, have been explored to
overcome these challenges and achieve greater overall strength of the composite.

In addition to mechanical properties, the thermal and electrical characteristics of
HMMNCs are also of great importance in aerospace applications. The ability to tailor these
properties by selecting appropriate reinforcements can lead to materials that not only with-
stand extreme conditions but also perform efficiently in terms of thermal management and
electrical conductivity [10,11]. For instance, incorporating graphene or other carbon-based
materials can significantly enhance the thermal conductivity of the matrix, making these
composites suitable for applications where heat dissipation is critical [10]. Furthermore, the
corrosion resistance of HMMNCs is a crucial factor in their application within the aerospace
sector. Using ceramic reinforcements, such as alumina or silicon carbide, has improved the
corrosion resistance of aluminum-based composites, thereby extending their service life
in harsh environments [12]. This is particularly relevant in aerospace applications where
components are often exposed to moisture, chemicals, and extreme temperatures. The
ongoing research and development in composites are focused on optimizing processing
techniques and understanding the fundamental mechanisms that govern their properties.
Advances in computational modeling and simulation are also being employed to predict
the behavior of these materials under various loading conditions, which can aid in the
design of next-generation aerospace components [13–18].

One of the materials of greatest interest in the application of components in the
aerospace industry is aluminum and its alloys. For this reason, the potential for producing
hybrid aluminum nanocomposites has generated enormous scientific interest. The recent
advancements in copper hybrid composites for aerospace applications underscore their
potential to meet the industry’s demands for lightweight, high-performance materials.
Integrating nanostructured reinforcements, advanced manufacturing techniques, and mul-
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tilayer designs pave the way for innovative solutions that enhance the functionality and
reliability of aerospace components.

Table 1 summarizes some studies on the production of HMMCs, where adding differ-
ent reinforcements improves nanocomposite properties.

Table 1. Summary of some studies on HMMCs.

Matrix Reinforcement Production Improvement Ref.

Al TiB2
Graphite Electromagnetic stir casting Mechanical properties [19]

Al7075 TiC
Graphene Ultrasonic stir casting Wear behavior [20]

Al7085 TiC
BN Ultrasonic stir casting Mechanical properties [21]

Zinc and Al alloy Al2O3
MoS2

Stir casting Mechanical properties [22]

Al SiC
TiO2

Powder metallurgy Mechanical properties [23]

Al Y2W3O12
AlN Powder metallurgy Mechanical properties [24]

Al6061 SiC
Graphite In situ powder metallurgy Mechanical properties [25]

Al Al2O3
MoS2

Powder metallurgy Tribological properties [26]

Al BN
TiO2

Powder metallurgy Tribological properties [27]

AA6082 TiC
SiC Stir casting Tribological and mechanical

properties [28]

AA7075 B4C
ZrC Powder metallurgy Mechanical properties [29]

Al ZnO
Y2O3

Powder metallurgy Mechanical properties [30]

Mg TiC
MoS2

Powder metallurgy Tribological and mechanical
properties [31]

Mg SiC
Al2O3

Powder metallurgy Mechanical properties [32]

AA5083 CNT
MoS2

Powder metallurgy Mechanical properties [33]

Cu CNTs
Graphene Spark plasma sintering Mechanical and electrical

properties [34]

Cu TiC
Graphite

Microwave sintering
technique Wear resistance [35]

Ti6Al4V TiB
TiC Arc melting Physical properties [36]

In conclusion, hybrid metal matrix nanocomposites significantly advance materials
science, particularly aerospace applications. Their unique combination of lightweight, high
strength, and enhanced performance characteristics make them ideal candidates for various
aerospace components. As research continues to evolve, the potential for HMMNCs to
revolutionize the aerospace industry remains substantial, paving the way for more efficient
and sustainable aerospace technologies.
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3. Production of Hybrid Metal Matrix Nanocomposites

The production of HMMNCs has emerged as a critical area of research and devel-
opment, particularly for aerospace applications where the demand for lightweight, high-
strength materials is predominant. HMMNCs combine the advantages of metal matrix
composites (MMCs) with the superior properties of nanomaterials, such as carbon nan-
otubes, graphene, and ceramic nanoparticles. This combination enhances mechanical,
thermal, and wear-resistant properties, making them suitable for the extreme conditions
encountered in aerospace environments [37]. The fabrication methods for HMMNCs in-
clude techniques such as stir casting, powder metallurgy, and additive manufacturing,
each offering unique benefits regarding material properties and processing efficiency [38].
For instance, stir casting is favored for its simplicity and cost-effectiveness, enabling the
uniform distribution of reinforcements within the metal matrix [39].

Meanwhile, powder metallurgy techniques allow for precise control over microstruc-
tural characteristics, which is essential for optimizing the performance of the composites.
Moreover, integrating hybrid reinforcements—combining different types of nanoparticles
and microsized particles—enables the tailoring of composite properties to meet specific
aerospace requirements, such as improved fatigue resistance and reduced weight [40]. As
the aerospace industry continues to seek innovative materials that enhance performance
while minimizing weight, the development of HMMNCs stands at the forefront of ma-
terials science, promising to revolutionize the design and manufacturing of aerospace
components [41]. The next sub-sections describe the manufacturing processes with the
most advantages in the production of HMMNCs, where the concepts of these processes are
presented, and examples of successful work in their production.

