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Abstract: The objective of this study was to investigate the effect of straw return on the formation
of Fe-Mn colloids in arsenic-contaminated soils and its subsequent influence on arsenic behav-
ior. It was observed that organic matter (SD) resulting from straw decomposition interacted with
iron/manganese (hydr)oxides (Fe/Mn (hydr)oxides) present in the soil, leading to the formation of
colloidal particles. These particles significantly influenced the fixation and release of arsenic. The
experimental results indicated that an increase in SD content facilitated the formation of colloidal
particles. The highest concentration of colloidal particles was observed at a C/Fe-Mn ratio of 2.2,
which significantly reduced the bioavailability and mobility of arsenic in the soil. The increase in
SD content also diminished the depositional attachment efficiency of SD/Fe-Mn, thereby enhancing
its migration through the soil. The actual field soil-filled column experiments further demonstrated
that the content of SD significantly influenced arsenic bioavailability and mobility. Specifically, at
a C/Fe-Mn ratio of 2.2, the inhibition of arsenic migration and bioavailability was found to be
1.46 times more effective compared to a C/Fe-Mn ratio of 0.4. Therefore, the return of straw to the
field represents an effective soil remediation strategy for mitigating the bioavailability of arsenic by
modulating the C/Fe-Mn ratio. This approach offers a novel perspective on strategies for heavy
metal remediation.

Keywords: Fe/Mn (hydr)oxides; straw-derived; arsenic; migration

1. Introduction

Arsenic (As) contamination in paddy fields has emerged as a significant global concern
due to its severe implications for human health [1,2]. The primary sources of As in rice-
growing soils include irrigation with As-contaminated groundwater, the application of
As-containing pesticides, and mining activities [3,4]. This As can undergo various transport
and transformation processes, enabling its absorption by plants and subsequent entry into
the food chain through rice, which serves as a staple food for over half of the world’s
population [5]. Consequently, this leads to chronic exposure that triggers health issues
such as skin damage, cardiovascular diseases, and cancer [6–8]. In light of the widespread
prevalence of As contamination and its serious repercussions, there is an urgent need to
develop effective strategies for managing and mitigating As pollution in paddy fields.

As a globally recognized agricultural practice, straw return is not only advocated
as a primary method for straw management but also acknowledged for its beneficial
effects on soil enhancement [9,10]. Soluble organic matter derived from straw (SD) con-
tains functional groups such as carboxyl groups (-COOH) and phenolic hydroxyl groups
(-OH) [11,12]. These functional groups can form stable complexes with heavy metals,
thereby reducing their adsorption and increasing the mobility of heavy metals (e.g., As,
Pb, etc.) in soil [13–15]. However, the phenomenon of reduced heavy metal accumulation
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in plants is observed in practical applications of straw return [16–18]. This effect may be
attributed to the formation of complex colloids between dissolved organic matter (DOM)
generated from straw and Fe/Mn (hydr)oxides present in the soil, which facilitates the
stabilization of As [19]. Further research has demonstrated that in the combined presence
of dissolved DOM and Fe/Mn (hydr)oxides, arsenic exists in multiple forms, as follows:
partially dissolved in solution, partially complexed with DOM within the aqueous phase,
and partially encapsulated within small colloids. In aqueous environments, the concen-
trations of arsenic and dissolved DOM exhibit similar patterns [20]. Specifically, arsenic
demonstrates a correlation with DOM concentrations and affects its transport and distribu-
tion in the environment by binding to colloids that are rich in both DOM and Fe as well as
Mn [21,22]. Therefore, a comprehensive investigation into the transport processes of SD
and the complex colloids formed by Fe/Mn (hydr)oxides during straw incorporation into
soil is crucial for understanding their influence on arsenic behavior. This knowledge is
essential for mitigating As contamination in rice fields.

In this study, we aim to address the existing knowledge gap by thoroughly investi-
gating the mechanisms involved in the colloid formation of straw-derived (SD) materials
and Fe/Mn (hydr)oxides, as well as the complex processes of migration and deposition.
A key focus of this research is the molar ratio of carbon to iron/manganese (C/Fe-Mn),
which is proposed as a critical factor influencing the formation and transport of SD-Fe/Mn
colloidal particles. By elucidating these mechanisms, this investigation seeks to enhance
our understanding of As dynamics within paddy soil while providing novel insights for
innovative soil remediation strategies.