3.1. Powder Metallurgy

Powder metallurgy (PM) is a technique widely used in producing metal matrix
nanocomposites (MMNCs) due to its ability to process metals and ceramics at relatively
low temperatures, avoiding the degradation of heat-sensitive nanomaterials. This method
involves pressing and sintering metal powders and reinforcing nanomaterials to form a
consolidated material with improved mechanical, thermal, and functional properties. In
the case of hybrid nanocomposites, PM allows the incorporation of multiple nanoreinforce-
ments, such as ceramic nanoparticles, carbon nanotubes (CNTs), and nanofibers, within
a metallic matrix, making it possible to obtain materials with unique and customizable
properties. The production of metal hybrid nanocomposites via powder metallurgy usually
involves several sequential steps. The first stage consists of preparing the metal powders
and reinforcing nanomaterials. The metal powders, such as aluminum, titanium, or mag-
nesium, are combined with the reinforcing nanomaterials, such as ceramic nanoparticles
(e.g., Al2O3, SiC) and carbon nanotubes, using mechanical or ultrasonic mixing methods.
Homogeneous mixing of the powders is critical to ensure uniform distribution of the nano-
materials in the metal matrix, avoiding agglomeration of the reinforcements and promoting
uniform dispersion. A standard mixing method involves high-energy milling, where the
metal powders and reinforcements are subjected to repeated impacts in a high-energy ball
mill. This process promotes particle size reduction and dispersion of the nanomaterials
in the metal matrix. However, care must be taken to avoid introducing contamination
and structural damage to the nanomaterials. After mixing, the powders are compacted to
form a “preform” with adequate density. Compaction is carried out under high pressures
in specific molds, which helps to align and orient the reinforcements within the matrix,
directly influencing the nanocomposite’s final properties. Sintering is a crucial stage in
powder metallurgy, where the preform is heated to temperatures below the melting point
of the metal matrix. Figure 4 shows a schematic representation of one possibility for pro-
ducing these hybrid nanocomposites. During sintering, atomic diffusion occurs, leading to
the bonding of the metal particles and the consolidation of the nanocomposite. The selec-
tion of sintering temperature and time is vital to optimizing the hybrid nanocomposite’s
densification, microstructure, and properties [39,42,43].
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Al hybrid nanocomposites.

It is possible to produce Al hybrid nanocomposites successfully using powder met-
allurgy. In producing aluminum hybrid nanocomposites using powder metallurgy, the
particle size and morphology of the aluminum powder are critical factors that influence the
final composite’s mechanical properties, microstructure, and processability. For instance,
spherical or near-spherical aluminum particles with sizes between 5 and 50 µm are ideal for
producing Al hybrid nanocomposites via powder metallurgy. This morphology supports
uniform reinforcement dispersion, good flowability, and efficient compaction, all necessary
for high-quality composite production. Combining SiC and CNTs makes it possible to
reinforce the Al6061 matrix and obtain an increase in mechanical properties. Figure 5
shows the electron backscatter diffraction (EBSD) results and mechanical properties of the
matrix and hybrid nanocomposites produced by powder metallurgy. The microstructural
evaluation showed a notable reduction in grain size and greater uniformity in the hybrid
nanocomposites, which led to superior mechanical performance. Using EBSD results as
unique color maps to represent the grains makes it easier to see the impact of the different
reinforcements on reducing the grain size. The hybrid nanocomposites exhibit the most re-
fined microstructure. This enhanced grain structure improves the mechanical performance
of the nanocomposites, resulting in greater hardness, yield strength, and wear resistance.
Another significant impact that reinforcements have on microstructural characteristics is
an increase in the density of dislocations. The KAM maps show that the nanocomposites
have increased dislocations, which will affect their properties. Tensile tests confirmed the
microstructural observation and showed the highest tensile strength for the nanocompos-
ite, reaching 104 MPa, compared to the 63 MPa obtained by the Al6061 matrix without
reinforcement.

One of the primary benefits of using PM for the fabrication of MMNCs is the ability
to incorporate nano-sized reinforcements, which significantly improve the mechanical
properties of the composites. Incorporating nanoparticles, such as graphene or ceramic
particles, has enhanced strength, hardness, and ductility while reducing porosity [44,45].
For instance, adding alumina nanoparticles to aluminum alloys has improved hardness
and ultimate tensile strength, demonstrating the effectiveness of PM in producing high-
performance materials [46]. Furthermore, the PM process allows the production of complex
shapes and geometries that would be challenging to achieve with traditional casting
methods [47,48].

The versatility of PM techniques extends to various processing routes, including
quasi-static compaction and spark plasma sintering, which can be tailored to optimize the
properties of the resulting MMNCs [49]. These methods facilitate the uniform dispersion of
reinforcements, which is crucial for achieving the desired mechanical properties. Addition-
ally, PM is economically advantageous as it often requires lower processing temperatures
than other methods, thereby reducing energy consumption and production costs [50].
However, challenges remain in the PM process, particularly concerning the agglomera-
tion of nanosized particles, which can adversely affect the mechanical properties of the
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composites [51]. Researchers are actively exploring solutions to these challenges, such as
optimizing mixing parameters and utilizing secondary processing techniques to enhance
the distribution of reinforcements [52]. Overall, the PM technique provides a reliable means
of producing MMNCs and continues to evolve, addressing the complexities associated
with the fabrication of advanced composite materials.
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Manohar and Maity [26] investigated the production of hybrid nanocomposites using
conventional and microwave sintering. The matrix used was AA7075, and the reinforce-
ment was B4C and ZrC. The microstructure characterization revealed that the B4C particles
were dispersed homogeneously while some agglomerates of ZrC were observed. Figure 6
shows the scanning electron microscopy (SEM) images of the nanocomposites produced
by conventional sintering. Observing these images clearly shows the challenge in the dis-
persion of the ZrC particles. Nanocomposites produced by microwave sintering revealed
better mechanical properties due to a strong bond interface. Implementing advanced
techniques in producing these nanocomposites is crucial for nanocomposites with desired
mechanical properties.

This method offers several advantages in producing hybrid nanocomposites because
it allows precise control of the nanocomposite’s microstructure, including the distribution,
size, and morphology of the reinforcements in the metal matrix. This is essential for
customizing the material’s mechanical and functional properties. It is also a process
conducted at lower temperatures than conventional melting methods, minimizing the
reaction between the matrix and the nanoreinforcements and avoiding the degradation of
heat-sensitive nanomaterials. The technique can be applied to a wide range of metals and
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alloys, as well as different types of nanoreinforcements, including nanoparticles, nanotubes,
and nanofibers.
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with ZrC and B4C and (c) high magnification showing by arrows the ZrC agglomerates. Reprinted
with permission from ref. [29]. 2021 Elsevier.

Chen et al. [34] investigated the strengthening behavior of carbon nanotube–reduced
graphene oxide (CNT-RGO) hybrids in Cu matrix composites. It was observed that dis-
ordered areas and Cu2O nanoparticles were formed in situ at the CNF-Cu interface in
areas with low and high oxygen content, respectively, due to oxygen diffusion. The Cu2O
grew from the Cu matrix in a cube-on-cube fashion to minimize interfacial energy, causing
equivalent planes and directions of Cu2O and the Cu matrix to align at the Cu2O-Cu
interface. A possible mechanism for the formation/evolution of these disordered areas and
Cu2O, involving oxygen content and sintering temperature, was proposed. The maximum
tensile strength of 412 Mpa was achieved in the 1.5 vol% CNT-RGO/Cu composite sintered
at 1023 K, a value significantly higher than that of the CNT/Cu and RGO/Cu composites
(231 and 263 Mpa, respectively). Transmission electron microscopy (TEM) observation
revealed a well-bonded interface reinforcement/matrix.

The interface between the reinforcement and the matrix HMMNCs is pivotal in de-
termining these advanced materials’ mechanical, thermal, and functional properties. The
bond strength and quality of the interface significantly impact the load transfer, stress distri-
bution, and failure mechanisms within the composite structure. Pu et al. [53] investigated
the interface of the hybrid aluminum matrix nanocomposites. The nanocomposites were
produced by sintering and hot extrusion and reinforced by graphene with Cu nanoplatelets.
Figure 7 shows the hybrid nanocomposites’ scanning transmission electron microscopy
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(STEM) and TEM images. The results reveal structural integrity, and a strong bonding
interface are observed. A notable concentration of dislocations was observed near the
reinforcement, consistent with the high local strain observed in the fine-grain zones of the
microstructure of the composite. The results also demonstrate a second phase formation
due to the reaction between the Cu and the matrix.
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Figure 7. Scanning transmission electron microscopy (STEM) images of the Al hybrid nanocomposites:
(a) bright-field, (b) dark-field images; (c,d) STEM images with the EDS regions marked; (e,f) TEM
images showing regions with different grain size; and (g) STEM image with EDS mapping. Reprinted
with permission from ref. [53]. 2022 Elsevier.

Despite the advantages, producing metal hybrid nanocomposites through powder
metallurgy presents challenges, such as obtaining a homogeneous dispersion of the nanor-
einforcements. Advanced mixing techniques, such as high-energy milling and the func-
tionalization of nanomaterials, can help overcome this problem. Problems relating to
contamination During milling and compaction, there is a risk of contamination of the
powders, which can compromise the properties of the final nanocomposite. Using con-
trolled environments and suitable grinding tools is crucial to minimize this risk. The
sintering process must be carefully optimized to balance densification and preservation of
the nanoreinforcements’ properties, avoiding the formation of unwanted phases.

Metal hybrid nanocomposites produced via powder metallurgy have broad potential
in applications requiring high mechanical strength, thermal stability, and lightweight, such
as aircraft structural components, lightweight armor, and high-efficiency engine parts. The
combination of multiple reinforcements allows multifunctional properties to be obtained,
making them suitable for use in extreme environments and for extending the service life of
aerospace components.

3.2. Chemical Vapor Deposition

The production of HMMCs using the chemical vapor deposition (CVD) technique
represents a significant advancement in materials science, particularly for applications
in aerospace and other high-performance sectors. CVD is a process that allows for the
deposition of thin films and coatings on substrates through chemical reactions of gaseous
precursors. The carrier gas ensures the continuous flow and even distribution of precursor
gases over the substrate. This method is particularly advantageous for creating composites
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that require a high degree of control over the microstructure and properties of the materials
involved [54]. Figure 8 shows the schematic drawing of the conventional CVD.
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CVD is utilized to produce continuous fibers, such as silicon carbide (SiC), which can
be incorporated into metal matrices to enhance mechanical properties. The use of SiC fibers
in metal matrix composites is auspicious due to their high tensile strength, stiffness, and
oxidation resistance, making them suitable for high-temperature applications in aerospace
vehicles [54].

The ability to grow these fibers directly onto the metal substrate via CVD ensures
an interfacial solid bond, which is critical for the overall performance of the composite.
This strong bond helps mitigate issues related to delamination and enhances the load
transfer between the fiber and the matrix [55]. In addition to SiC fibers, CVD can also be
employed to deposit carbon nanotubes (CNTs) directly onto metal substrates. This approach
significantly improves the underlying metal’s corrosion resistance while enhancing its
mechanical properties [56]. Incorporating CNTs into aluminum or other metal matrices
results in composites exhibiting superior strength-to-weight ratios, making them ideal
candidates for aerospace applications where weight reduction is crucial [57]. The unique
properties of CNTs, including their high aspect ratio and exceptional mechanical strength,
contribute to the overall performance of the HMMCs produced via CVD.

The versatility of CVD allows for the production of hybrid composites that combine
different reinforcements, such as fibers and nanoparticles. For instance, the simultaneous
deposition of SiC fibers and CNTs can lead to a composite that benefits from the fibers’
high strength and the nanotubes’ lightweight nature [58]. This hybridization enhances
mechanical properties and improves thermal stability and resistance to wear, which are
essential for components subjected to extreme conditions in aerospace applications [59].
Moreover, the CVD process can be fine-tuned to control the microstructure of the deposited
materials. Parameters such as temperature, pressure, and precursor composition can be
adjusted to achieve the desired characteristics in the final composite [13]. This level of
control is particularly beneficial when producing HMMCs, as it allows for the optimization
of properties such as toughness, ductility, and thermal conductivity. For example, incor-
porating alumina or other ceramic reinforcements through CVD can enhance aluminum
matrix composites’ wear resistance and thermal stability, making them more suitable for
high-performance applications [60,61].