2. Materials and Methods
2.1. Materials

Straw was sourced from dry rice fields in Changsha County, Hunan Province, China.
Prior to utilization, the straw underwent air-drying and was ground through a 60-mesh
sieve. Straw-derived suspensions were prepared by immersing the straw in 500 mL of
ultrapure water at a temperature of 368 K under dark conditions. Subsequently, the pH was
adjusted to 10.5 using a 1 Mmol/L NaOH solution, and the resulting solutions were filtered
through a cellulose nitrate filter with a pore size of 0.45 µm. To determine the concentration
of organic matter derived from straw (SD), a standard curve relating dilution degree to
organic carbon content was established through a concentration gradient experiment, with
the results presented in Figure S1. The organic carbon (C) content in the SD stock solution
was measured multiple times using a total organic carbon (TOC) analyzer (Multi N/C 3100,
Jena Analytics, Jena, Germany), yielding an average result of 963.8 ± 5.9 mg C/L (n = 4).
This stock suspension was subsequently utilized to prepare suspensions at various work-
ing concentrations for further experiments [23,24]. The fluorescence excitation–emission
matrix (EEM) spectra of SD suspensions were recorded using a fluorescence spectropho-
tometer (Hitachi F-7000, Hitachi, Tokyo, Japan). The excitation wavelengths ranged from
250 to 500 nm, while the emission wavelengths spanned from 200 to 400 nm, with intervals
of 5 nm. The resulting fluorescence spectra for each component are presented in Figure
S2. Based on the positions of the EEM, as well as the EEM profiles and spectral loadings,
two fluorescent components were identified (Table 1). The identified components included
complex amino acids and protein-like substances corresponding to Peak I, along with a
variety of aromatic proteins exhibiting a strong specific fluorescence intensity associated
with Peak II [25,26].

Table 1. Range distribution of fluorescence area integrals for SD.

Area Ex (nm) Em (nm) Type

SD
I 220–320 250–350 Soluble microbial byproduct-like
II 205–225 275–350 Aromatic protein

Note: Before EEM measurements, dilute samples with UV absorbance over 0.1 at 254 nm using milli-Q water to
reduce internal filtering effects.
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The experimental soil was sampled in May 2022 in the paddy field area of Yiyang
City, Hunan Province. Soil samples were collected using methods consistent with previous
studies [27]. The concentration of decarbonate-extracted bioavailable As was determined
to be 23.1 ± 0.75 mg/kg. Detailed information regarding the physicochemical properties of
the soil, including dissolved organic carbon (DOC), cation exchange capacity (CEC), and
decarbonate-extracted bioavailable As concentrations, is provided in Table S1.

Phytic acid (H2SO4, 99%), nitric acid (HNO3, 70%), hydrochloric acid (HCl, 36%),
sodium hydroxide (NaOH), sodium bicarbonate (NaHCO3), ferrous sulfate (FeSO4·7H2O),
and calcium chloride (CaCl2) were commercially available from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Magnesium chloride (MgCl2) and sodium chloride
(NaCl) were purchased from Shanghai Macklin Biochemical Technology Co., Ltd. (Shang-
hai, China). Potassium permanganate (KMnO4) was sourced from Xilong Scientific Co.,
Ltd. (Guangzhou, China). All the reagent solutions were prepared using ultrapure water
with a resistivity greater than 18 MΩ·cm, obtained from Milli-Q systems by Millipore in
Shanghai, China. With the exception of straw, all chemicals utilized in this study were of
analytical grade.

2.2. Formation and Characterization of SD-Fe/Mn Colloids

To elucidate the impact of the carbon-to-iron/manganese (C/Fe-Mn) molar ratio on
the formation of SD-Fe/Mn colloids, a series of batch experiments were conducted. Stock
solutions containing SD with concentrations ranging from 0 to 50 mg of carbon per liter
of ultrapure water (C/L) were prepared. Subsequently, specific amounts of FeSO4·7H2O
and KMnO4 solutions, each at a concentration of 10 mg/L, were added to achieve mixtures
with C/Fe-Mn molar ratios varying from 0 to 21.5. In this context, the term C/Fe-Mn
refers to the ratio of the relative molar mass of organic carbon to the combined relative
molar masses of iron and manganese. The detailed process for material preparation
is illustrated in Figure 1. These molar ratios were selected as they encompass a range
commonly observed in sediment samples [23,28,29]. The pH of the system was carefully
maintained at 7.0 ± 0.1 using 5 mM NaOH. The suspensions underwent stirring at a rate
of 400 rpm at room temperature for a duration of 12 h to facilitate the production of SD-
Fe/Mn (hydr)oxide colloids. Detailed information regarding the experimental conditions
is provided in Table S2.
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Figure 1. Synthesis process of SD-Fe/Mn.

The concentration of SD, Fe, and Mn in the colloidal samples was analyzed as follows
according to size fractionation: dissolved species (<1–3 nm), colloidal particles (1–3 nm
to 450 nm), and particulate (>450 nm) [30]. The total Fe/Mn (hydr)oxide concentration in
each fraction was determined by inductively coupled plasma mass spectrometry (ICP-MS)
(NEXION 2000, Perkin Elmer, Waltham, MA, USA), following the acidification of samples
with 2% HNO3. Dynamic light scattering (DLS) was conducted using a Zetasizer Nano
(NanoBrook Omni, Brookhaven, NY, USA) to evaluate the particle size distribution and
zeta potential of the NOM-Fe/Mn suspensions [24]. Transmission electron microscopy
(Talos F200X, Thermo Fisher, Waltham, MA, USA) was utilized to examine the morphology
of the resulting colloids. Colloidal samples were prepared by depositing approximately
20 µL of colloidal suspension onto a 200-mesh carbon-coated copper grid, followed by the
evaporation of residual water under vacuum at room temperature. Solid colloids were
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isolated via ultracentrifugation and subsequently freeze-dried. The resulting sample was
characterized using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy
(ATR-FTIR) (Nicolet iS50, Thermo Fisher, WLM, USA) to analyze the functional groups
present. The rationale for employing the ATR method is its minimal impact on the sample,
thereby ensuring a non-destructive analysis.

2.3. Colloid Deposition Kinetics

A dissipative quartz crystal microbalance (QCM-D) (Analyzer, Biolin, GBG, SWE),
equipped with four flow cells, was employed to evaluate the deposition of SD-Fe/Mn
colloids on the silica interface. The silica surface was chosen as the model surface due to its
representation of a significant environmental surface exhibiting properties akin to quartz
sand. The deposition experiments were performed according to the previous literature [31].
Briefly, a background solution was introduced into the chamber to establish a baseline
until the mean normalized third overtone frequency shift no longer exceeded 0.5 Hz
and stabilization of the baseline occurred for 10 min. Subsequently, SD-Fe/Mn colloidal
suspensions with varying C/Fe/Mn molar ratios but identical electrolyte compositions
were injected into the sensor for a duration of 20 min. The frequency change (∆f ) and
energy dissipation (∆D) of the QCM-D crystal coated with silica (5 MHz) were monitored
simultaneously [32,33]. Further details regarding the experimental procedure can be found
in Text S2.

2.4. Column Experiments

The migration of SD-Fe/Mn colloids in packed quartz sand columns was investigated
by column experiments. Quartz sand was used to simulate the soil environment [34,35],
and its migration in soil was examined by constructing soil-filled columns with a porosity
of 27.2 ± 0.2%, comparable to that used in As migration experiments [36], as detailed in
Text S1. The flow chart for the specific soil-filled column experiment is shown in Figure 2.

Metals 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Flowchart of the soil-filled column experiment. 

2.5. Quality Control and Data Analysis 
All containers utilized in the experiments were immersed in a 10% HNO3 solution 

for 24 h, followed by triple rinsing with deionized water prior to the commencement of 
the experiments. Standard reference materials were employed to calibrate instruments 
and validate analytical measurements related to the physicochemical properties and 
heavy metal analysis of the soils. Replicate experiments were conducted to ensure 
consistent results and account for any experimental variability. Data processing was 
performed using Excel 2021 and SPSS 19.0, with results expressed as mean value ± 
standard deviation (±SD). The coefficient of variation among triplicate analyses remained 
within 5% for the studied heavy metals and associated properties. Origin 2023 was 
utilized for data fitting, graph plotting, and further processing. 