The application of CVD in producing HMMCs also extends to the development of
coatings that can improve the surface properties of metal components. Applying a thin
layer of protective material through CVD can enhance the underlying metal’s corrosion and
wear resistance, extending its service life in harsh environments [62]. This is particularly
relevant in aerospace applications where components are often exposed to corrosive atmo-
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spheres and high temperatures. Furthermore, the integration of advanced characterization
techniques, such as high-resolution transmission electron microscopy (HRTEM), allows for
a detailed analysis of the microstructural features of HMMCs produced via CVD, mainly
the interface reinforcement/matrix. This enables researchers to understand the mechanisms
governing these composites’ mechanical properties and performance, leading to further
improvements in their design and fabrication [57,63].

Despite the advantages, the production of metal hybrid nanocomposites via CVD
faces some challenges, such as process complexity, as this technique requires precise
processing conditions, such as temperature control, pressure, and flow of the gaseous
precursors, which can increase the complexity and cost of the process. Scalability is a
challenge because although CVD is suitable for producing thin films and coatings on a
small scale, its scalability for the mass production of nanocomposites is still a challenge that
requires optimization of processes and equipment. Unwanted chemical interactions are
another challenge because during deposition, there may be unwanted reactions between the
precursors and the metal matrix, potentially affecting the properties of the nanocomposite.

In conclusion, producing hybrid metal matrix composites through chemical vapor
deposition offers a promising avenue for developing advanced materials tailored for
aerospace applications. The ability to control the microstructure and properties of the
composites, combined with the incorporation of high-performance reinforcements such
as SiC fibers and CNTs, positions CVD as a key technique in the future of materials
engineering. As research advances, the potential for HMMCs to revolutionize aerospace
technologies remains significant, paving the way for lighter, stronger, and more durable
components.

3.3. Additive Manufacturing

The production of HMMCs via additive manufacturing (AM) techniques has gained
considerable attention in recent years due to its potential to create complex geometries and
tailored material properties. Additive manufacturing allows for the layer-by-layer construc-
tion of materials, which is particularly advantageous for producing HMMCs that require
precise control over the distribution of reinforcements within the metal matrix [64,65].
This capability not only enhances the mechanical performance of the composites but
also enables the integration of multiple materials, leading to improved functionality and
application versatility.

One of the most prominent additive manufacturing methods for HMMCs is selective
laser melting (SLM), which utilizes a high-powered laser to fuse metallic powders layer by
layer. Figure 9 shows a schematic drawing of the SLM process. This technique is particularly
effective for producing complex shapes that would be difficult or impossible to achieve
using traditional manufacturing methods [66]. The ability to control the microstructure
during the AM process allows for optimizing mechanical properties, such as strength and
ductility, which are critical for aerospace and automotive applications [67,68]. For instance,
incorporating ceramic reinforcements, such as titanium diboride (TiB2), into aluminum
matrices through SLM has enhanced wear resistance and thermal stability, making these
composites suitable for high-performance applications [69].

Another significant advantage of additive manufacturing in the production of HMMCs
is the ability to tailor the composition and microstructure of the materials. By varying the
type and amount of reinforcement added during the AM process, researchers can create
composites with specific properties tailored to the demands of various applications [70].
For example, combining graphene and alumina as reinforcements in aluminum matrix
composites has significantly improved mechanical properties, including tensile strength
and hardness, while maintaining a lightweight structure [70]. This flexibility in design
and composition is particularly beneficial in industries such as aerospace, where weight
reduction and performance enhancement are paramount. Moreover, the integration of
advanced characterization techniques, such as X-Ray computed tomography (CT) and
scanning electron microscopy (SEM), allows for a detailed analysis of the microstructural
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features of HMMCs produced via additive manufacturing. These techniques enable re-
searchers to investigate the distribution of reinforcements, porosity levels, and interfacial
bonding between the matrix and reinforcements, which are critical factors influencing
the overall performance of the composites [71,72]. Understanding these microstructural
characteristics is essential for optimizing processing parameters and achieving the desired
mechanical properties.
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The use of hybrid reinforcements in additive manufacturing also presents unique
opportunities for enhancing the performance of metal matrix composites. For instance,
combining carbon nanotubes (CNTs) with traditional ceramic reinforcements can lead
to synergistic effects that improve the mechanical and thermal properties of the compos-
ite [73]. Incorporating CNTs into aluminum matrices has enhanced strength and stiffness
while reducing weight, making these composites particularly attractive for aerospace ap-
plications [73]. Furthermore, using hybrid reinforcements allows for the development of
multifunctional materials exhibiting improved wear resistance, thermal conductivity, and
corrosion resistance [74]. In addition to the mechanical advantages, the additive manufac-
turing process can contribute to the sustainability of HMMCs. Traditional manufacturing
methods often involve significant material waste, whereas additive manufacturing allows
for near-net-shape production, minimizing waste and reducing the environmental impact
of manufacturing processes [75]. This aspect is increasingly important in industries striving
for sustainability and reduced carbon footprints, such as the aerospace and automotive sectors.

The production of HMMCs by additive manufacturing can be promoted by friction stir
additive manufacturing (FSAM). Sahraei and Misalehi [76] show that this process possibly
successfully reinforces the AA6061 with TiC and graphene. The optimization of the process
allows the improvement of the wear rate and friction coefficient of the nanocomposites.
The nanocomposites were produced using different rotation speeds and a constant feeding
speed of 25 mm/min. A fine-grain microstructure characterizes the nanocomposites, as
seen in Figure 10.
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Figure 10. Polarized images of (a) nanocomposites produced at 1200 rpm, (b) nanocomposites
produced at 1300 rpm, (c) nanocomposites produced at 1400 rpm, (d) nanocomposites produced at
1500 rpm, and (e) matrix produced at 1200 rpm. Reprinted from Ref. [76].

Abbasi-Nahr et al. [77] show that it is also possible to produce Al hybrid nanocompos-
ites successfully with additive friction stir deposition. The authors used the AA5083 as a
matrix and nano TiB and diamond. The nanocomposites were deposited using different
rotation speeds and two different feed rates. Figure 11 presents the macrographs of the
nanocomposites produced using different conditions. The microstructural characterization
revealed that the nanocomposites improve properties for a rotation speed of 900 rpm and
12 mm/min feed rate.
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Figure 11. Images of the nanocomposites produced using different processing conditions (a–d)
900 rpm; (e–h) 1250 rpm; (i–l) 1600 rpm and (m–p) consumable rod and AMDO NC900-12. Reprinted
from Ref. [77].

Figure 12 shows images of the microstructural characterization of the sample deposited
at 1600 rpm with 12 mm/min. Based on the observation of the microstructure of the
consumable tool, it is possible to observe that the plastic deformation induces the formation
of recrystallized grains (Figure 12). Figure 12b shows a severe deformation between the
substrate and deposited material. Larger grains are observed in the thermo-mechanically
affected zone (TMAZ), as shown in Figure 12c. An increase in rotational velocity promotes a
higher heat input in the composite parts that greatly influence the microstructure. This will
affect the properties of the nanocomposites. Based on the microstructural and mechanical
characterization, the authors found that the optimum parameters for fabricating a deposited
high-performance part were found to be a rotation speed of 900 rpm and a deposition
feeding rate of 12 mm/min, with homogeneous distributions and equiaxed fine grain size.
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Furthermore, rapidly prototyping and iterating designs using additive manufacturing
facilitates innovation in developing HMMCs. Researchers can quickly test and evaluate new
material combinations and geometries, accelerating the development cycle for advanced
materials [78]. This rapid prototyping capability is particularly beneficial in the aerospace
industry, where the demand for lightweight, high-performance materials constantly evolves.
Challenges remain despite the numerous advantages of using additive manufacturing
to produce HMMCs. Issues such as porosity, residual stresses, and the need for post-
processing treatments can affect the mechanical properties of the final product. Ongoing
research is focused on optimizing processing parameters and developing new techniques
to mitigate these challenges, ensuring that HMMCs produced via additive manufacturing
meet the stringent requirements of high-performance applications.

In conclusion, producing hybrid metal matrix composites through additive manufac-
turing presents a transformative approach to materials engineering. The ability to tailor
material properties, optimize microstructures, and minimize waste positions additive man-
ufacturing as a key technology in developing advanced composites for aerospace and other
demanding applications. As research advances, the potential for HMMCs to revolutionize
material design and manufacturing processes remains substantial, paving the way for
innovative solutions in various industries.

3.4. Stir Casting

The production of aluminum hybrid nanocomposites through stir casting has garnered
significant attention in materials science due to the enhanced mechanical, thermal, and
tribological properties these materials exhibit. Stir casting is a widely adopted method for
fabricating MMCs, particularly aluminum-based composites, owing to its simplicity, cost-
effectiveness, and ability to achieve uniform dispersion of reinforcements within the matrix.
Incorporating hybrid reinforcements, such as ceramic and carbon-based materials, has
been shown to improve the performance characteristics of aluminum composites further,
making them suitable for various engineering applications.

The stir casting process involves melting the alloy in a crucible and then introduc-
ing the reinforcement materials into the molten metal while stirring. Figure 13 shows a
schematic of the conventional stir casting process. This method allows for better distribu-
tion of the reinforcements, which is crucial for achieving the desired mechanical properties.
Studies have demonstrated that the mechanical and thermal properties of aluminum hy-
brid nanocomposites can be significantly enhanced by the addition of reinforcements like
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alumina (Al2O3), silicon carbide (SiC), and graphene oxide (GO) [73,79–81]. For instance,
Mohammed et al. [80,81] reported that incorporating alumina and graphene oxide in alu-
minum composites improved hardness and wear resistance due to the complex nature of
alumina and the lubricating properties of graphene oxide.
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Figure 13. Schematic drawing of the conventional stir casting process.

Figure 14 shows the Al matrix and nanocomposites’ hardness and specific wear rate
reported by Mohammed et al. [80]. The hardness results of the different samples revealed
that adding Al2O3 particles induces an increase in hardness. The best results for 0.25%
of GO are observed for the hybrid nanocomposites. Regarding specific wear rates, the
nanocomposites exhibit a reduction in wear rate.
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The effectiveness of stir casting in producing aluminum hybrid nanocomposites is
also influenced by various processing parameters, such as stirring speed, temperature,
and the type and amount of reinforcement used. Venkatesh et al. [82] highlighted that
optimizing these parameters can significantly improve the mechanical properties of the
resulting composites, achieving ultimate strengths of up to 156 MPa and hardness values
reaching 431.4 Mpa. Furthermore, ultrasonic assistance during the stir casting process has
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been shown to enhance the dispersion of nanoparticles, leading to finer grain structures
and improved mechanical properties [83].

The selection of reinforcements plays a critical role in determining the final properties
of aluminum hybrid nanocomposites. The combination of different types of reinforcements
can lead to synergistic effects that enhance the overall performance of the composite. For
example, ceramic- and carbon-based reinforcements can improve the aluminum matrix’s
wear resistance and mechanical strength [84,85]. Abushanab et al. [84] explored the effects
of varying fly ash and vanadium carbide contents in hypereutectic Al-Si alloy-based
hybrid nanocomposites, demonstrating that the mechanical properties could be tailored by
adjusting the reinforcement composition. Jiang and Yu [85] show that combining liquid-
state blowing and ultrasonic-assisted casting is a good approach to producing Al hybrid
nanocomposites. Figure 15 shows the mechanical properties obtained for the Al reinforced
with Al2O3 and SiC. The best results are observed for the hybrid nanocomposites. The
increase in yield strength corresponds to 45% in terms of the mechanical properties of
the matrix.
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Moreover, the microstructural characteristics of aluminum hybrid nanocomposites
produced by stir casting are crucial for their performance. The uniform distribution of
reinforcements within the aluminum matrix is essential for achieving optimal mechanical
properties. Sambathkumar et al. [86] utilized a two-step stir casting process to ensure a
homogeneous distribution of B4C reinforcements in Al7075 composites, improving wear
resistance and tensile strength. This highlights the importance of processing techniques
in achieving the desired microstructure and, consequently, the mechanical properties of
the composites.