3. Results 
3.1. Morphological Distribution of SD-Fe/Mn Colloids 

The influence of the C/Fe-Mn molar ratio on the distribution of SD-Fe/Mn fractions 
was examined by analyzing the percentages of each morphology (dissolved species, col-
loidal particles, and particulate) of SD and Fe/Mn (hydr)oxides in the SD-Fe/Mn suspen-
sions. The results are presented in Figure 3. The results indicated that the fractions of dis-
solved species and colloidal particles of organic carbon in SD-Fe/Mn suspensions exhib-
ited a relatively stable distribution, with approximately 90% of SD existing as colloidal 
particles (Figure 3a). However, irrespective of the molar ratio of C/Fe-Mn, a fraction of the 
dissolved species SD remained in a dissolved state and did not form colloidal complexes 
with Fe/Mn (hydr)oxides. This phenomenon may be attributed to the fact that the surfaces 
of the dissolved species SD were in a relative equilibrium state, rendering them unable to 
bind effectively to Fe/Mn (hydr)oxides. 

Further, the relationship between the morphology of Fe/Mn (hydr)oxides and the 
C/Fe-Mn molar ratio was examined, as illustrated in Figure 3b. It can be observed that, as 
the C/Fe-Mn molar ratio increases from 0.4, the percentage of particulate Fe/Mn (hydr)ox-
ides (>450 nm) decreases. In contrast, the percentages of colloidal particles (ranging from 
1–3 nm to 450 nm) and dissolved species (<1–3 nm) exhibit a corresponding increase in 
their proportions of Fe/Mn (hydr)oxides. At a C/Fe-Mn ratio of 2.2, the proportion of col-
loidal Fe/Mn (hydr)oxides reaches a maximum value of 47.1%. Beyond this ratio, the per-
centage of colloidal Fe/Mn (hydr)oxides stabilizes at approximately 40.0%, while the con-
centration of dissolved species continues to increase. Since there exists a direct correlation 
between the increase in the C/Fe-Mn molar ratio and the concentration of SD, it can be 
inferred that the rise in the proportion of dissolved species at C/Fe-Mn ratios exceeding 
2.2 is likely due to the interaction between organic acids present in SD and Fe/Mn 
(hydr)oxides. This interaction subsequently influences both the structure and morphol-
ogy of these Fe/Mn (hydr)oxides. With a moderate increase in SD concentration, the com-
plexation becomes more pronounced, resulting in a higher percentage of colloidal parti-
cles. However, the sustained elevation of SD leads to an increased presence of Fe/Mn 
(hydr)oxides in the dissolved state rather than facilitating their transition into a colloidal 

Figure 2. Flowchart of the soil-filled column experiment.

To assess the impact of SD-Fe/Mn colloids on As mobility in soil, Yiyang farmland soil
was utilized within circular Plexiglas columns. Approximately 395 g of soil was packed into
the Plexiglas cylinders (inner diameter 3.5 cm × length 15 cm), resulting in a soil porosity
of 26.9%. A peristaltic pump controlled the injection flow rate, allowing for the continuous
introduction of five pore volumes (PV) of agitated SD-Fe/Mn colloid into each column from
top to bottom at a Darcy flow rate of 2.93 m/day. After seven days, each column medium
was divided into three layers measuring 4–5 cm each; these were carefully excavated using
gravity techniques for sand grain analysis. Each layer was further subdivided into thirds
based on inner diameter segments measuring between 1.1 and 1.2 cm. Naturally air-dried
measurements were conducted to determine the chemical compositional distribution of
As within the samples. A total of 1.0 g of air-dried soil samples was weighed into a 50 mL
centrifuge tube, followed by the addition of 10 mL deionized water for water-soluble
extraction and NaHCO3 at a solid–liquid ratio of 1:10 g/mL for decarbonate-extracted
bioavailability assessment. The sample mixture underwent shaking for two hours at a speed
of 180 r/min at room temperature (25 ± 2 ◦C). Subsequently, this extracted bioavailable
fraction underwent additional shaking under identical conditions before being filtered. Post
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filtration, atomic fluorescence spectrometry (AFS) (HGF-V2, Haiguang, CN) determined the
concentration levels of decarbonate-extracted bioavailable As present in the reacted soils.

2.5. Quality Control and Data Analysis

All containers utilized in the experiments were immersed in a 10% HNO3 solution
for 24 h, followed by triple rinsing with deionized water prior to the commencement of
the experiments. Standard reference materials were employed to calibrate instruments
and validate analytical measurements related to the physicochemical properties and heavy
metal analysis of the soils. Replicate experiments were conducted to ensure consistent
results and account for any experimental variability. Data processing was performed using
Excel 2021 and SPSS 19.0, with results expressed as mean value ± standard deviation
(±SD). The coefficient of variation among triplicate analyses remained within 5% for the
studied heavy metals and associated properties. Origin 2023 was utilized for data fitting,
graph plotting, and further processing.

3. Results
3.1. Morphological Distribution of SD-Fe/Mn Colloids

The influence of the C/Fe-Mn molar ratio on the distribution of SD-Fe/Mn frac-
tions was examined by analyzing the percentages of each morphology (dissolved species,
colloidal particles, and particulate) of SD and Fe/Mn (hydr)oxides in the SD-Fe/Mn sus-
pensions. The results are presented in Figure 3. The results indicated that the fractions
of dissolved species and colloidal particles of organic carbon in SD-Fe/Mn suspensions
exhibited a relatively stable distribution, with approximately 90% of SD existing as colloidal
particles (Figure 3a). However, irrespective of the molar ratio of C/Fe-Mn, a fraction of the
dissolved species SD remained in a dissolved state and did not form colloidal complexes
with Fe/Mn (hydr)oxides. This phenomenon may be attributed to the fact that the surfaces
of the dissolved species SD were in a relative equilibrium state, rendering them unable to
bind effectively to Fe/Mn (hydr)oxides.
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Further, the relationship between the morphology of Fe/Mn (hydr)oxides and the
C/Fe-Mn molar ratio was examined, as illustrated in Figure 3b. It can be observed that,
as the C/Fe-Mn molar ratio increases from 0.4, the percentage of particulate Fe/Mn
(hydr)oxides (>450 nm) decreases. In contrast, the percentages of colloidal particles (rang-
ing from 1–3 nm to 450 nm) and dissolved species (<1–3 nm) exhibit a corresponding
increase in their proportions of Fe/Mn (hydr)oxides. At a C/Fe-Mn ratio of 2.2, the pro-
portion of colloidal Fe/Mn (hydr)oxides reaches a maximum value of 47.1%. Beyond this
ratio, the percentage of colloidal Fe/Mn (hydr)oxides stabilizes at approximately 40.0%,
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while the concentration of dissolved species continues to increase. Since there exists a
direct correlation between the increase in the C/Fe-Mn molar ratio and the concentration
of SD, it can be inferred that the rise in the proportion of dissolved species at C/Fe-Mn
ratios exceeding 2.2 is likely due to the interaction between organic acids present in SD
and Fe/Mn (hydr)oxides. This interaction subsequently influences both the structure and
morphology of these Fe/Mn (hydr)oxides. With a moderate increase in SD concentration,
the complexation becomes more pronounced, resulting in a higher percentage of colloidal
particles. However, the sustained elevation of SD leads to an increased presence of Fe/Mn
(hydr)oxides in the dissolved state rather than facilitating their transition into a colloidal
form. Therefore, the content of SD plays a crucial role in regulating the formation of
Fe/Mn colloids.