In addition to mechanical properties, the corrosion behavior of aluminum hybrid
nanocomposites is also a significant consideration, especially for applications in harsh
environments. The incorporation of reinforcements can influence the corrosion resistance
of the aluminum matrix. For instance, studies have shown that adding alumina and SiC
can enhance the corrosion resistance of aluminum composites, making them suitable for
aerospace and automotive applications [87]. The corrosion behavior of these composites
can be further optimized by controlling the microstructural features through processing
techniques such as stir casting.

The tribological performance of aluminum hybrid nanocomposites is another critical
aspect that has been extensively studied. The wear resistance of these materials can be
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significantly improved by adding hard reinforcements. For example, the specific wear
rate of aluminum composites reinforced with alumina and graphene oxide decreased
with the increasing reinforcement content, indicating enhanced wear resistance [88]. This
improvement is attributed to the hard nature of the alumina particles and the lubricating
effect of graphene oxide, which reduces friction during sliding contact. The versatility
of stir casting allows for incorporating various reinforcements, including nanoparticles,
which can further enhance the properties of aluminum hybrid nanocomposites. Using
nanoparticles, such as carbon nanotubes (CNTs) and graphene, has significantly improved
aluminum composites’ mechanical and thermal properties [89,90]. The unique properties
of these nanomaterials, such as their high strength-to-weight ratio and excellent thermal
conductivity, make them ideal candidates for reinforcement in aluminum matrices.

The production of hybrid copper composites via stir casting is a promising ap-
proach combining various materials’ benefits to enhance mechanical properties. The
process parameters play a crucial role in determining the final characteristics of the com-
posites, making careful optimization essential for achieving the desired performance in
aerospace industries.

In conclusion, producing hybrid nanocomposites through stir casting presents a
promising avenue for developing advanced materials with superior mechanical, ther-
mal, and tribological properties. The ability to tailor the properties of these composites
through the careful selection of reinforcements and optimization of processing parameters
makes them suitable for a wide range of applications in industries such as aerospace,
automotive, and construction. Ongoing research in this field continues to explore new
reinforcement combinations and processing techniques to enhance hybrid nanocomposites’
performance further.

3.5. Mechanical Properties of the Hybrid Metal Matrix Nanocomposites

Analyzing strength properties in HMMNCs, particularly in aircraft applications, re-
quires a comprehensive understanding of various mechanical properties, including hard-
ness, yield strength, plasticity, toughness, and wear resistance. Integrating different rein-
forcements into a metal matrix, such as copper and aluminum, can significantly enhance
these properties, making them suitable for demanding aerospace applications.

One of the primary advantages of hybrid composites is their ability to exhibit superior
hardness and yield strength compared to traditional materials. For instance, incorporating
graphene nanoplatelets (GNPs) into copper matrices has significantly enhanced mechanical
properties. The intrinsic strength of GNPs, which can reach up to 125 Gpa, contributes
to the overall strength of the composite. At the same time, the homogeneous dispersion
of these nanoparticles within the copper matrix leads to refined grain structures, further
improving strength through the Hall–Petch relationship [91]. This phenomenon illustrates
the critical role of reinforcement distribution in achieving enhanced mechanical properties.
In addition to hardness and yield strength, plasticity and toughness are crucial for materials
used in aircraft applications, where the ability to withstand dynamic loads and fracture is
dominant. Research has indicated that adding carbon nanotubes (CNTs) to copper matrices
improves strength and enhances ductility, allowing for better plastic deformation under
stress. The unique mechanical properties of CNTs, including their high tensile strength and
stiffness, contribute to the improved toughness of the resulting composites, making them
more resilient to impact and fatigue [92].

Figure 16 shows the comparison of mechanical properties and density between hybrid
nanocomposites and metallic and ceramic materials

The type and proportion of reinforcements used can also influence the toughness of
hybrid composites. For example, the combination of silicon carbide (SiC) and molybdenum
disulfide (MoS2) in aluminum hybrid composites has been shown to optimize mechanical
properties, including toughness and wear resistance [93]. The self-lubricating properties of
MoS2, when combined with the hardness of SiC, create a composite that not only resists
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wear but also maintains structural integrity under high-stress conditions, which is essential
for aerospace applications [93].
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Furthermore, the wear resistance of hybrid composites is a critical factor in their perfor-
mance. Studies have demonstrated that the addition of hard ceramic reinforcements, such
as alumina (Al2O3) and chromium carbide (Cr3C2) to copper or aluminum matrices, can
significantly enhance wear resistance while maintaining other mechanical properties [94].
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The uniform distribution of these reinforcements within the copper matrix leads to im-
proved load-bearing capacity and reduced wear rates, which are vital for components
subjected to friction and abrasion in aircraft systems [95].

The mechanical properties of hybrid composites can also be tailored through pro-
cessing techniques. Stir casting, for example, allows for the effective mixing of different
reinforcements, leading to a homogeneous composite structure that enhances mechanical
performance [73]. The optimization of processing parameters, such as stirring speed and
temperature, can further influence the microstructure and, consequently, the mechanical
properties of the composites produced [95]. This adaptability makes stir casting a preferred
method for fabricating hybrid metal matrix composites for aerospace applications.

The selection of nanoparticles for HMMNCs depends on their desired mechanical
properties and application. Table 2 summarizes the main effect of the nanoparticles most
commonly used in Al hybrid composites. When the goal is specific strength, CNTs and
GO are ideal; for hardness and wear resistance, SiC and Alumina are beneficial; and for
corrosion resistance with moderate toughness, TiO2 is effective.

Table 2. Summary of the effect of the different nanoparticles on the Al hybrid composites.