The impact of varying concentrations of SD on colloid formation was investigated by
analyzing the changes in zeta potential at the colloid surface. The results are presented in
Figure 4a. At a C/Fe-Mn molar ratio of 0, the surface of the Fe/Mn (hydr)oxides exhibits
a weak negative charge. The electronegativity of the SD-Fe/Mn colloidal surface was
markedly enhanced through the continuous introduction of SD and an increase in its
organic carbon content. The observed phenomenon can primarily be attributed to the
presence of a substantial number of functional groups within the SD molecular structure
(Figure S3), including carboxylic acid groups (-COOH) and phenolic hydroxyl groups
(-OH) [37,38]. This observation pertains to the presence of complex amino acids and protein-
like substances in the two fluorescent components identified through EEM spectroscopy, as
well as the predominant functional groups found in aromatic proteins. These functional
groups are readily ionizable, allowing for the formation of negative charges under natural
conditions. The increased negative surface charge effectively diminishes inter-particle
aggregation by means of electrostatic repulsion, consequently leading to a reduction in the
formation of particulate matter [39].
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The particle size variation in Fe/Mn (hydr)oxides was examined using the dynamic
light scattering technique, and the results are presented in Figure 4b. Initially, Fe/Mn
(hydr)oxides predominantly existed as large agglomerates with a size of approximately
1900 nm. The particle size stabilizes at around 138.3 nm when the C/Fe-Mn ratio is set to 4.3,
and it further decreases to approximately 112.4 nm when the C/Fe-Mn ratio reaches 21.5.
These findings are consistent with the morphological distribution results, which indicate
that the reduction in particulate matter is attributed to the presence of smaller particle sizes.
The relationship between SD concentration and the size of SD-Fe/Mn colloid particles
was further investigated, with the results presented in Figure 4c. A weak correlation
(R2 = 0.77) is observed between SD concentration and colloid particle size, suggesting that
the interactions between SD and Fe/Mn (hydr)oxides involve complex reaction pathways,
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including mechanisms such as complexation and bridging, in addition to electrostatic
repulsion [29].

The DLS observations were further validated by characterizing the TEM images of
SD-Fe/Mn suspensions, with the results presented in Figure 5. It is evident that a significant
number of agglomerates formed from Fe/Mn (hydr)oxides at a C/Fe-Mn molar ratio of
0 (Figure 5a). At a C/Fe-Mn molar ratio of 2.2, flaky SD-Fe/Mn particles were observed,
exhibiting an average diameter of approximately 30 nm (Figure 5b). Moreover, as the initial
C/Fe-Mn molar ratio increased to 4.3 and subsequently to 21.5, the particle diameters
decreased to within the range of 10–30 nm (Figure 5c,d). These morphological changes
align well with the DLS results.
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3.2. Migration of SD-Fe/Mn Colloids

The migration process of SD-Fe/Mn colloids in soil was simulated using quartz sand-
filled columns. The influence of varying C/Fe-Mn molar ratios on the migration behavior
of colloidal materials was investigated, with results presented in Figure 6. The penetration
curves illustrate the relationship between the initial inflow concentration (C0) and the
effluent concentration (C) of Fe/Mn (hydr)oxides in SD-Fe/Mn suspensions as a function
of colloid injection volume (Pore Volume, PV). The infiltration of Fe/Mn (hydr)oxides into
SD-Fe/Mn suspensions increased with an elevated C/Fe-Mn molar ratio. At a C/Fe-Mn
ratio of 0.4 (1 mg C/L), the SD-Fe/Mn suspension demonstrated minimal penetration
through the quartz sand column, achieving a penetration rate of only 3%. Consequently,
approximately 97% of the Fe/Mn (hydr)oxides were retained by the quartz sand medium.
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As the C/Fe-Mn molar ratios increased to 1.3 (3 mg C/L) and 2.2 (5 mg C/L), a
significant enhancement in penetration rates was observed, reaching values of 28.6% and
30.5%, respectively. An analysis of the distribution patterns for Fe/Mn (hydr)oxides and
their fractions within SD-Fe/Mn suspensions indicates that this increase in penetration rate
can be attributed to a reduction in particulate fraction, alongside increases in both colloidal
particles and dissolved species fractions. The maximum recorded penetration value for
Fe/Mn (hydr)oxides within SD-Fe/Mn suspensions was found to be 71.1% at a C/Fe-Mn
molar ratio of 21.5 (50 mg C/L). Notably, only approximately 29% of these nanoparticles
were retained by the quartz sand media, suggesting that surfactant dispersion significantly
enhanced both mobility and transport efficiency for Fe/Mn (hydr)oxides through soil, as
influenced by increasing levels of the C/Fe-Mn molar ratio.