Nanoparticle Tensile
Strength

Young’s
Modulus

Wear
Resistance

Corrosion
Resistance Toughness

Carbon Nanotubes × ×
Graphene × ×

Silicon Carbide ×
Alumina ×

Titanium Dioxide × ×

In conclusion, the strength properties of hybrid metal matrix composites, particu-
larly in terms of hardness, yield strength, plasticity, toughness, and wear resistance, are
significantly enhanced through the strategic selection and combination of reinforcements.
Advanced materials, such as graphene and carbon nanotubes, alongside traditional rein-
forcements like silicon carbide, allow for the development of composites that meet the
rigorous demands of aircraft applications. The ability to tailor these properties through
processing techniques further underscores the potential of hybrid composites in advancing
aerospace engineering.

3.6. Challenges in Fabrication and Scale-Up

Despite the promising potential of hybrid nanocomposites, several challenges must be
addressed in their manufacture and scale-up for industrial applications. Achieving uniform
dispersion of the nanoparticles in the matrix is essential to avoid agglomeration, which
can lead to weak points and reduced material performance. Developing effective mixing
techniques and nanoparticle surface treatments is crucial to overcoming this challenge. A
strong interfacial bond between the matrix and the reinforcement is crucial for effective
load transfer and increased mechanical properties. Poor bonding can result in delamination
and reduce overall performance. Optimizing surface chemistry and processing conditions
is necessary to improve bonding at the nanoscale. Many advanced manufacturing tech-
niques, such as CVD and additive manufacturing, are currently limited by high costs and
scalability issues. Developing cost-effective and scalable production methods is crucial
for the widespread adoption of hybrid nanocomposites in industry. Each manufacturing
technique has specific process parameters (temperature, pressure, time), which must be
carefully controlled to obtain the desired microstructure and properties. The variability of
these parameters can lead to inconsistencies in the material’s performance. This is due to
significant microstructural changes that will impact the final properties of the components.
The use of nanoparticles raises environmental and health concerns due to their potential
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toxicity and the challenges associated with handling and disposing of nanomaterials. De-
veloping safe and sustainable manufacturing processes is essential for the responsible use
of nanocomposites. Solving these challenges is vital to realizing the full potential of hybrid
nanocomposites, particularly in high-performance applications such as the aerospace in-
dustry, where the materials are subject to demanding conditions and must meet stringent
safety and reliability standards. Ongoing research and development efforts aim to optimize
manufacturing techniques and scale-up processes to meet these requirements effectively.
Scaling up the production of aluminum-based nanocomposites, like Al6061 reinforced with
SiC and graphite, involves several targeted strategies and methods to ensure that quality,
consistency, and performance remain stable at larger volumes.

Powder metallurgy (PM) is commonly used in nanocomposite production because it
controls particle size, distribution, and composition. Scaling up involves enhancing PM
techniques to increase batch sizes while maintaining uniform dispersion of reinforcements
like SiC and graphite throughout the aluminum matrix. Ensuring a consistent distribution
of nanoparticles is crucial, as agglomeration is a significant challenge at larger scales.
Scalable approaches, such as ultrasonic dispersion, ball milling, or high-shear mixing,
are often optimized for larger batches. Newer techniques, like mechanical alloying and
spark plasma sintering (SPS), help improve homogeneity in bulk production. Scaling up
involves rigorous quality control methods like X-Ray diffraction (XRD), scanning electron
microscopy (SEM), and in-line sensors to ensure that each batch meets consistent standards
for particle dispersion, hardness, and mechanical properties. By refining these techniques
and employing automation, manufacturers aim to scale up production while meeting the
mechanical and wear-resistant properties required for high-stress applications, particularly
in the aerospace and automotive industries.

4. Future Trends and Research Directions

As hybrid nanocomposites evolve, researchers focus on several key areas to further
enhance their properties, expand their applications, and address existing challenges. Future
and planned research trends include developing emerging materials and reinforcements,
new manufacturing techniques, integrating innovative and adaptive features, and increas-
ing emphasis on environmental and sustainability considerations.

One of the most exciting avenues for future research in hybrid nanocomposites is the
exploration of emerging materials and novel reinforcements that offer unique or enhanced
properties. High-entropy alloys (HEAs), which consist of several major elements, offer
excellent mechanical properties and thermal stability. Research is exploring their use in
hybrid nanocomposites to enhance strength, toughness, and resistance to extreme envi-
ronments. Integrating nanoscale reinforcements into HEAs could lead to composites with
unprecedented properties for aerospace applications.

Advancing the fabrication techniques for hybrid nanocomposites is crucial for op-
timizing their properties and scaling up production. The development of hybrid AM
techniques that combine multiple printing methods (e.g., FDM with SLS or SLA) is a
promising area of research. These techniques can enable the incorporation of different types
of nanoparticles and create functionally graded materials with varying properties tailored
to specific aerospace components. In situ synthesis techniques, where nanoparticles are
formed directly within the matrix during fabrication, can achieve better dispersion and
stronger bonding at the interface. Self-assembly methods, driven by specific chemical or
physical interactions, can also be used to create ordered structures and hierarchical designs,
improving the overall performance of nanocomposites. Plasma-assisted techniques, such
as plasma-enhanced chemical vapor deposition (PECVD) and plasma spraying, are being
explored for their ability to create nanocomposite coatings with unique properties. These
methods can facilitate the uniform incorporation of nanoparticles and create surfaces with
enhanced hardness, corrosion resistance, or catalytic activity.

Integrating innovative and adaptive features into hybrid nanocomposites is a bur-
geoning area of research that aims to create materials capable of responding to external
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stimuli or changing conditions. Developing nanocomposites with self-healing capabilities
is a significant focus for enhancing the durability and lifespan of aerospace components.
Incorporating microcapsules or nanocontainers filled with healing agents that release upon
damage can automatically repair cracks and restore structural integrity, reducing mainte-
nance and increasing safety. Embedding nanosensors and actuators within nanocomposites
enables the creation of intelligent materials that can monitor their health or change proper-
ties in response to external stimuli. For example, incorporating piezoelectric nanoparticles
(BT, PZT or ZnO) can allow a composite to generate an electrical signal when deformed,
which is helpful for structural health monitoring in aerospace applications. Researchers
are exploring materials that can adapt their thermal conductivity based on environmental
conditions. These composites can regulate heat flow by integrating phase-change materials
or thermally responsive nanoparticles, providing efficient thermal management for aircraft
and spacecraft operating in extreme temperatures.