3.3. Deposition of SD-Fe/Mn Colloids

To investigate the deposition behavior of SD-Fe/Mn in soil, a silica sensor was em-
ployed to simulate the colloidal migration environment. The in situ deposition process of
the SD-Fe/Mn suspension onto the silica sensor was continuously monitored in real time
using QCM-D (Figure 7). The deposition attachment efficiency (αD) of SD-Fe/Mn on the
silica surface indicates that it exhibits a lower αD when the C/Fe-Mn molar ratio exceeds 2.2,
suggesting that its deposition onto the soil surface is inhibited. αD is influenced by various
factors, including the surface charge of the particles, the pH of the solution, ionic strength,
and the presence of surface-active substances. In particular, when considering SD-Fe/Mn
as a surface-active agent, it has been observed that SD decreases αD by enhancing the
electrostatic repulsive forces among Fe/Mn (hydr)oxides. Electrostatic repulsion inhibits
the attachment of negatively charged SD-Fe/Mn to the negatively charged sensor surface
in a near-neutral environment (pH 7). This observation aligns with the findings from
SD-Fe/Mn migration experiments. At C/Fe-Mn molar ratios exceeding 2.2, the migration
of Fe/Mn (hydr)oxides is enhanced, resulting in reduced deposition. Interestingly, the
SD-Fe/Mn suspension with a C/Fe-Mn molar ratio of 2.2 exhibits the lowest αD in the
deposition experiments. Generally speaking, lower αD values are more likely to facilitate
migration within quartz sand media. However, the penetration rates observed are lower
when compared to SD-Fe/Mn suspensions with C/Fe-Mn molar ratios of 4.3, 10.8, and
21.5. This phenomenon may be attributed to the fact that, in addition to the electrostatic
interactions, the binding strength of the SD-Fe/Mn nanoparticles at their interface with
silica also influences their migration and deposition within the silica medium [40,41].
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The time variation curves of the normalized frequency shift for SD-Fe/Mn suspensions
were further analyzed, and the results are presented in Figure 5b. It is evident that all
samples experienced varying degrees of deposition when the SD-Fe/Mn suspension was
introduced into the chamber. The elution experiments conducted after 30 min indicate that
when the C/Fe-Mn molar ratio is below 2.2 (5 mg C/L), the deposited layer of SD-Fe/Mn
suspension on the silica surface does not desorb in response to the shear force exerted
by the water flow of the rinsing solution. It has been demonstrated that SD-Fe/Mn with
lower C/Fe-Mn molar ratios (below 2.2) enhances its resistance to shear forces exerted by
water flow. This improvement is attributed to the formation of stronger chemical bonds or
physical adsorption between the material and the silica surface.

3.4. Effect of SD-Fe/Mn on Arsenic Migration

Based on the aforementioned analyses, a study was conducted to investigate the
effects of straw return on the formation, transport, and deposition of Fe/Mn colloids in soil.
Furthermore, the impact of formed SD-Fe/Mn colloids on the fate of heavy metal arsenic
in soil was examined. Decarbonized extracted bioavailable As (DEB-As) was obtained
through carbonate extraction to evaluate arsenic uptake and bioavailability [42,43]. The
influence of SD-Fe/Mn colloids on the mobility and potential bioavailability pathways
of arsenic within the soil environment was predicted using a combination of soil column
experiments and calculations. Quartz sand was utilized to simulate the soil environment
and to examine transport processes by constructing soil-filled columns with a comparable
porosity of 27.2 ± 0.2%, similar to those employed in in situ remediation experiments for
arsenic in soil [33,35]. Sampling tests were performed at various depths and locations
using these soil column experiments (Figure 8h) to assess how SD-Fe/Mn suspensions with
distinct C/Fe-Mn molar ratios influenced the migration of heavy metal arsenic within the
soil environment, with the results presented in Figure 8. As illustrated in Figure 5a, in soil
environments where only straw was incorporated, the average DEB-As content increased
by a factor of 1.35 (C/C0) following multi-point sampling and testing. In contrast, other soil
environments treated with SD-Fe/Mn exhibited significantly higher values. This indicates
that merely adding straw is ineffective for immobilizing heavy metal As; rather, it markedly
elevated DEB-As levels in the soil, thereby enhancing its mobility. This phenomenon
may be attributed to complex formation between As and organic acids released during
straw decomposition, which increases both solubility and bioavailability. However, for
those soil environments where SD-Fe/Mn suspensions were applied, the DEB-As content
decreased across soils with varying C/Fe-Mn molar ratios (Figure 8b–g). This suggests
that SD-Fe/Mn suspensions effectively inhibited both the migration and bioavailability
of As. This phenomenon arises from the ability of arsenic to co-precipitate with Fe/Mn
(hydr)oxides, resulting in the formation of new solid compounds. This process effectively
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immobilizes arsenic in a solid state, thereby reducing its concentration and mobility within
the aqueous phase.
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Further studies demonstrated that the effects of SD-Fe/Mn colloids with varying SD
contents on As in the soil were distinct. For SD-Fe/Mn suspensions with C/Fe-Mn molar
ratios of 0.4, 1.3, 2.2, 4.3, 10.8, and 21.5, the average DEB-As content in the upper soil layer
(0–5 cm) decreased by 26%, 37%, 44%, 38%, 32%, and 24% (C/C0 for the uppermost layer).
Within the range of C/Fe-Mn molar ratios from 0.4 to 2.2, an increase in SD content led
to the intensified precipitation of the composite colloid SD-Fe/Mn, which allowed for a
greater proportion of components from the SD-Fe/Mn suspension to be retained in the
topsoil layer; this effectively hindered the large-scale migration of As.

4. Discussion

This study elucidates the transport mechanisms of SD-Fe/Mn colloids, which are
formed from SD and Fe/Mn (hydr)oxides within the rice–soil system. Furthermore, it
emphasizes their significant role in mitigating the bioavailability of arsenic. The findings
indicate that the molar ratio of C/Fe-Mn significantly influences the morphology of Fe/Mn
(hydr)oxides, with higher ratios promoting the formation of colloidal and dissolved forms
rather than particulate forms. This transformation is linked to the interaction between SD
organic acids and Fe/Mn (hydr)oxides, which modifies their state of existence and solubility.
The stability of SD-Fe/Mn complexes increases with higher SD content, indicating that
increased negative surface charge reduces aggregation. Zeta potential measurements
and DLS analyses confirm that elevated SD concentrations produce smaller, more stable
colloidal particles. Combined with the column migration experiments, it is suggested that
higher C/Fe-Mn ratios will enhance the fluidity of the SD-Fe/Mn colloid. This enhancement
is crucial for effectively managing heavy metal pollutants, such as As, in agricultural soil.

Additionally, QCM-D shows that at greater C/Fe-Mn ratios, the deposition rates of
these colloids on silica surfaces decrease. Importantly, the co-precipitation of arsenic with
Fe/Mn (hydr)oxides led to the formation of solid compounds that effectively immobilized
As, thereby reducing its concentration and mobility in the soil aqueous phase. The incorpo-
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ration of SD-Fe/Mn colloids significantly diminished both the mobility and bioavailability
of As in the soil. Optimal immobilization occurred at a C/Fe-Mn ratio of 2.2, highlighting
the potential application of SD-Fe/Mn colloids in As remediation strategies. These findings
emphasize the need to optimize the C/Fe-Mn ratio for effective soil remediation aimed at
sustainably reducing As contamination.

5. Conclusions

In this study, we highlight the significant role of the synergy between SD and Fe/Mn
(hydr)oxides colloids in mitigating As contamination in agricultural soils. The results
indicate that the molar ratio of SD to Fe/Mn (C/Fe-Mn) is a critical factor influencing the
formation, stability, and mobility of SD-Fe/Mn colloidal particles. An elevated C/Fe-Mn
ratio promotes the formation of colloidal and dissolved Fe/Mn (hydr)oxide species, which
interact with SD organic matter, thereby altering their solubility and aggregation. Data from
zeta potential assessments, DLS, and QCM-D confirm that an increased content of SD leads
to more stable and mobile colloidal particles. This enhancement facilitates the transport
and deposition mechanisms of As. The effectiveness of introducing Fe/Mn (hydr)oxides in
reducing the mobility and bioavailability of As in soil was validated through indoor soil
column experiments. The results indicated that at the optimal C/Fe-Mn ratio of 2.2, both
the bioavailability and mobility of As were significantly diminished, thereby effectively
preventing the passive uptake of arsenic by plants. These discoveries underscore the
importance of fine-tuning the C/Fe-Mn ratio for designing effective and sustainable soil
remediation technologies aimed at reducing heavy metal As pollution in soils. They provide
assistance in the remediation of heavy metals in agricultural soils, thereby contributing to
sustainable development.
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formation experiments.
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