As the demand for greener technologies increases, future research in hybrid nanocom-
posites will also focus on environmental and sustainability considerations. There is a
growing emphasis on using sustainable and eco-friendly raw materials, such as natural
fibers or recycled nanoparticles, to reduce the environmental impact of nanocomposite
production. Developing energy-efficient fabrication techniques that minimize waste and
reduce carbon footprints is also becoming a priority. Ensuring that hybrid nanocomposites
are recyclable and have a manageable end-of-life process is crucial for reducing environmen-
tal impact. Research is focused on developing composites that can be easily disassembled
or repurposed after their service life, particularly in aerospace applications where materials
are often replaced due to stringent safety requirements. Conducting comprehensive LCAs
of hybrid nanocomposites is essential for understanding their overall environmental im-
pact, from raw material extraction through production, usage, and disposal. This approach
will guide the development of more sustainable composites and help identify areas for
improvement in their design and manufacturing.

5. Conclusions

In conclusion, research into hybrid nanocomposites (based on aluminum or copper
metallic matrices) for aerospace applications has made significant progress, opening new
possibilities for designing and developing more efficient and multifunctional materials.
Using nanostructures such as carbon nanotubes, graphene, metallic nanoparticles, and
ceramic materials, combined with metallic matrices, has made it possible to obtain com-
posites with improved mechanical, thermal, and electrical properties, overcoming many
challenges conventional materials face. These hybrid nanocomposites stand out for their
high mechanical strength, high energy dissipation capacity, better thermal stability, and
excellent performance in extreme conditions. These are essential attributes for aerospace
applications where safety and durability are critical.

In addition to superior structural properties, these new materials provide additional
functionalities, which contribute to creating more intelligent and integrated components
for aircraft and spacecraft. Such features are highly desirable in the aerospace sector, as
they allow lighter and more fuel-efficient aircraft to be built without compromising safety
and reliability. The integration of functionalities such as real-time monitoring of structural
damage and adaptive responses to variable loads could, in the future, revolutionize the
way aircraft and space structures are designed and operated.

However, despite promising advances, several challenges must be addressed before
these materials can be fully adopted in practical applications. Issues related to the ho-
mogeneous dispersion of nanomaterials in the matrix (prevention of an agglomeration
during synthesis), control of the interface between components, and the scalability of
manufacturing processes still represent significant obstacles. Understanding the complex-
ity of multiphase behavior and how different properties interact and complement each
other within nanocomposites requires further investigation. In addition, evaluating these
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new materials’ long-term performance and reliability under extreme environments and
intensive load cycles is essential to ensure their suitability in the aerospace sector.

Although there is still a long way to go to overcome these challenges, the results
obtained so far indicate that hybrid nanocomposites can redefine the standards of perfor-
mance and functionality in the aerospace field. With continued investment in research and
development, these materials are expected to advance to large-scale applications rapidly,
playing a crucial role in developing more efficient, safer, and sustainable next-generation
aircraft and space vehicles. Thus, the future of hybrid nanocomposites points to the consol-
idation of a new era of innovation and technological progress in the aerospace sector, with
positive impacts not only in terms of structural performance but also in optimizing costs
and reducing environmental impacts.
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94. Şap, S.; Usca, Ü.; Uzun, M.; Giasin, K.; Pimenov, D. Development of the hardness, three-point bending, and wear behavior of

self-lubricating Cu-5Gr/Al2O3-Cr3C2 hybrid composites. J. Compos. Mater. 2023, 57, 1395–1409. [CrossRef]
95. Goutham, M.; Mahesh, V.; Muralidhara, B. Studies on hybrid material reinforced copper based composites—A review. Int. J.

Trend Sci. Res. Dev. 2019, 3, 302–305. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13369-021-05865-4
https://doi.org/10.1051/matecconf/201818302001
https://doi.org/10.3390/ma14010175
https://www.ncbi.nlm.nih.gov/pubmed/33401426
https://doi.org/10.1002/adem.202001143
https://doi.org/10.1016/j.compstruct.2017.09.098
https://doi.org/10.30574/ijsra.2024.11.1.0329
https://doi.org/10.1016/j.jmrt.2024.05.043
https://doi.org/10.1016/j.jmrt.2024.05.158
https://doi.org/10.21452/bccm4.2018.07.01
https://doi.org/10.3390/nano11051225
https://doi.org/10.3390/ma15030865
https://doi.org/10.15407/mfint.41.04.0481
https://doi.org/10.1177/0021998318822723
https://doi.org/10.1007/s12633-021-01284-0
https://doi.org/10.3390/met8080572
https://doi.org/10.1590/1679-78253132
https://doi.org/10.1590/1980-5373-mr-2019-0496
https://doi.org/10.1590/1980-5373-mr-2023-0241
https://doi.org/10.3139/146.111451
https://doi.org/10.18311/jmmf/2022/30661
https://doi.org/10.1002/pssa.201330051
https://doi.org/10.1108/AEAT-01-2017-0016
https://doi.org/10.4028/www.scientific.net/MSF.979.89
https://doi.org/10.1177/00219983231155978
https://doi.org/10.31142/ijtsrd20226

	Introduction 
	Hybrid Metal Matrix Nanocomposites 
	Production of Hybrid Metal Matrix Nanocomposites 
	Powder Metallurgy 
	Chemical Vapor Deposition 
	Additive Manufacturing 
	Stir Casting 
	Mechanical Properties of the Hybrid Metal Matrix Nanocomposites 
	Challenges in Fabrication and Scale-Up 

	Future Trends and Research Directions 
	Conclusions 
	References

